Dimension reduction

COMS 4771 Fall 2023

Linear dimension reduction

Dimension reduction: map feature vectors from \mathbb{R}^{d} to \mathbb{R}^{k} with $k<d$

- Reduce storage requirements for dataset
- Improve understandability of individual data points
- Improve performance of learning algorithms on dataset

Many methods are linear: i.e., based on linear map $\varphi: \mathbb{R}^{d} \rightarrow \mathbb{R}^{k}$

This lecture: unsupervised methods for dimension reduction

Throughout this lecture, $X=\left(X_{1}, \ldots, X_{d}\right)$ is a random vector e.g., $X=$ data point drawn uniformly at random from \mathcal{S}

Axis-aligned embeddings

Axis-aligned embeddings:

- Let $\varphi(x) \in \mathbb{R}^{k}$ keep a subset of k features x_{i}, throw away the rest

Question: Which features to keep?

- Simple heuristic: Choose the k most "informative" features

Sort features by variance

$$
\operatorname{var}\left(X_{(1)}\right) \geq \cdots \geq \operatorname{var}\left(X_{(d)}\right)
$$

and choose $\varphi(x)=\left(x_{(1)}, \ldots, x_{(k)}\right)$

Suppose only k features have non-negligible variance

$$
\operatorname{var}\left(X_{(1)}\right) \geq \cdots \geq \operatorname{var}\left(X_{(k)}\right) \gg \operatorname{var}\left(X_{(k+1)}\right) \approx \cdots \approx \operatorname{var}\left(X_{(d)}\right) \approx 0
$$

And $\varphi(x)=\left(x_{(1)}, \ldots, x_{(k)}\right) \in \mathbb{R}^{k}$

For affine function $w^{\top} x+b$, we have

$$
w^{\top} X+b \approx
$$

Therefore, this is close to $\tilde{w}^{\top} \varphi(X)+\tilde{b}$ for some $\tilde{w} \in \mathbb{R}^{k}$ and $\tilde{b} \in \mathbb{R}$

Example: MNIST dataset of handwritten digit images

- 784 features corresponding to pixel intensity values (from $\{0,1, \ldots, 255\}$)

Vertical axis: $\quad \max _{\beta \in \mathbb{R}^{d-k}} \frac{\operatorname{stddev}\left(\beta_{k+1} X_{(k+1)}+\cdots+\beta_{d} X_{(d)}\right)}{\|\beta\|}$

Can we do better than "axis-aligned embeddings"?

- Maybe there is a better way to choose which variables to keep?
- Retained features could contain a lot of redundancy!
- Can possibly reduce dimension even further by accounting for covariance between features

Covariance matrices

Covariance matrix $\operatorname{cov}(X)$ of a random vector $X=\left(X_{1}, \ldots, X_{d}\right)$:

- $d \times d$ matrix whose (i, j)-th entry is $\operatorname{cov}\left(X_{i}, X_{j}\right)$
- Matrix notation:

$$
\operatorname{cov}(X)=\mathbb{E}\left[(X-\mathbb{E}(X))(X-\mathbb{E}(X))^{\top}\right]
$$

$\operatorname{cov}(X)$ "encodes" covariance between all linear functions of X

Consider linear function $f(x)=\alpha^{\top} x$, given by some $\alpha \in \mathbb{R}^{d}$

- If α is a unit vector (i.e., $\|\alpha\|=1$), then $\alpha^{\top} x$ is the "coordinate" of the orthogonal projection of x to the line spanned by α
- The "coordinate" $\alpha^{\top} x$ is often referred to as the "projection of x in direction α ", even though this is not technically correct

What is the mean of $\alpha^{\top} X$?

What is the variance of $\alpha^{\top} X$?

Example: Dartmouth student data

- $x_{1}=$ SAT verbal percentile, $x_{2}=$ SAT math percentile, $x_{3}=$ high school GPA, $x_{4}=$ (first year) college GPA
- $X=$ data point drawn uniformly at random from dataset

$$
\operatorname{cov}(X)=\left[\begin{array}{llll}
69.8 & 33.8 & 1.74 & 2.71 \\
33.8 & 72.3 & 1.76 & 2.43 \\
1.74 & 1.76 & 0.29 & 0.22 \\
2.71 & 2.43 & 0.22 & 0.56
\end{array}\right]
$$

- Define random variables Y and Z :

$$
\begin{aligned}
Y & =\frac{1}{2}(\text { SAT verbal }+ \text { SAT math }) \\
Z & =\frac{1}{2}(\text { high school GPA }+ \text { college GPA })
\end{aligned}
$$

