
Nearest neighbors

COMS 4771 Fall 2023

Digit recognition

Problem: Create a program that, given an image of a handwritten digit as input,
returns the digit depicted in the image

1 / 25

Simplifying assumptions:

▶ The image depicts some digit (from {0, 1, . . . , 9})
▶ The depicted digit is (roughly) in the center of the image

▶ The image is a 28× 28 pixel image (for a total of 784 pixels)

▶ Each pixel is grayscale; pixel intensity is an integer from {0, 1, . . . , 255}

2 / 25

Machine learning approach to digit recognition:

▶ Don’t explicitly write the image classifier by hand

▶ Collect a labeled dataset of images
▶ Each image is an example of how someone might write a digit
▶ Each image is annotated with a label—the digit depicted in the image
▶ NIST has collected such a dataset with 60000 examples (“MNIST”)1

▶ Provide the labeled dataset as input to a learning algorithm

▶ Learning algorithm returns an image classifier

1http://yann.lecun.com/exdb/mnist/
3 / 25

http://yann.lecun.com/exdb/mnist/

4 / 25

Nearest neighbors learning algorithm

Nearest Neighbors (NN) learning algorithm:

▶ Input: Labeled dataset S

▶ Output: NN classifier for labeled dataset S (also a program!)

5 / 25

Notation:

▶ n: number of images in the dataset

▶ x(1), x(2), . . . , x(n): the n images

▶ y(1), y(2), . . . , y(n): the n corresponding labels

▶ Labeled dataset

S = ((x(i), y(i)))ni=1 = ((x(1), y(1)), (x(2), y(2)), . . . , (x(n), y(n)))

▶ (Sometimes x’s and y’s come separately: (x(i))ni=1 and (y(i))ni=1)

6 / 25

NN classifier for labeled dataset S:

▶ Input: x

▶ Output: prediction of correct label of x

▶ Pseudocode:

7 / 25

Euclidean distance
D(x, z) = ∥x− z∥

8 / 25

Image of digit as 784-vector: pixel intensities as features

9 / 25

Computational requirements of NN classifier:

▶ Memory

▶ Time

10 / 25

import numpy as np

def learn(train_x, train_y):

return (train_x, train_y)

def predict(params, test_x):

x, y = params

return y[np.argmin(np.sum(x**2, axis=1) - 2*test_x.dot(x.T),

axis=1)]↪→

If you want to strictly follow the idea that “learn” should return a function:

def learn(train_x, train_y):

return lambda test_x: train_y[np.argmin(np.sum(train_x**2, axis=1)

- 2*test_x.dot(train_x.T), axis=1)]↪→

11 / 25

Evaluating a classifier

▶ Error rate on classifier f on labeled dataset:

▶ Training error rate (i.e., error rate on S) of NN classifier:

12 / 25

NIST has provided separate collection of 10000 labeled examples, which we
did not provide to NN learning algorithm

▶ We use it as test data

▶ Test error rate (i.e., error rate on test data) of NN classifier:

13 / 25

Test image, nearest neighbor in training data:

14 / 25

Upgrading NN: more neighbors

Test image, nearest neighbor in training data:

3 closest images in training data:

15 / 25

k-NN classifier for labeled dataset S:

▶ Input: x

▶ Output: prediction of correct label of x

▶ Pseudocode:

16 / 25

hyperparameter k 1 3 5 7 9
test error rate 3.09% 2.95% 3.12% 3.06% 3.41%

17 / 25

Hyperparameter tuning (e.g., how to choose k?)

18 / 25

▶ Cross validation: use subset of training data to act as test data for purpose of
evaluating different hyperparameter choices

▶ Pseudocode:

19 / 25

Upgrading NN: better distances

Other types of distances

▶ ℓp distance for d-vectors x = (x1, . . . , xd)

Dp(x, z) = (|x1 − z1|p + · · ·+ |xd − zd|p)1/p

20 / 25

Other types of distances

▶ “Edit distance” for strings (e.g., x = “kitten”)

Dedit(x, z) = # insertions/deletions/swaps needed to transform x to z

21 / 25

Digit recognition using NN classifier based on different distances

distance metric ℓ2 ℓ3 “shape”

test error rate 3.09% 2.83% < 1%

22 / 25

Caution: many types of distances (e.g., ℓp distances) are sensitive to the quality
of the numerical features

▶ 1000 “noisy” pixels with random intensity values

▶ Single “noisy” pixel with scale 1000 times that of regular pixels

23 / 25

“Curse of dimension”: weird effects in “high dimensional” feature spaces
(e.g., space of all d-vectors for large d)

24 / 25

Question: How can we choose the distance function to use?

25 / 25

	Digit recognition
	Nearest neighbors learning algorithm
	Evaluating a classifier
	Upgrading NN: more neighbors
	Upgrading NN: better distances

