Orthogonality and least squares

COMS 3251 Fall 2022 (Daniel Hsu)

1 Inner products and orthonormal bases

1.1 Lengths

Consider 2-vectors in the Cartesian plane as we imagine them in the real physical space. The <u>length</u> (a.k.a. <u>norm</u>) of a 2-vector $\mathbf{v} = (v_1, v_2)$, denoted by $\|\mathbf{v}\|$, has a formula provided by the Pythagorean Theorem:

$$\|\mathbf{v}\| = \sqrt{v_1^2 + v_2^2}.$$

The length $\|\mathbf{v}\|$ is the distance between the point \mathbf{v} and the origin $\mathbf{0}$, and the length $\|\mathbf{u} - \mathbf{v}\|$ is the distance between points \mathbf{u} and \mathbf{v} .

The notion of a norm generalizes to 3-vectors (displacements in threedimensional Cartesian space) and also to *n*-vectors. The norm of an *n*-vector $\mathbf{v} = (v_1, \ldots, v_n)$ is

$$\|\mathbf{v}\| = \sqrt{v_1^2 + \dots + v_n^2}.$$

Observe that $\|\mathbf{v}\| = 0$ if and only if $\mathbf{v} = \mathbf{0}$.

A <u>unit vector</u> is a vector of length 1. For example, each of the standard basis vectors $\mathbf{e}_1, \ldots, \mathbf{e}_n$ is a unit vector. If $\mathbf{v} \neq \mathbf{0}$, then $\frac{1}{\|\mathbf{v}\|}\mathbf{v}$ is a unit vector.

Theorem 1 (Triangle Inequality). For any n-vectors \mathbf{u} and \mathbf{v} ,

$$\|\mathbf{u} + \mathbf{v}\| \leq \|\mathbf{u}\| + \|\mathbf{v}\|.$$

1.2 Angles and inner products

Again, consider 2-vectors in the Cartesian plane. Unit vectors correspond to points on the unit circle, which are specified by the angle between the vector and the first standard basis vector $\mathbf{e}_1 = (1, 0)$.

• If the angle between \mathbf{e}_1 and the unit vector $\mathbf{u} = (u_1, u_2)$ is $\alpha \in [0, 2\pi)$, then

$$u_1 = \cos(\alpha), \quad u_2 = \sin(\alpha).$$

• If $\mathbf{u} = (u_1, u_2) = (\cos(\alpha), \sin(\alpha))$ and $\mathbf{v} = (v_1, v_2) = (\cos(\beta), \sin(\beta))$, then the angle between \mathbf{u} and \mathbf{v} is

$$\cos(\alpha - \beta) = \cos(\alpha)\cos(\beta) + \sin(\alpha)\sin(\beta) = u_1v_1 + u_2v_2.$$

This motivates the concept of the <u>inner product</u> (a.k.a. <u>dot product</u>) between **u** and **v**, denoted by $\langle \mathbf{u}, \mathbf{v} \rangle$, and defined by

$$\langle \mathbf{u}, \mathbf{v} \rangle = u_1 v_1 + u_2 v_2.$$

(We sometimes read " $\langle \mathbf{u}, \mathbf{v} \rangle$ " aloud as " \mathbf{u} dot \mathbf{v} ".) This definition makes sense for all 2-vectors, not just the unit vectors, and its interpretation is

 $\langle \mathbf{u}, \mathbf{v} \rangle = \|\mathbf{u}\| \|\mathbf{v}\| \cos(\text{``angle between } \mathbf{u} \text{ and } \mathbf{v}'').$

Inner products are more convenient to reason about than angles since they possess a certain property related to linearity, discussed below.

