About COMS 4771

- Basic principles and methods of supervised machine learning
 1. Appetizer: decision trees (a “non-parametric” method)
 2. Statistical model for prediction
 3. Linear models and inductive bias
 4. Optimization methods
 - Convex optimization, neural networks
 5. Maybe one other topic if time permits . . .

- This is not a course about how to use sklearn, tensorflow, etc.
- Also not about latest nonsense on arXiv
- Stuff beyond COMS 4771:
 - COMS 4252, 4773: Mathematical theory of learning
 - COMS 4774: Unsupervised learning
 - COMS 4775: Causal inference
 - . . .
Key statistical/algorithmic ideas in ML

- Plug-in principle
- Inductive bias
- Linearity
- Mathematical optimization
About me

- Professor Daniel Hsu
 - Okay to call me “Daniel”!
 - “Professor Hsu” also okay
 - But “Professor Daniel” is a little weird
 - Pronouns: he/him
 - At Columbia since 2013
 - Previously at Microsoft Research, Rutgers, UPenn, UC San Diego, UC Berkeley, ...
 - Research interests: algorithms, statistics, & combining the two
 - Good at: \LaTeX\ hacking
 - Bad at: slides
About you

- I assume you have fluency in
 - multivariable calculus,
 - linear algebra, and
 - elementary probability (no measure theory needed)

- I also assume you can read and write programs in Python
 - (and read online documentation to learn, e.g., how to do I/O with CSV files)
 - See Courseworks for a “Python basics” Jupyter notebook to brush up on Python, Numpy, etc.

- See “Calibration Homework” available on course website
- Let me know why you are interested in ML!
 - Part of HW 1.
Administrative stuff

- Website: https://www.cs.columbia.edu/~djhsu/ML
 - Schedule for office hours/lectures/homework/quizzes/exam
 - Syllabus

- Office hours: Thursdays 2:30-4:30pm, in CS Courtyard
 - Except if raining, then online

- Course assistants (CAs):
 - Abhinava, Arshiya, Maxime
 - Links for online office hours will be posted on Courseworks

- Technology:
 - Ed: communicate with course staff (replacement for Piazza)
 - Courseworks: retrieve assignments, data files, etc.
 - Gradescope: submit homework write-ups, code, quizzes

- Disability services:
 - Please make arrangements with disability services ASAP
Academic rules of conduct

▶ See syllabus
▶ **Cheating**: don’t do it
 ▶ If unsure about something, ask me ASAP
 ▶ Consequence is automatic fail
▶ **Cheating out of desperation** is also cheating
 ▶ Instead: get help early
 ▶ We are here to help
▶ Okay to work on homework in groups of \(\leq 2 \)
 ▶ No collaboration across groups
 ▶ No diffusion of responsibility
 ▶ No diffusion of learning
 ▶ *I personally think you will learn more if you solve homework problems by yourself*
▶ No collaboration at all on quizzes or exams
 ▶ Any collaboration or unauthorized assistance ⇒ automatic fail
Reading assignments

- There are some required reading assignments (mostly from handouts posted on website)
- Unfortunately, most textbooks on ML are not appropriate for this course
 - Closest is “A Course in Machine Learning” by Daumé
 - I have selected some optional reading assignments from a few books that may be used to supplement the lectures
 - All books available online