Using $\operatorname{cov}(X)$, can compute $\operatorname{cor}(Y, Z)$:

$$
\begin{aligned}
\operatorname{var}(Y) & =\alpha^{\top} \operatorname{cov}(X) \alpha=52.4 \\
\operatorname{var}(Z) & =\beta^{\top} \operatorname{cov}(X) \beta=0.32 \\
\operatorname{cov}(Y, Z) & =\alpha^{\top} \operatorname{cov}(X) \beta=2.16 \\
\operatorname{cor}(Y, Z) & =\frac{\operatorname{cov}(Y, Z)}{\sqrt{\operatorname{var}(Y) \operatorname{var}(Z)}}=0.52
\end{aligned}
$$

where

$$
\begin{aligned}
& \alpha= \\
& \beta= \\
&
\end{aligned}
$$

Review of eigenvalues and eigenvectors

- Every symmetric $d \times d$ matrix M has d real eigenvalues, conventionally numbered in non-increasing order

$$
\lambda_{1} \geq \cdots \geq \lambda_{d}
$$

Because M is symmetric, it is always possible to find d corresponding eigenvectors that form an orthonormal basis for \mathbb{R}^{d} :

$$
v_{1}, \ldots, v_{d} \in \mathbb{R}^{d}
$$

such that

$$
M v_{i}=\lambda_{i} v_{i}
$$

and

$$
v_{i}^{\top} v_{j}= \begin{cases}1 & \text { if } i=j \\ 0 & \text { otherwise }\end{cases}
$$

Eigendecomposition of M

$$
M=\sum_{i=1}^{d} \lambda_{i} v_{i} v_{i}^{\top}
$$

For rest of lecture, let $\operatorname{cov}(X)$ have eigendecomposition

$$
\operatorname{cov}(X)=\sum_{i=1}^{d} \lambda_{i} v_{i} v_{i}^{\top}
$$

with $\lambda_{1} \geq \cdots \geq \lambda_{d}$ and v_{1}, \ldots, v_{d} orthonormal

Variance maximizing direction

"Variance of X in direction α ":

$$
\operatorname{var}\left(\frac{1}{\|\alpha\|} \alpha^{\top} X\right)=\frac{\alpha^{\top} \operatorname{cov}(X) \alpha}{\|\alpha\|^{2}}
$$

Question: In which direction α does X have the highest variance?

$$
\max _{\alpha \in \mathbb{R}^{d} \backslash\{0\}} \frac{\alpha^{\top} \operatorname{cov}(X) \alpha}{\|\alpha\|^{2}}
$$

Answer: $\alpha=v_{1}$-i.e., eigenvector of $\operatorname{cov}(X)$ corresponding to largest eigenvalue (a.k.a. top eigenvector)

Upshot: If you want to reduce to dimension $k=1$, use direction of the top eigenvector of $\operatorname{cov}(X)$

Example: MNIST (just the 8 's); 10 images sorted by "coordinate" along v_{1}

$$
8888868888
$$

Principal components analysis

What we want: minimize variance of X in directions that are "thrown away"

For $k=1$, goal is captured by following problem:

$$
\min _{\substack{\alpha \in \mathbb{R}^{d} \beta \in \mathbb{R}^{d} \backslash\{\{ \}\} \\ \beta \perp \alpha}} \max ^{\beta^{\top} \operatorname{cov}(X) \beta} \underset{\|\beta\|^{2}}{\|}
$$

Solution also is given by $\alpha=v_{1}$

This fact is a special case of the "Courant min-max principle"

For $\alpha=v_{1}$ ，

$$
\max _{\substack{\beta \in \mathbb{R}^{d} \backslash\{0\} \\ \beta \perp \alpha}} \frac{\beta^{\top} \operatorname{cov}(X) \beta}{\|\beta\|^{2}}=
$$

For any other α ：

Courant min－max principle says

$$
\min _{\substack{\mathcal{W} \subseteq \mathbb{R}^{d}, \operatorname{dim}(\mathcal{W})=k}} \max _{\beta \in \mathbb{R}^{d} \backslash\{0\},}^{\beta \perp \mathcal{W}} ⿺ ⿻ ⿻ 一 ㇂ ㇒ 丶 𠃌 ⿴ 囗 十 .
$$

and this is achieved by the subspace $\mathcal{W}=\operatorname{span}\left\{v_{1}, \ldots, v_{k}\right\}$ spanned by top－k eigenvectors of $\operatorname{cov}(X)$

Principal components analysis (PCA): dimension reduction method that, for target dimension k, uses the linear map

$$
\varphi(x)=\left(v_{1}^{\top} x, \ldots, v_{k}^{\top} x\right)
$$

based on the top- k eigenvectors of $\operatorname{cov}(X)$

- $\varphi(x)$ gives the "coordinates" of the orthogonal projection of x to span of v_{1}, \ldots, v_{k}, a.k.a. the dimension- k PCA projection
- Also

$$
\operatorname{cov}\left(\varphi(X)_{i}, \varphi(X)_{j}\right)=
$$

So new "variables" in $\varphi(X)$ are uncorrelated

MNIST: What subspace dimension k is needed so worst standard deviation in an orthogonal direction is at most $0.1 \times \lambda_{1}$?

