
Vectors and linear combinations
COMS 3251 Fall 2022 (Daniel Hsu)

1 Vectors

The term “vector” can mean many things. For now, we define an n-vector
to be an n-tuple of real numbers (a.k.a. scalars). Here, n is a placeholder for
a non-negative integer. (We’ll drop the “n-” when it is clear from context.)

An example of a 2-vector is (3, 2): it has 2 components (a.k.a. entries,
coordinates), each of which is a scalar. The first component of (3, 2) is 3,
and the second component is 2. We are used to thinking about such pairs
of numbers as points in the Cartesian plane. We refer to this plane as R2.
The only wrinkle is that 2-vectors are better thought of as “displacements”,
rather than “points”. So instead of just plotting the point (3, 2), we usually
draw an “arrow” that starts at the origin (0, 0) and ends at the point (3, 2).

The concept of 2-vectors generalizes to 3-vectors (in 3-dimensional Carte-
sian space) and also to n-vectors for any natural number n. The n-dimensional
Cartesian space is denoted by Rn. An n-vector has n components.

We use two ways to write an n-vector. The first is list format : (−π,
√
2, e2),

separating components with commas. The second is column format :−π√
2
e2

 ,

arranging components from top to bottom in a column surrounded by brack-
ets. We use symbols (mostly lowercase Roman letters) to assign names to
vectors, e.g., v = (3, 2).1 We also use subscripts to refer to components of a
named vector: vi for the ith component of v. Two vectors u = (u1, . . . , un)
and v = (v1, . . . , vn) are equal, written “u = v”, if all of their corresponding
components are equal: ui = vi for all i ∈ {1, . . . , n}.

Caution. Subscripts are often used in other ways; for instance, they may
be used to refer to a vector in a sequence of vectors (v1,v2, . . . ). So in these

1Various mnemonics are used to help us remember that a particular symbol refers to a vector, including
bold letter styles (v) and arrow decorations (v⃗).
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cases, it will be important to use context to understand what, say, “vee three”
refers to: the third component of a vector, or the third vector in a sequence
of vectors. To help, when vi is supposed to be the ith component of the
n-vector v, we’ll introduce the vector v by writing “v = (v1, . . . , vn)”.

2 Vector arithmetic

Because vectors, as we have defined them, are “just” tuples of real numbers,
we can generalize some arithmetic operations for real numbers to vectors.
These operations have intuitive interpretations when we think of vectors as
“displacements” in Cartesian space.

• Add two vectors u = (u1, u2) and v = (v1, v2): The result is the 2-vector

u+ v = (u1 + v1, u2 + v2).

E.g., if u = (1, 1) and v = (3, 2), then u+ v = (4, 3).

To find where the sum vector u+v should point in the Cartesian plane,
move the “start” of the vector v to the “end” of the vector u.

Switching the roles of u and v in this operation gives the same result:
u + v = v + u. Adding vectors in any order gives the same result:
u+ (v +w) = (u+ v) +w.

• Scale vector v = (v1, v2) by a real number c: The result is the 2-vector

cv = (c v1, c v2).

E.g., if v = (3, 2) and c = 2, then cv = (6, 4).

In the Cartesian plane, the scaled vector may point in the same direction
(if c > 0) or in the “opposite” direction (if c < 0); it may also be longer
(if |c| > 1) or shorter (if |c| < 1). It could also be the same (if c = 1).

The zero vector (a.k.a. origin) 0 = (0, 0) is a special vector.

• Scaling any vector by the real number 0 results in the zero vector 0.

• Adding 0 to another vector u yields that same vector u.

Of course, vector arithmetic generalizes in the obvious way to 3-vectors, and
also to n-vectors for any natural number n.
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3 Linear combinations

A linear combination of a (finite) collection of vectors is an expression that
scales these vectors by real numbers and then adds up the results. The result
of a linear combination is another vector. For instance, if u = (u1, u2, u3) and
v = (v1, v2, v3) are 3-vectors, and a and b are real numbers, then the 3-vector
au+ bv = (au1+ bv1, au2+ bv2, au3+ bv3) is a linear combination of u and v.

Linear combination is the basic way of combining vectors to produce an-
other vector.

Examples.

