Generalization theory

COMS 4771 Fall 2023

In-sample vs. out-of-sample performance

- Basic premise: training data is sample from population (or distribution)
- In-sample: what happens on training data
- Out-of-sample: what happens in overall population
- Learning algorithm: find classifier f with low training error rate $\widehat{\operatorname{err}}[f]$
 - Will this classifier f also have low (true) error rate err[f]?
 - Basic answer from statistical learning theory: Yes, if classifier is chosen from a "simple" function class F

Training error rate of a fixed classifier

Suppose you chose classifier f before even looking at the training data $\mathcal{S} = ((X^{(1)}, Y^{(1)}), \dots, (X^{(n)}, Y^{(n)})) \stackrel{\text{i.i.d.}}{\sim} (X, Y)$

Training error rate of learned classifier

Usually, we choose a classifier \hat{f} based on the training data ${\mathbb S}$

Why can't previous analysis apply?

Two different random variables, $\widehat{\operatorname{err}}[\widehat{f}]$ and $\operatorname{err}[\widehat{f}]$:

$$\widehat{\operatorname{err}}[\hat{f}] = \frac{1}{n} \sum_{i=1}^{n} \mathbb{1}\{\hat{f}(X^{(i)}) \neq Y^{(i)}\}, \qquad \operatorname{err}[\hat{f}] = \Pr(\hat{f}(X) \neq Y \mid \hat{f})$$

Typically how different are they?

Conservative answer: if \hat{f} is chosen from ${\cal F},$ then

$$\Pr(|\widehat{\operatorname{err}}[\widehat{f}] - \operatorname{err}[\widehat{f}]| > \epsilon) \le \Pr(\text{there exists } f \in \mathcal{F} \text{ s.t. } |\widehat{\operatorname{err}}[f] - \operatorname{err}[f]| > \epsilon)$$

Union bound: For any events A and B,

$$\Pr(A \text{ or } B) = \Pr(A \cup B) \le \Pr(A) + \Pr(B)$$

Chernoff bound: for any fixed $f: \mathcal{X} \to \mathcal{Y}$,

$$\Pr(|\widehat{\operatorname{err}}[f] - \operatorname{err}[f]| > \epsilon) \le 2\exp(-2n\epsilon^2)$$

Comparison to bound for a single f based on CLT:

- ▶ Doesn't have factor of $\sqrt{\operatorname{err}[f](1 \operatorname{err}[f])}$ from single f CLT bound
 - Can get this using advanced version of "Chernoff bound"
- Scary/weird constants
 - But inside the logarithm (and maybe can be improved)
- ▶ Bound grows with $\sqrt{\ln |\mathcal{F}|}$
 - \blacktriangleright Roughly like reducing n by a factor of # bits needed to represent a classifier $f\in \mathcal{F}$

Counting number of behaviors

The cardinality of ${\mathcal F}$ is a crude measure of its "complexity"

• Example: \mathcal{F} is all "threshold functions on \mathbb{R} "

$$f_t(x) = \mathbb{1}\{x > t\}$$

- There are uncountably-many such classifiers, one per $t \in \mathbb{R}$
- \blacktriangleright But can only label a dataset of size n in n+1 different ways

Better measure: number of behaviors on the unlabeled data $x^{(1)},\ldots,x^{(n)}$

$$S(\mathcal{F}; (x^{(i)})_{i=1}^n) = |\{(f(x^{(1)}), \dots, f(x^{(n)})) : f \in \mathcal{F}\}|$$

Examples:

▶ If \mathcal{F} = all threshold functions on \mathbb{R} ,

$$S(\mathcal{F}; (x^{(i)})_{i=1}^n) \le n+1$$

▶ If $\mathcal{F} =$ all linear classifiers in \mathbb{R}^d ,

$$S(\mathcal{F}; (x^{(i)})_{i=1}^n) \le O(n^d)$$

Number of behaviors of large margin linear classifiers:

- \blacktriangleright Consider unlabeled data $x^{(1)},\ldots,x^{(n)}\in \mathbb{R}^d$ satisfying $\|x^{(i)}\|\leq 1$
- Let *F* = homogeneous linear classifiers with margin *γ* > 0 on these *n* data points (i.e., distance from *x*⁽ⁱ⁾ to decision boundary is ≥ *γ*)
- What is the number of behaviors of \mathcal{F} on $(x^{(i)})_{i=1}^n$?