
Linear transformations and representations
COMS 3251 Fall 2022 (Daniel Hsu)

1 Elementary linear operators

1.1 Linear functionals

A linear transformation T : Rn → R with output space R is called a linear
functional (on Rn). For every such linear functional T , there is a 1 × n
matrix, which corresponds to a row vector wT for some n-vector w, such that
the value of T (v) is given by multiplying the matrix wT by the vector v:

T (v) =
[
← wT →

] ↑v
↓

 .

We will use wT to refer to both the row vector corresponding to w ∈ Rn and
the linear functional that sends an n-vector v to wTv.

1.2 Hyperplanes

We introduce a “geometric” interpretation of linear functionals. In this inter-
pretation, n-vectors are regarded as points in n-dimensional Cartesian space.

If w = (w1, w2, w3) is a non-zero 3-vector, then the solution set for the
homogeneous linear equation (in variables x)

wTx = 0

is a 2-dimensional subspace (by the Dimension Theorem). We can express
this solution set as both {x ∈ R3 : wTx = 0} and NS(wT). A 2-dimensional
subspace of R3 is called a plane.

The solution set for
wTx = b,

where b is an arbitrary real number that is possibly non-zero, is given by

{x⋆}+ NS(wT) = {x⋆ + v : v ∈ NS(wT)},
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where x⋆ is any particular solution to wTx = b. This is the set obtained
by taking every vector in NS(wT) and adding x⋆ to it. So, we start with a
palne and then (possibly) shift it away from the origin. Such a set is called
an affine plane. The affine planes corresponding to different values of b are
all “parallel” to each other; varying b changes how much the affine plane is
shifted away from the origin.

Every 3-vector is on exactly one of two sides of an affine plane, or it is on
the affine plane itself. So, in this sense, an affine plane splits 3-dimensional
Cartesian space into two parts.

Example. The 3-vector w = (3, 4, 5) defines the following homogeneous
linear equation in the unknown variables (x1, x2, x3):

3x1 + 4x2 + 5x3 = 0.

The solution set, i.e., the nullspace of wT, is the plane spanned by the vectors
(−4/3, 1, 0) and (−5/3, 0, 1). For example, another vector in this plane is1/31

−1

 =

−4/31
0

−
−5/30

1

 .

Now consider the linear equation

3x1 + 4x2 + 5x3 = 1.

A particular solution is (−1, 1, 0), and so the solution set is
−11

0

+ c1

−4/31
0

+ c2

−5/30
1

 : (c1, c2) ∈ R2

.

The concept of planes are generalized to arbitrary dimensions (at least 1)
by adding the prefix “hyper”. If w is a non-zero n-vector, then the solution
set {x ∈ Rn : wTx = 0} for the homogeneous linear equation wTx = 0 is
called a hyperplane, and it is an (n − 1)-dimensional subspace of Rn. If b is
a real number that is possibly non-zero, then the solution set for wTx = b is
generally called an affine hyperplane.
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Caution. Sometimes the term “hyperplane” is used for affine hyperplanes
that do not necessarily contain the origin. In these contexts, the term “homo-
geneous hyperplane” is used to refer to hyperplanes that contain the origin.

1.3 Projections

For any (non-zero) linear functional wT on Rn, and any (non-zero) n-vector
z such that wTz ̸= 0, consider the linear operator P defined as follows:

P =
1

wTz
zwT.

This operator is called the elementary projection operator (a.k.a. elementary
projector) to span({z}) along NS(wT). Let us interpret its effect on v ∈ Rn.

Interpretation 1. We first give an “algebraic” interpretation of Pv.

• Recall that zwT is interpreted as matrix multiplication: an n×1 matrix
z multiplying a 1× n matrix wT.

• So to multiply zwT by the vector v, we first multiply the 1× n matrix
wT by v, which results in the 1-vector wTv.

• Then we multiply the n×1 matrix z by the 1-vector wTv, which results
in the n-vector (wTv)z.