1. Consider n = 5 “resources” that a community might need: wool,
grain, lumber, brick, ore. Suppose the n-vector v = (5, 2, 2, 6, 0) rep-
resents the amount of each resource in a community’s inventory. We
also use n-vectors to represent the amount of each resource required
to complete particular projects: r = (0, 0, 1, 1, 0) for building a road;
s = (1, 1, 1, 1, 0) for building a settlement. The linear combination
v − 2r − s represents the amount of each resource the community has
in surplus (or shortfall) after building 2 roads and 1 settlement.

2. Consider a vocabulary consisting of n words in total. A “word count
vector” for a document is an n-vector v = (v1, . . . , vn) in which vi is
the number of times the ith vocabulary word appears in the docu-
ment. Adding up word count vectors for all documents in a themati-
cally coherent collection gives a histogram of word usage for the theme.
See Figure 1.

3. Suppose a 3-second audio signal is sampled at 8000 hertz, meaning that
measurements of acoustic pressure are taken at n = 3× 8000 regularly-
spaced times within the 3-second duration. This results in an n-vector
x of acoustic pressure measurements. If two such n-vectors x and y,
corresponding to two different audio signals, are added together, then
the result x+y represents the superposition of the two audio signals—
i.e., what you would hear if both are played back at the same time. A
different linear combination x+2y would represent the audio signal in
which the second signal is twice as loud as the first. See Figure 2.

3

https://www.catan.com/sites/default/files/2021-06/catan_base_rules_2020_200707.pdf


Vectors and linear combinations COMS 3251 Fall 2022 (Daniel Hsu)

basis
column

combination
execution

independence
leading
linear
matrix

orthogonal
space
vector

...



0
36
27
10
48
8
90
35
0
0
47
...





164
168
64
17
147
10
429
512
85
172
633
...


Figure 1: Vocabulary words (left); word count vector for dependence.tex

(center); sum of word count vectors for several documents (right).
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Figure 2: Plots of two 3-second audio signals and their sum.
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Linear combinations are also at the heart of systems of linear equations2:
given a collection of vectors S = {v1,v2, . . .}, can the vector w be obtained
as a linear combination of vectors from S?

Example. Given u = (1, 2, 3) and v = (3, 4, 5), can the vector w = (4, 4, 4)
be obtained as a linear combination of u and v? In other words, are there
real numbers x and y such that the following equation holds?

x

12
3

+ y

34
5

 =

44
4


Equivalent question: Does the following system of linear equations (over the
unknown variables x and y) have a solution?

x + 3y = 4

2x + 4y = 4

3x + 5y = 4.

Finding solutions to systems of linear equations is perhaps one of the
most important motivating applications of linear algebra. There is an impor-
tant (and ancient!) algorithm called “elimination” for systematically tackling
these systems in full generality (for m equations in n unknowns, where both
m and n can be very large), which will be studied in much detail later.

In our example, by hook or by crook, we can find the solution (x, y) =
(−2, 2), and it turns out this solution is the only one. Note that some sys-
tems of equations do not have any solutions, and in other systems, there are
infinitely-many solutions! So it is special that this system has a unique solu-
tion. In any case, because we found a solution, we have verified that w is a
linear combination of u and v.

4 Span

The span of a collection of vectors is defined to be the set of all linear com-
binations of these vectors. So the question from the previous example can be

2A linear equation over a collection of variables V is an equation in which the left-hand side is a linear
combination of variables from V, and the right-hand side does not involve any variables from V.
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equivalently phrased as: Is w in the span of {u,v}?
However, we may also ask about the nature of the entire span of a col-

lection of vectors, not just whether a particular vector is in it or not. For
instance, for any collection of 3-vectors, the span could be:

• the entirety of R3 (i.e., all 3-vectors are in the span),

• a particular plane within R3,

• a particular line within R3, or

• a particular point within R3 (and if this is case, the point must be 0).

(Note that span(∅) = {0}, because the “empty” sum is equal to 0.) And of
course, we can ask the same for collections of m-vectors, where both m and
size of the collection may be very large.

Example. The span of u = (1, 2, 3) and v = (3, 4, 5) is a plane in R3, and
w = (4, 4, 4) happens to lie inside that plane. There are other 3-vectors that
do not lie inside this plane, such as (2, 1, 1). To see this, we consider the
following system of linear equations:

x + 3y = 2

2x + 4y = 1

3x + 5y = 1.

The elimination algorithm would reveal that this system has no solutions.
Without elimination, we make a lucky guess to try adding the first and third
equations together, and then subtracting twice the second equation:

(x + 3y) + (3x + 5y) − 2 · (2x + 4y) = 2 + 1 − 2 · 1.