The concept of inner product generalizes to *n*-vectors. The inner product between $\mathbf{u} = (u_1, \ldots, u_n)$ and $\mathbf{v} = (v_1, \ldots, v_n)$ is defined to be

$$\langle \mathbf{u}, \mathbf{v} \rangle = u_1 v_1 + \dots + u_n v_n$$

The inner product is a real-valued, two-argument function. Moreover, it satisfies the following important properties:

IP1 (The inner product is *symmetric*.) For all vectors \mathbf{u} and \mathbf{v} ,

 $\langle \mathbf{u}, \mathbf{v} \rangle = \langle \mathbf{v}, \mathbf{u} \rangle.$

IP2 (The inner product is *positive definite.*) For all vectors \mathbf{v} ,

$$\langle \mathbf{v}, \mathbf{v} \rangle \geq 0,$$

and $\langle \mathbf{v}, \mathbf{v} \rangle = 0$ if and only if $\mathbf{v} = \mathbf{0}$.

(Note that $\langle \mathbf{v}, \mathbf{v} \rangle$ gives the squared norm: $\langle \mathbf{v}, \mathbf{v} \rangle = \|\mathbf{v}\|^2$.)

<u>*IP3*</u> (The inner product is linear in the first argument.) For all vectors \mathbf{x} , \mathbf{y} , and \mathbf{z} , and all real numbers c.

$$\langle c \mathbf{x} + \mathbf{y}, \mathbf{z} \rangle = c \langle \mathbf{x}, \mathbf{z} \rangle + \langle \mathbf{y}, \mathbf{z} \rangle.$$

IP1 and IP3 together imply that the inner product is *bilinear*: it is linear in each argument when the other argument value is held fixed.

The inner product also satisfies the following inequality.

Theorem 2 (Cauchy-Schwarz Inequality). For any n-vectors **u** and **v**,

$$\langle \mathbf{u}, \mathbf{v} \rangle \ \le \ \|\mathbf{u}\| \, \|\mathbf{v}\|.$$

Equality holds if and only if $\mathbf{v} = c\mathbf{u}$ for some real number c.

Example. Suppose you are given a non-zero *n*-vector \mathbf{x} , and you would like to find a unit vector \mathbf{v} that makes $\langle \mathbf{x}, \mathbf{v} \rangle$ as large as possible. By the Cauchy-Schwarz Inequality, the value of $\langle \mathbf{x}, \mathbf{v} \rangle$ is always at most $||\mathbf{x}||$, since $||\mathbf{v}|| = 1$ for a unit vector \mathbf{v} . And we also know that the inequality holds with equality if $\mathbf{v} = c\mathbf{x}$ for some real number c. For this to hold and for \mathbf{v} to be a unit vector, it had better be that $c = 1/||\mathbf{x}||$. So $\mathbf{v} = \mathbf{x}/||\mathbf{x}||$ solves this optimization problem, and it achieves value $\langle \mathbf{x}, \mathbf{v} \rangle = ||\mathbf{x}||$.

Finally, observe that if \mathbf{u}^{T} is the linear functional corresponding to \mathbf{u} , then

$$\langle \mathbf{u}, \mathbf{v} \rangle = \mathbf{u}^{\mathsf{T}} \mathbf{v}$$

So $\mathbf{u}^{\mathsf{T}}\mathbf{v}$ is also a commonly-used notation for inner product between *n*-vectors \mathbf{u} and \mathbf{v} . (Another notation is $\mathbf{u} \cdot \mathbf{v}$, to go along with the term *dot product*.)

1.3 Inner products for general vector spaces

Any (real) vector space \mathbb{V} may be upgraded by introducing of a real-valued, two-argument function $\langle \cdot, \cdot \rangle_{\mathbb{V}} \colon \mathbb{V} \times \mathbb{V} \to \mathbb{R}$ with the same properties IP1–IP3 of the inner product that we have defined for *n*-vectors. When we start with a vector space \mathbb{V} and then "upgrade" (or "equip") it with a function $\langle \cdot, \cdot \rangle_{\mathbb{V}}$ satisfying IP1–IP3, we say that $(\mathbb{V}, \langle \cdot, \cdot \rangle_{\mathbb{V}})$ is a *(real) inner product space.*¹

The *n*-dimensional Cartesian space \mathbb{R}^n , equipped with the inner product we have previously defined for *n*-vectors (i.e., the <u>(standard) Euclidean inner product</u>), is called the <u>*n*-dimensional Euclidean space</u>. Henceforth, unless stated otherwise, we'll use \mathbb{R}^n to refer to this inner product space.