• The elementary projector P also has the leading factor of 1/(wTz), so
finally, we obtain the following formula for Pv:

Pv =
1

wTz
(wTv) z =

wTv

wTz
z.

This is a vector in the span of z.

Interpretation 2. Now we interpret Pv “geometrically”, as the intersec-
tion between an affine hyperplane and a line.

• Consider the affine hyperplane defined by the linear equation

wTx = wTv.

It is clear that this affine hyperplane contains v.
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Figure 1: Applying an elementary projector P = 1
wTz

zwT, as well as its
complement Q = I − P , to a vector v.

• Also consider the line in the direction of z, i.e.,

span({z}) = {c z : c ∈ R}.

• The affine hyperplane and the line intersect at a point u that satisfies

wTu = wTv and u = c z for some real number c.

The real number c that makes this work is c = (wTv)/(wTz).

• So the intersection of the affine hyperplane and the line is

u =
wTv

wTz
z,

which is equal to Pv.

Example. Consider the Cartesian plane. Let w = (−1, 1) and z = (1, 0),
and note that wTz = −1 ̸= 0. The line is L = {(c, 0) : c ∈ R}, and the
(homogeneous) hyperplane is H = {(x1, x2) ∈ R2 : −x1 + x2 = 0}. (A
hyperplane in R2 is also a line.) Consider the elementary projector P =
−zwT. For v = (0, 2), we have Pv = −2z = (−2, 0). Note that v− Pv ∈ H,
so P sends v to the line L by adding a vector from H. See Figure 1.

Elementary projection operators are special cases of projection operators
(a.k.a. projectors), which are linear operators that satisfy a property called
idempotency. We say an operator T is idempotent if the composition of the
T with itself (i.e., TT , also written T 2) is the same as the operator T itself:

TT = T.
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Let us algebraically verify that the elementary projector P = 1
wTz

zwT is
idempotent: for any n-vector v,

PPv = P

(
wTv

wTz
z

)
(by formula for Pv)

=
wTv

wTz
Pz (by linearity)

=
wTv

wTz

(
wTz

wTz
z

)
(by formula for Pv with v = z)

=
wTv

wTz
z.

If P is a projection operator, then so is the operator Q given by

Q = I − P,

which sends v to v − Pv. Pairs of projection operators such as P and Q,
where P + Q = I, are said to be complementary projectors. Every n-vector
v is (additively) decomposed into two “parts”, Pv and Qv, such that

Pv +Qv = v.

Notice that PQv = QPv = 0 as well.
In the case where P = (1/(wTz))zwT is an elementary projector, Pv is

the “part” of v on the line {cz : c ∈ R}, while Qv is the “part” of v in
the hyperplane {x ∈ Rn : wTx = 0}. This last part is a consequence of the
following theorem, since NS(P ) = NS(wT) = H.

Theorem 1. Let P be a projection operator on Rn. Then CS(I−P ) = NS(P ).

Proof. We first show that CS(I − P ) ⊆ NS(P ). Take any v ∈ CS(I − P ), so
there exists an n-vector x such that v = (I − P )x. Since P (I − P )x = 0 by
idempotency of P , it follows that Pv = P (I−P )x = 0 as well, which implies
v ∈ NS(P ). We conclude that CS(I − P ) ⊆ NS(P ).

We now show that NS(P ) ⊆ CS(I − P ). Take any v ∈ NS(P ). This
implies that v = Pv + (I − P )v = 0 + (I − P )v, so v ∈ CS(I − P ) as well.
We conclude that NS(P ) ⊆ CS(I − P ).
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Continuing from the previous example. The projector complementary
to P is Q = I − P . For v = (0, 2), we have Pv = −2z = (−2, 0) and Qv =
(0, 2) − (−2, 0) = (2, 2). We have Pv + Qv = (−2, 0) + (2, 2) = (0, 2) = v.
See Figure 1.

Caution. Later, we will discuss a special class of projectors, “orthoprojec-
tors”, but only after introducing the prerequisite concept of “orthogonality”.

