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Linear dimension reduction



Dimension reduction: map feature vectors from Rd to Rk with k < d

▶ Reduce storage requirements for dataset

▶ Improve understandability of individual data points

▶ Improve performance of learning algorithms on dataset

▶ . . .

Many methods are linear: i.e., based on linear map φ : Rd → Rk

This lecture: unsupervised methods for dimension reduction
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Throughout this lecture, X = (X1, . . . , Xd) is a random vector

e.g., X = data point drawn uniformly at random from S
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Axis-aligned embeddings

Axis-aligned embeddings:

▶ Let φ(x) ∈ Rk keep a subset of k features xi, throw away the rest

Question: Which features to keep?

▶ Simple heuristic: Choose the k most “informative” features

Sort features by variance

var(X(1)) ≥ · · · ≥ var(X(d))

and choose φ(x) = (x(1), . . . , x(k))
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Suppose only k features have non-negligible variance

var(X(1)) ≥ · · · ≥ var(X(k))≫ var(X(k+1)) ≈ · · · ≈ var(X(d)) ≈ 0

And φ(x) = (x(1), . . . , x(k)) ∈ Rk

For affine function wTx+ b, we have

wTX + b ≈

Therefore, this is close to w̃Tφ(X) + b̃ for some w̃ ∈ Rk and b̃ ∈ R
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Example: MNIST dataset of handwritten digit images

▶ 784 features corresponding to pixel intensity values (from {0, 1, . . . , 255})
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Vertical axis: max
β∈Rd−k

stddev(βk+1X(k+1) + · · ·+ βdX(d))

∥β∥
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Can we do better than “axis-aligned embeddings”?

▶ Maybe there is a better way to choose which variables to keep?

▶ Retained features could contain a lot of redundancy!

▶ Can possibly reduce dimension even further by accounting for covariance
between features
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Covariance matrices

Covariance matrix cov(X) of a random vector X = (X1, . . . , Xd):

▶ d× d matrix whose (i, j)-th entry is cov(Xi, Xj)

▶ Matrix notation:

cov(X) = E[(X − E(X))(X − E(X))T]

▶ cov(X) “encodes” covariance between all linear functions of X
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Consider linear function f(x) = αTx, given by some α ∈ Rd

▶ If α is a unit vector (i.e., ∥α∥ = 1), then αTx is the “coordinate” of the
orthogonal projection of x to the line spanned by α

▶ The “coordinate” αTx is often referred to as the “projection of x in direction
α”, even though this is not technically correct
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▶ What is the mean of αTX?

▶ What is the variance of αTX?
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▶ What is the covariance between αTX and βTX?
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Example: Dartmouth student data

▶ x1 = SAT verbal percentile, x2 = SAT math percentile,
x3 = high school GPA, x4 = (first year) college GPA

▶ X = data point drawn uniformly at random from dataset

cov(X) =




69.8 33.8 1.74 2.71
33.8 72.3 1.76 2.43
1.74 1.76 0.29 0.22
2.71 2.43 0.22 0.56




▶ Define random variables Y and Z:

Y =
1

2
(SAT verbal+ SAT math)

Z =
1

2
(high school GPA+ college GPA)
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Using cov(X), can compute cor(Y, Z):

var(Y ) = αT cov(X)α = 52.4

var(Z) = βT cov(X)β = 0.32

cov(Y, Z) = αT cov(X)β = 2.16

cor(Y, Z) =
cov(Y, Z)√
var(Y ) var(Z)

= 0.52

where

α =

β =
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Review of eigenvalues and eigenvectors

▶ Every symmetric d× d matrix M has d real eigenvalues, conventionally
numbered in non-increasing order

λ1 ≥ · · · ≥ λd

▶ Because M is symmetric, it is always possible to find d corresponding
eigenvectors that form an orthonormal basis for Rd:

v1, . . . , vd ∈ Rd

such that
Mvi = λivi

and

vT

i vj =

{
1 if i = j

0 otherwise
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Eigendecomposition of M

M =
d∑

i=1

λi viv
T

i
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For rest of lecture, let cov(X) have eigendecomposition

cov(X) =
d∑

i=1

λi viv
T

i

with λ1 ≥ · · · ≥ λd and v1, . . . , vd orthonormal
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Variance maximizing direction

“Variance of X in direction α”:

var

(
1

∥α∥α
TX

)
=

αT cov(X)α

∥α∥2

Question: In which direction α does X have the highest variance?