¹We'll usually just refer to \mathbb{V} itself as the inner product space, leaving implicit what the inner product is. We'll also drop the subscript \mathbb{V} from $\langle \cdot, \cdot \rangle_{\mathbb{V}}$ when the inner product is clear from context (e.g., the standard Euclidean inner product for Euclidean space).

Example. Let $\mathbb{V} = \mathsf{C}([-1, 1], \mathbb{R})$, the space of continuous real-valued functions defined on the interval [-1, 1]. We equip \mathbb{V} with $\langle \cdot, \cdot \rangle_{\mathbb{V}}$, defined by

$$\langle f,g \rangle_{\mathbb{V}} = \int_{-1}^{1} f(t)g(t) \,\mathrm{d}t.$$

It can be verified that $\langle \cdot, \cdot \rangle_{\mathbb{V}}$ satisfies IP1–IP3.

Another example. Let $\mathbb{V} = \mathbb{R}^n$, but instead of considering the Euclidean inner product, we equip \mathbb{V} with $\langle \cdot, \cdot \rangle_{\mathbb{V}}$, defined by

$$\langle \mathbf{u}, \mathbf{v} \rangle_{\mathbb{V}} = \sum_{i=1}^{n} \frac{1}{i^2} u_i v_i$$

for $\mathbf{u} = (u_1, \ldots, u_n)$ and $\mathbf{v} = (v_1, \ldots, v_n)$. Again, $\langle \cdot, \cdot \rangle_{\mathbb{V}}$ satisfies IP1–IP3. However, e.g., note that $\langle \mathbf{e}_2, \mathbf{e}_2 \rangle_{\mathbb{V}} = 1/4$ rather than 1.

General inner product spaces $(\mathbb{V}, \langle \cdot, \cdot \rangle_{\mathbb{V}})$ share many of the "geometric" properties we are familiar with from Euclidean space. For instance, it satisfies the Cauchy-Schwarz Inequality (Theorem 2). Moreover, we can define a notion of length based on the inner product by

$$\|\mathbf{v}\|_{\mathbb{V}} = \sqrt{\langle \mathbf{v}, \mathbf{v} \rangle_{\mathbb{V}}}.$$

Like the notion of length from Euclidean space, this notion of length $\|\cdot\|_{\mathbb{V}}$ satisfies the following properties that qualify it to be a *norm*:

- <u>N1</u> (The norm is positive definite.) For all $\mathbf{v} \in \mathbb{V}$, $\|\mathbf{v}\|_{\mathbb{V}} \ge 0$; equality holds if and only if $\mathbf{v} = \mathbf{0}_{\mathbb{V}}$.
- <u>N2</u> (The norm is <u>absolutely homogeneous</u>.) For all $\mathbf{v} \in \mathbb{V}$ and all $c \in \mathbb{R}$, $\|c \mathbf{v}\|_{\mathbb{V}} = |c| \|\mathbf{v}\|_{\mathbb{V}}$.
- <u>N</u>3 (The norm satisfies the triangle inequality.) For all $\mathbf{u}, \mathbf{v} \in \mathbb{V}$, $\|\mathbf{u} + \mathbf{v}\|_{\mathbb{V}} \leq \|\mathbf{u}\|_{\mathbb{V}} + \|\mathbf{v}\|_{\mathbb{V}}$.

(We typically refer to $\|\mathbf{u} - \mathbf{v}\|_{\mathbb{V}}$ as the distance between \mathbf{u} and \mathbf{v} .)

Finally, much like the way linear functionals on \mathbb{R}^n are given by row vectors, each linear functional $T: \mathbb{V} \to \mathbb{R}$ on a general inner product space \mathbb{V} is uniquely specified by some vector $\mathbf{u} \in \mathbb{V}$, via $T(\mathbf{v}) = \langle \mathbf{u}, \mathbf{v} \rangle_{\mathbb{V}}$.