1.4 Reflections

For every projection operator P , there is an associated (invertible) linear
operator W = I − 2P called a reflection operator (a.k.a. reflector). The
operator W sends v to v− 2Pv. Equivalently, if Q = I − P is the projector
complementary to P , then W = Q − P , so W sends v to Qv − Pv. The
key property of a reflector is WW = I, so W is invertible with W−1 = W .
Applying W twice to a vector always gives back the same vector. Let us
verify this property: for any n-vector v,

WWv = W (v − 2Pv) (by definition of W )

= (v − 2Pv)− 2P (v − 2Pv)

= v − 2Pv − 2Pv + 4PPv (by linearity of P )

= v − 2Pv − 2Pv + 4Pv (by idempotency of P )

= v.

An elementary reflection operator (a.k.a. elementary reflector) is a reflec-
tor W = I−2P associated with an elementary projector P = (1/(wTz))zwT.
Recall that P is associated with a line {cz : c ∈ R} and a hyperplane
{x ∈ Rn : wTx = 0}. The associated reflector sends inputs from one side of
the hyperplane to the other side by subtracting a multiple of z.

• The “part” of v in the hyperplane is Qv; the “part” of v on the line is
Pv, which is a multiple of z.

• If v is on one “side” of the hyperplane, then subtracting Pv from Qv
gives a vector on the opposite side of the hyperplane.

(If we had added Pv to Qv, we would simply get back v.)

• If v is already in the hyperplane, then W does not change it at all.
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Figure 2: Applying an elementary reflector W = I − 2
wTz

zwT to a vector v.

Continuing from the previous example. For v = (0, 2), we have Pv =
(−2, 0), Qv = (2, 2), and Wv = (0, 2) − 2(−2, 0) = (4, 2). Let u = (4, 2).
Then Pu = (2, 0), Qu = (2, 2), and Wu = (4, 2) − 2(2, 0) = (0, 2) = v. See
Figure 2.

1.5 Dilations

For every projection operator P , there is an associated family of (invertible)
linear operators Mc = I + (c− 1)P , for every non-zero scalar c, each called a
dilation operator (a.k.a. dilator). The operator Mc sends v to v+(c− 1)Pv.
The case c = −1 gives the reflector associated with P , and the case c = 1 gives
the identity operator. It can be verified that the inverse of Mc is M

−1
c = M1/c.

An elementary dilation operator (a.k.a. elementary dilator) is a dilator
Mc = I+(c−1)P associated with an elementary projector P = (1/(wTz))zwT.
Recall that if Q is the projector complementary to P , then Mc = cP + Q.
In other words, Mcv scales the part of v that is in the line {cz : c ∈ R}
by a factor of c, and leaves alone the part of v that is in the hyperplane
{x ∈ Rn : wTx = 0}.

Continuing from the previous example. For v = (0, 2), we have Pv =
(−2, 0), Qv = (2, 2), and M3v = 3(−2, 0)+(2, 2) = (−4, 2). Let u = (−4, 2).
Then Pu = (−6, 0), Qu = (2, 2), and M 1

3
u = 1

3(−6, 0) + (2, 2) = (0, 2). See
Figure 3.
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Figure 3: Applying an elementary dilator M3 = I + 2
wTz

zwT to a vector v.

1.6 Shears

For any non-zero linear functional wT on Rn, and any non-zero vector y ∈
NS(wT) = {x ∈ Rn : wTx = 0}, consider the linear operator S defined by

S = I + ywT.

Such an operator is called a shear operator (a.k.a. transvection operator). Let
us determine its effect on v ∈ Rn.

• The operator S on v adds a multiple of y to v; the amount is propor-
tional to how “far” the affine hyperplane {x ∈ Rn : wTx = wTv} (which
contains v) is from the homogeneous hyperplane {x ∈ Rn : wTx = 0}.