max
α∈Rd\{0}

αT cov(X)α

∥α∥2
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Answer: α = v1—i.e., eigenvector of cov(X) corresponding to largest eigenvalue
(a.k.a. top eigenvector)
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Upshot: If you want to reduce to dimension k = 1, use direction of the top
eigenvector of cov(X)

Example: MNIST (just the 8’s); 10 images sorted by “coordinate” along v1
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Principal components analysis

What we want: minimize variance of X in directions that are “thrown away”

For k = 1, goal is captured by following problem:

min
α∈Rd

max
β∈Rd\{0},

β⊥α

βT cov(X)β

∥β∥2

Solution also is given by α = v1

This fact is a special case of the “Courant min-max principle”
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▶ For α = v1,

max
β∈Rd\{0},

β⊥α

βT cov(X)β

∥β∥2 =

▶ For any other α:
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Courant min-max principle says

min
W⊆Rd,

dim(W)=k

max
β∈Rd\{0},

β⊥W

βT cov(X)β

∥β∥2 =

and this is achieved by the subspace W = span{v1, . . . , vk} spanned by top-k
eigenvectors of cov(X)
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Principal components analysis (PCA): dimension reduction method that, for
target dimension k, uses the linear map

φ(x) = (vT

1x, . . . , v
T

kx)

based on the top-k eigenvectors of cov(X)

▶ φ(x) gives the “coordinates” of the orthogonal projection of x to span of
v1, . . . , vk, a.k.a. the dimension-k PCA projection

▶ Also

cov(φ(X)i, φ(X)j) =

So new “variables” in φ(X) are uncorrelated
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MNIST: What subspace dimension k is needed so worst standard deviation in an
orthogonal direction is at most 0.1× λ1?

▶ Axis-aligned embeddings: k = 419; PCA embeddings: k = 101
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Given φ(x) ∈ Rk (from PCA), along with v1, . . . , vk, can obtain d-dimensional
“reconstruction” of x:

k∑

i=1

φ(x)i vi

(orthogonal projection of x to the subspace spanned by v1, . . . , vk)
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MNIST

original k = 25 k = 50 k = 75 k = 100
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Matrix approximation

PCA (on finite dataset) is related to singular value decomposition of n× d matrix

A =



←− (x(1))T −→

...
←− (x(n))T −→
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Every matrix A has a singular value decomposition (SVD): decomposition of A
into the sum of r rank-1 matrices

A =
r∑

i=1

siu
(i)(v(i))T

where

▶ r = rank(A)

▶ s1 ≥ · · · ≥ sr > 0 as positive real numbers (singular values of A)

▶ u(1), . . . , u(r) is ONB for CS(A) (left singular vectors of A)

▶ v(1), . . . , v(r) is ONB for CS(AT) (right singular vectors of A)
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Matrix form of SVD:

A =



↑ ↑

u(1) · · · u(r)

↓ ↓




︸ ︷︷ ︸
U



s1

. . .

sr




︸ ︷︷ ︸
S



←− (v(1))T −→

...
←− (v(r))T −→




︸ ︷︷ ︸
V T

Computation: numpy.linalg.svd
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Rank-k (truncated) SVD: keep only the first k ≤ r components of the SVD

A(k) =
k∑

i=1

siu
(i)(v(i))T

In matrix form:

A(k) =



↑ ↑

u(1) · · · u(k)

↓ ↓




︸ ︷︷ ︸
U(k)



s1

. . .

sk




︸ ︷︷ ︸
S(k)



←− (v(1))T −→

...
←− (v(k))T −→




︸ ︷︷ ︸
(V (k))T
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Eckart-Young Theorem: If k ≤ rank(A), then A(k) =
∑k

i=1 siu
(i)(v(i))T from

rank-k SVD has smallest sum-of-squared errors

n∑

i=1

d∑

j=1

(Ai,j − Ãi,j)
2

among all n× d matrices Ã of rank k
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Connection to PCA: Let X be random vector with uniform distribution over
{x(1), . . . , x(n)} (and assume A is row-centered, so 1

n

∑n
i=1 x

(i) = 0)

▶ Then cov(X) =

▶ Moreover,

ATA =

▶ Non-zero eigenvalues of cov(X) are

▶ Corresponding eigenvectors of cov(X) are
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Statistical model: A is n× d matrix of independent random variables, with

Ai,j ∼ N(Hi,j, σ
2)

where H is n× d matrix with rank ≤ k (the “parameter” of this model)

Maximum likelihood estimator of H:
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J Novembre et al. Nature 000, 1-4 (2008) doi:10.1038/nature07331
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