2 Orthogonality

2.1 Orthogonal vectors

Two vectors \mathbf{u} and \mathbf{v} from an inner product space \mathbb{V} are <u>orthogonal</u> (a.k.a. <u>per-pendicular</u>) if $\langle \mathbf{u}, \mathbf{v} \rangle_{\mathbb{V}} = 0$. Recall in the context of 2-vectors, this means that either one of the vectors is $\mathbf{0}$, or the cosine of the angle between them is 0—i.e., the angle is a right angle.

A set of vectors from an inner product space is $\underline{orthogonal}$ if every pair of distinct vectors in it is orthogonal to each other.²

Theorem 3 (Pythagorean Theorem). Suppose $\mathbf{q}_1, \ldots, \mathbf{q}_n$ are orthogonal vectors from an inner product space \mathbb{V} . Then

$$\|\mathbf{q}_1+\cdots+\mathbf{q}_n\|_{\mathbb{V}}^2 = \|\mathbf{q}_1\|_{\mathbb{V}}^2+\cdots+\|\mathbf{q}_n\|_{\mathbb{V}}^2.$$

Proof. "Expand the square" and use orthogonality:

$$\|\mathbf{q}_{1} + \dots + \mathbf{q}_{n}\|_{\mathbb{V}}^{2} = \langle \mathbf{q}_{1} + \dots + \mathbf{q}_{n}, \mathbf{q}_{1} + \dots + \mathbf{q}_{n} \rangle_{\mathbb{V}}$$
$$= \sum_{i=1}^{n} \langle \mathbf{q}_{i}, \mathbf{q}_{i} \rangle_{\mathbb{V}} + \sum_{i=1}^{n} \sum_{j \neq i} \langle \mathbf{q}_{i}, \mathbf{q}_{j} \rangle_{\mathbb{V}}^{0} = \sum_{i=1}^{n} \|\mathbf{q}_{i}\|_{\mathbb{V}}^{2}. \quad \Box$$

Example. The set of 2-vectors $\{(1, 1), (2, -2)\}$ is orthogonal; the squared lengths of the vectors are 2 and 8. The sum of the vectors is (3, -1), and it has squared length 10.

If a set (or list) of unit vectors is orthogonal, then we say it is *orthonormal*.

2.2 Orthogonal subspaces

If \mathbb{V} and \mathbb{W} are both subspaces of the same inner product space (e.g., \mathbb{R}^n), then we say they are *orthogonal subspaces* if every vector $\mathbf{v} \in \mathbb{V}$ is orthogonal to every vector $\mathbf{w} \in \mathbb{W}$.

²We say a list of vectors $(\mathbf{q}_1, \ldots, \mathbf{q}_k)$ is <u>orthogonal</u> (or " $\mathbf{q}_1, \ldots, \mathbf{q}_k$ are orthogonal") if they are distinct and $\{\mathbf{q}_1, \ldots, \mathbf{q}_k\}$ is orthogonal.

Examples.

• Let $\mathbb{V} = \{(x, 0, 0) : x \in \mathbb{R}\}$ and $\mathbb{W} = \{(0, y, z) : (y, z) \in \mathbb{R}^2\}$ be subspaces of 3-dimensional Euclidean space. Then \mathbb{V} and \mathbb{W} are orthogonal: for any $\mathbf{v} = (v_1, v_3, v_3) \in \mathbb{V}$ and $\mathbf{w} = (w_1, w_2, w_3) \in \mathbb{W}$,

$$\langle \mathbf{v}, \mathbf{w} \rangle = v_1 w_1 + v_1 w_2 + v_3 w_3 = v_1 \cdot 0 + 0 \cdot w_2 + 0 \cdot w_3 = 0.$$

• Let $\mathbb{V} = \{(x, y, 0) : (x, y) \in \mathbb{R}^2\}$ and $\mathbb{W} = \{(0, y, z) : (y, z) \in \mathbb{R}^2\}$ be subspaces of 3-dimensional Euclidean space. Then \mathbb{V} and \mathbb{W} are not orthogonal: \mathbb{V} and \mathbb{W} both contain $\mathbf{v} = (0, 1, 0)$, and $\langle \mathbf{v}, \mathbf{v} \rangle = 1$.