• Since y ∈ NS(wT), the result Sv remains in the affine hyperplane con-
taining v:

wT(Sv) = wT(v + (wTv)y) = wTv + (wTv)�����:0
(wTy) = wTv.

• For a visualization of the effect of S, imagine a stack of playing cards
on a table, where the surface of the table represents NS(wT), and the
cards are (subsets of) other affine hyperplanes {x ∈ Rn : wTx = b}.
Since y ∈ NS(wT), it represents a direction contained in the plane of
the table. The effect of S is to slide all of the cards in direction y by
an amount directly proportional to the “height” of the card. So the
bottom card doesn’t move, and the top card moves the most.

The shear operator S is invertible, and its inverse is given by S−1 =
I + (−y)wT, which is also a shear operator since −y ∈ NS(wT).
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Figure 4: Applying a shear operator S = I + ywT to a vector v.

Example. Let w = (−1, 1) and y = (1, 1), and note that wTy = 0. Con-
sider the shear operator S = I + ywT. For v = (0, 2), we have Sv =
(0, 2) + 2(1, 1) = (2, 4). Observe that wTv = wT(Sv) = 2. See Figure 4.

1.7 Elementary row operations redux

What do elementary reflectors, elementary dialators, and shear operators
have in common?

• They are obtained by adding a matrix of rank 1 to the identity matrix.

(Why does fgT for non-zero n-vectors f and g have rank equal to 1?
Answers: Each column (resp. row) of fgT is a multiple of f (resp. gT).)

• They are invertible linear operators.

• Their inverses are of the same “type”.

Every elementary row operation performed by Elimination is either an ele-
mentary reflector, an elementary dialator, or a shear operator.

• To swap rows i and j, apply the elementary reflector with w = ei − ej
and z = ej − ei.

• To multiply row i by c ̸= 0, apply the elementary dilator with w = z =
ei and the same scalar c.

• To subtract c times row i from row j (for i ̸= j), apply the shear
operator with w = ei and y = −cej.
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Combining this with the fact that every invertible matrix is a product of
elementary matrices, we have the following theorem.

Theorem 2. Every invertible matrix is the product of some sequence of ele-
mentary reflectors, elementary dilators, and shear operators.

2 Representations of linear transformations

You are likely familiar with many other linear transformations, and perhaps
even applied them to some of your favorite vectors.

Example. Consider the vector space Pd(R) of polynomials with real coef-
ficients of degree at most d. The differentiation operator d

dt
: Pd(R)→ Pd(R)

sends a polynomial to its derivative:

d

dt

(
a0 t

0 + a1 t+ a2 t
2 + · · ·+ ad t

d
)

= a1 + 2a2 t+ · · ·+ dad t
d−1.

It is linear (as one may remember from calculus), since

d

dt
(c f(t) + g(t)) = c

d

dt
(f(t)) +

d

dt
(g(t))

for any scalar c and polynomials f(t), g(t) ∈ Pd(R).
As we mentioned before, it can be helpful to work with coordinates with

respect to an ordered basis when dealing with general finite-dimensional vec-
tor spaces (such as spaces of polynomials or functions). And we previously
saw how to change between coordinate systems given by different ordered
bases. But how do we apply linear transformations to these vectors?

If T : V→W is a linear transformation between finite-dimensional vector
spaces V and W with ordered bases F (for V) and H (for W), then there is
a matrix [T ]F→H such that, for any v ∈ V,

[T (v)]H = [T ]F→H [v]F.

This is the matrix representation of T with respect to input space basis F

and output space basis H.1 We previously established this fact for the cases

1Sometimes the notation [T ]HF is used instead of [T ]F→H.
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where V and W are Cartesian spaces and the ordered bases are the standard
ordered bases. Here is the matrix for the general case: letting F = (f1, . . . , fn),

[T ]F→H =

[T (f1)]H · · · [T (fn)]H

 .

So, the jth column is obtained by applying the transformation T to jth vector
in the input space basis F, and then applying the standard coordinate map
for the output space basis H.