This simplifies to
0x + 0 y = 1,

which is impossible (as 0 ̸= 1), so the system of linear equations has no
solutions.
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5 Solution spaces

Vectors can also be to define linear equations another way. We explain with
an example.

The 3-vector v = (3, 4, 5) defines the single linear equation

3x+ 4y + 5z = 0

(with x, y, and z as unknown variables). Since the right-hand side of the
equation is 0, it is called a homogeneous equation, and a solution to this
equation is also a 3-vector. But there are many solutions to this equation:
(−4, 3, 0) is one, and another one is (−5, 0, 3). In fact, there is an entire
(two-dimensional) plane of solutions: all infinitely-many vectors obtained by
linear combinations of (−4, 3, 0) and (−5, 0, 3).

Now consider both 3-vectors u = (1, 2, 3) and v = (3, 4, 5); together, they
define the system of linear equations (again with unknown variables x, y, z):{

x + 2y + 3z = 0

3x + 4y + 5z = 0.
(1)

What is the nature of the solution space? It turns out it is a (one-dimensional)
line: all multiples of (1,−2, 1).

It is no coincidence that the solutions to the system of linear equations
(1) is a line and the vectors u and v span a plane:

dim. of solution space︸ ︷︷ ︸
1

+ dim. of span({u,v})︸ ︷︷ ︸
2

= number of variables︸ ︷︷ ︸
3

.

This is an example of a more general rule that we’ll explore later.

6 Linear transformations

A function T from a set X to another set Y assigns to each element of X
exactly one element of Y . Here, X is the input space (a.k.a. domain) of T ,
and Y is the output space (a.k.a. target space, co-domain) of T . We “declare”
the function T with its input and output spaces by writing “T : X → Y”.
Synonyms for “function” include map and transformation. If X = Y , then
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we also use the term operator ; if Y = R, then we also use the term functional
(in noun form).

Consider a transformation T : Rn → Rm; the inputs to T are n-vectors,
and the outputs of T are m-vectors. (Here, n and m are possibly different
positive integers.) We say the transformation T is linear if T satisfies the
following two properties:

Additivity : T (u+ v) = T (u) + T (v) for all n-vectors u and v.

Homogeneity : T (cv) = c T (v) for all n-vectors v and scalars c.

Examples of transformations that are linear.

• T : R2 → R defined by T (x, y) = 3x+ 2y.

• T : R2 → R2 defined by T (x, y) = (−y, x).

• T : R5 → R defined by T (v1, . . . , v5) = v1+1.6v2+1.3v3+1.7v4+1.9v5
(inventory value; coefficients specify values of resource types).

• T : R2 → R5 defined by

T (x, y) =


units of wool needed for x roads & y settlements
units of grain needed for x roads & y settlements
units of lumber needed for x roads & y settlements
units of brick needed for x roads & y settlements
units of ore needed for x roads & y settlements

 ,

allowing for fractional roads and settlements.

• T : Rn → Rn/2 defined by T (x1, x2, . . . , xn) = (x1, x3, x5, . . . , xn−1).
This halves the sampling rate of an audio signal (for n even).

Examples of transformations that are not linear.

• T : R → R defined by T (x) = 2x+ 1 (but almost . . . ).

• T : R2 → R defined by T (x, y) =
√

x2 + y2.

• T : Rn → Rn defined by T (x1, . . . , xn) = (ex1, . . . , exn).
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Linearity is such a special property that it gives rise to the entire sub-area
of mathematics called “linear algebra”: the study of linear transformations.

What makes linearity special? Suppose you find a collection of n-vectors
v1, . . . ,vd on which two linear transformations T and U agree: T (vi) = U(vi)
for each i ∈ {1, . . . , d}. Then, T and U agree on all vectors in the span—i.e.,
T (v) = U(v) for all v ∈ span({v1, . . . ,vd}). If either T or U was not linear,
then such a conclusion would not be justified! Another amazing property: if
T is a linear transformation is invertible, then its inverse T−1 is also linear.

Many (if not most) transformations that you might encounter in the “real
world” are not linear. But in many cases, we can approximate a non-linear
transformation by a linear transformation (cf. differential calculus). In these
cases, we may instead use (or reason about) the approximating linear trans-
formation instead, at least for inputs where the approximation is known to
be accurate.

9


	Vectors
	Vector arithmetic
	Linear combinations
	Span
	Solution spaces
	Linear transformations