Fact 1. Orthogonal subspaces intersect only at the origin 0.

Proof. A vector in the intersection of orthogonal subspaces must be orthogonal to itself, so the (squared) norm of the vector must be zero. \Box

Proposition 1. Let A be an $m \times n$ matrix.

- 1. $\mathsf{CS}(A^{\mathsf{T}})$ and $\mathsf{NS}(A)$ are orthogonal subspaces of \mathbb{R}^n .
- 2. $\mathsf{CS}(A)$ and $\mathsf{NS}(A^{\mathsf{T}})$ are orthogonal subspaces of \mathbb{R}^m .

Proof. We just prove the first claim, as the second claim follows from the same proof after interchanging the roles of columns and rows. Consider any vector in $\mathsf{CS}(A^{\mathsf{T}})$; write it as $A^{\mathsf{T}}\mathbf{u}$ for some *m*-vector \mathbf{u} . This vector corresponds to a linear functional on \mathbb{R}^n , written as $\mathbf{u}^{\mathsf{T}}A$, so for any *n*-vector \mathbf{v} ,

$$\langle A^{\mathsf{T}}\mathbf{u},\mathbf{v}\rangle = (\mathbf{u}^{\mathsf{T}}A)\mathbf{v}.$$

In particular, for any $\mathbf{v} \in \mathsf{NS}(A)$, by associativity of matrix multiplication,³

$$(\mathbf{u}^{\mathsf{T}}A)\mathbf{v} = \mathbf{u}^{\mathsf{T}}(A\mathbf{v}) = \mathbf{u}^{\mathsf{T}}\mathbf{0} = 0.$$
(1)

So every vector in $\mathsf{CS}(A^{\mathsf{T}})$ is orthogonal to every vector in $\mathsf{NS}(A)$.

³The key step $(\mathbf{u}^{\mathsf{T}}A)\mathbf{v} = \mathbf{u}^{\mathsf{T}}(A\mathbf{v})$ can be rewritten using inner products as $\langle A^{\mathsf{T}}\mathbf{u},\mathbf{v}\rangle = \langle \mathbf{u},A\mathbf{v}\rangle$; these are inner products in two different spaces, \mathbb{R}^n and \mathbb{R}^m . The transpose A^{T} of A (changing rows of A to columns of A^{T}) is the unique matrix that ensures $\langle A^{\mathsf{T}}\mathbf{u},\mathbf{v}\rangle = \langle \mathbf{u},A\mathbf{v}\rangle$ for all $\mathbf{u} \in \mathbb{R}^m$ and $\mathbf{v} \in \mathbb{R}^n$.

2.3 Orthogonal complements

Proposition 1 tells us that the nullspace of an $m \times n$ matrix A contains only vectors that are orthogonal to the row space $\mathsf{CS}(A^{\mathsf{T}})$. In fact, the nullspace contains all vectors that are orthogonal to the row space. This is, indeed, one way to interpret the definition of nullspace: $\mathsf{NS}(A) = \{\mathbf{x} \in \mathbb{R}^n : A\mathbf{x} = \mathbf{0}\}$; it is the set of vectors orthogonal to every row of A, and hence it is the set of vectors orthogonal to every linear combination of rows of A.

For any subspace \mathbb{W} of an inner product space \mathbb{V} , define the *orthogonal* complement of \mathbb{W} , written \mathbb{W}^{\perp} (and read aloud as " \mathbb{W} perp"), to be

$$\mathbb{W}^{\perp} = \{ \mathbf{v} \in \mathbb{V} : \langle \mathbf{w}, \mathbf{v} \rangle_{\mathbb{V}} = 0 \text{ for all } \mathbf{w} \in \mathbb{W} \}.$$

Fact 2. If \mathbb{W} is a subspace of an inner product space \mathbb{V} , then \mathbb{W}^{\perp} is a subspace of \mathbb{V} , and \mathbb{W} and \mathbb{W}^{\perp} are orthogonal subspaces.