Continuing the previous example. An ordered basis for P3(R) is F =
(1, t, t2, t3). The matrix representing d

dt
: P3(R) → P3(R), where the input

space basis and output space basis are both F, is

[
d

dt

]
F→F

=

[ d
dt(1)

]
F

[
d
dt(t)

]
F

[
d
dt(t

2)
]
F

[
d
dt(t

3)
]
F

 =


0 1 0 0
0 0 2 0
0 0 0 3
0 0 0 0

 .

If the output space basis is changed to H = (1, t, t2 − 1, t3 − 3t), then

[
d

dt

]
F→H

=

[ d
dt(1)

]
H

[
d
dt(t)

]
H

[
d
dt(t

2)
]
H

[
d
dt(t

3)
]
H

 =


0 1 0 3
0 0 2 0
0 0 0 3
0 0 0 0

 .

Note that we could have obtained this by multiplying [ ddt ]F→F on the left by
the change-of-coordinates matrix [id]F→H:

[
d

dt

]
F→H

= [id]F→H

[
d

dt

]
F→F

=


1 0 1 0
0 1 0 3
0 0 1 0
0 0 0 1



0 1 0 0
0 0 2 0
0 0 0 3
0 0 0 0

 .

Here, id denotes the identity operator (in this context, for P3(R)).
Both the input and output bases are important to mind when representing

a linear transformation as a matrix. In fact, as we’ll see later in the course,
sometimes judicious choices of bases can result in a very simple matrix.

11



Linear transformations and representations COMS 3251 Fall 2022 (Daniel Hsu)

Example. Consider the linear operator T : R3 → R3 given by

T

x1x2
x3

 =

x2 + x3
x1 + x3
x1 + x2

 ,

so

[T ]E3→E3
=

0 1 1
1 0 1
1 1 0

 ,

where E3 is the standard ordered basis for R3. Consider another ordered basis
F = ((1,−1, 0), (1, 1,−2), (1, 1, 1)). We have

[id]F→E3
=

 1 1 1
−1 1 1
0 −2 1

 , [id]E3→F =

1/2 −1/2 0
1/6 1/6 −1/3
1/3 1/3 1/3

 .

Then

[T ]F→F = [id]E3→F [T ]E3→E3
[id]F→E3

=

−1 0 0
0 −1 0
0 0 2

 ,

a diagonal matrix. So, in terms of the “coordinates” with respect to the
basis F, the linear transformation T just scales each coordinate of the input
separately.
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A Form of elementary projection operators

Given non-zero vectors w, z ∈ Rn such that wTz ̸= 0, we want to find a linear
operator P on Rn such that

1. P 2 = P (i.e., P is idempotent),

2. CS(P ) = span({z}), and

3. NS(P ) = NS(wT).

The second property tells us that every column of P should be a multiple of z.
The third property tells us that the homogeneous system of linear equations
Px = 0 should have the same solution set as wTx = 0. So P and wT should
have the same R matrix in their CR factorizations. Since w ̸= 0, the CR
factorization of wT has

C =
[
d
]

and R =
[
← 1

dw
T →

]
,

where d is the first non-zero component of w = (w1, . . . , wn). In addition,
since z ̸= 0, the CR factorization of P has

C =
[
a z

]
and R =

[
← 1

dw
T →

]
,

where az is the first non-zero column of P , and d is as given above. So

P = (a z)

(
1

d
wT

)
=

a

d
zwT.

In other words, P is a scalar multiple c = a/d of zwT. It remains to determine
this scalar c. Since CS(P ) = span({z}) by the second property, there exists
x ∈ Rn such that

z = Px.

Applying P to both sides gives

Pz = P 2x.

But by the first property, P 2x = Px, which equals z. Hence z = Pz. So,
using the form P = czwT, we have

z = Pz = (c zwT)z = (cwTz) z.
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Since z ̸= 0, it follows by the Unique Representations Theorem that

cwTz = 1,

i.e., c = 1/wTz. We conclude

P =
1

wTz
zwT.
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