Axis-aligned embeddings: $k=419$; PCA embeddings: $k=101$

Given $\varphi(x) \in \mathbb{R}^{k}$ (from PCA), along with v_{1}, \ldots, v_{k}, can obtain d-dimensional "reconstruction" of x :

$$
\sum_{i=1}^{k} \varphi(x)_{i} v_{i}
$$

(orthogonal projection of x to the subspace spanned by v_{1}, \ldots, v_{k})

MNIST

original	$k=25$	$k=50$	$k=75$	$k=100$
7	7	2	3	3

Matrix approximation

PCA (on finite dataset) is related to singular value decomposition of $n \times d$ matrix

$$
A=\left[\begin{array}{ccc}
\longleftarrow & \left(x^{(1)}\right)^{\top} & \longrightarrow \\
\vdots & & \\
\longleftarrow & \left(x^{(n)}\right)^{\top} & \longrightarrow
\end{array}\right]
$$

Every matrix A has a singular value decomposition (SVD): decomposition of A into the sum of r rank-1 matrices

$$
A=\sum_{i=1}^{r} s_{i} u^{(i)}\left(v^{(i)}\right)^{\top}
$$

where

- $r=\operatorname{rank}(A)$
- $s_{1} \geq \cdots \geq s_{r}>0$ as positive real numbers (singular values of A)
- $u^{(1)}, \ldots, u^{(r)}$ is ONB for $\operatorname{CS}(A)$ (left singular vectors of A)
- $v^{(1)}, \ldots, v^{(r)}$ is ONB for $\operatorname{CS}\left(A^{\top}\right)$ (right singular vectors of A)

Matrix form of SVD:

$$
A=\underbrace{\left[\begin{array}{ccc}
\uparrow & & \uparrow \\
u^{(1)} & \cdots & u^{(r)} \\
\downarrow & & \downarrow
\end{array}\right]}_{U} \underbrace{\left[\begin{array}{ccc}
s_{1} & & \\
& \ddots & \\
& & s_{r}
\end{array}\right]}_{S} \underbrace{\left[\begin{array}{ccc}
\longleftarrow & \left(v^{(1)}\right)^{\top} & \longrightarrow \\
& \vdots \\
\longleftarrow & \left(v^{(r)}\right)^{\top} & \longrightarrow
\end{array}\right]}_{V^{\top}}
$$

Computation: numpy.linalg.svd

Rank- k (truncated) SVD: keep only the first $k \leq r$ components of the SVD

$$
A^{(k)}=\sum_{i=1}^{k} s_{i} u^{(i)}\left(v^{(i)}\right)^{\top}
$$

In matrix form:

$$
A^{(k)}=\underbrace{\left[\begin{array}{ccc}
\uparrow & & \uparrow \\
u^{(1)} & \cdots & u^{(k)} \\
\downarrow & & \downarrow
\end{array}\right]}_{U^{(k)}} \underbrace{\left[\begin{array}{lll}
s_{1} & & \\
& \ddots & \\
& & s_{k}
\end{array}\right]}_{S^{(k)}} \underbrace{\left[\begin{array}{ccc}
\longleftarrow & \left(v^{(1)}\right)^{\top} & \longrightarrow \\
\vdots & & \\
\longleftarrow & \left(v^{(k)}\right)^{\top} & \longrightarrow
\end{array}\right]}_{\left(V^{(k)}\right)^{\top}}
$$

Eckart-Young Theorem: If $k \leq \operatorname{rank}(A)$, then $A^{(k)}=\sum_{i=1}^{k} s_{i} u^{(i)}\left(v^{(i)}\right)^{\top}$ from rank- k SVD has smallest sum-of-squared errors

$$
\sum_{i=1}^{n} \sum_{j=1}^{d}\left(A_{i, j}-\tilde{A}_{i, j}\right)^{2}
$$

among all $n \times d$ matrices \tilde{A} of rank k

Connection to PCA: Let X be random vector with uniform distribution over $\left\{x^{(1)}, \ldots, x^{(n)}\right\}$ (and assume A is row-centered, so $\frac{1}{n} \sum_{i=1}^{n} x^{(i)}=0$)

- Then $\operatorname{cov}(X)=$
- Moreover,

$$
A^{\top} A=
$$

\qquad

- Non-zero eigenvalues of $\operatorname{cov}(X)$ are \qquad
- Corresponding eigenvectors of $\operatorname{cov}(X)$ are \qquad

Statistical model: A is $n \times d$ matrix of independent random variables, with

$$
A_{i, j} \sim \mathrm{~N}\left(H_{i, j}, \sigma^{2}\right)
$$

where H is $n \times d$ matrix with rank $\leq k$ (the "parameter" of this model)

Maximum likelihood estimator of H : \qquad

J Novembre et al. Nature 000, 1-4 (2008) doi:10.1038/nature07331