Proof. The proof that \mathbb{W}^{\perp} is a subspace of \mathbb{V} is completely analogous to the proof that $\mathsf{NS}(A)$ is a subspace for any matrix A. The fact that \mathbb{W} and \mathbb{W}^{\perp} are orthogonal follows by definition.

In this notation, we have $NS(A) = CS(A^{\dagger})^{\perp}$: the nullspace of A is the orthogonal complement of the row space of A. In fact, it is also the case that the row space is the orthogonal complement of the nullspace.

Theorem 4. Let A be an $m \times n$ matrix.

- 1. $NS(A) = CS(A^{\mathsf{T}})^{\perp}$ and $CS(A^{\mathsf{T}}) = NS(A)^{\perp}$.
- 2. $\mathsf{NS}(A^{\mathsf{T}}) = \mathsf{CS}(A)^{\perp}$ and $\mathsf{CS}(A) = \mathsf{NS}(A^{\mathsf{T}})^{\perp}$.

Proof. We already saw that $\mathsf{NS}(A) = \mathsf{CS}(A^{\mathsf{T}})^{\perp}$, essentially by definition. We now prove that $\mathsf{CS}(A^{\mathsf{T}}) = \mathsf{NS}(A)^{\perp}$. Suppose for sake of contradiction that there exists a vector $\mathbf{v} \in \mathbb{R}^n$ that is orthogonal to every vector in the nullspace of A, and yet $\mathbf{v} \notin \mathsf{CS}(A^{\mathsf{T}})$. Consider the matrix B that is the same as A with an additional row \mathbf{v}^{T} . Since $\mathbf{v} \notin \mathsf{CS}(A^{\mathsf{T}})$, the Growth Theorem implies that the dimension of the row space of B is one more than the dimension of the row space of A: rank $(B) = \operatorname{rank}(A) + 1$. On the other hand, the nullspace of B is the same as the nullspace of A, since \mathbf{v} is orthogonal to every vector in $\mathsf{NS}(A)$. Using the Dimension Theorem with B tells us

 $\operatorname{rank}(B) + \dim(\mathsf{NS}(B)) = \operatorname{rank}(A) + 1 + \dim(\mathsf{NS}(A)) = n,$

but using it with A tells us $\operatorname{rank}(A) + \dim(\mathsf{NS}(A)) = n$. This is a contradiction, so we conclude no such vector **v** exists. Hence $\mathsf{CS}(A^{\mathsf{T}}) = \mathsf{NS}(A)^{\perp}$.

Switching the roles of rows and columns proves the second claim.

3 Orthonormal bases and orthoprojectors

3.1 Orthonormal bases

Recall that a basis for a vector space \mathbb{V} is a minimal collection of vectors by which you can construct all of \mathbb{V} simply via linear combination. If \mathbb{V} is, in fact, an inner product space, then bases that are orthonormal (i.e., composed of orthonormal vectors) are especially convenient. We use the term <u>orthonormal</u> basis (ONB) for a (ordered) basis that is orthonormal.

Examples. The standard ordered basis $(\mathbf{e}_1, \ldots, \mathbf{e}_n)$ is an ONB for \mathbb{R}^n . For n = 2, this is

$$\left(\begin{bmatrix} 1\\0 \end{bmatrix}, \begin{bmatrix} 0\\1 \end{bmatrix} \right).$$

Pick any $\theta \in [0, 2\pi)$. Then

$$\left(\begin{bmatrix}\cos(\theta)\\\sin(\theta)\end{bmatrix}, \begin{bmatrix}-\sin(\theta)\\\cos(\theta)\end{bmatrix}\right)$$

is also an ONB for \mathbb{R}^2 . Each vector is a unit vector, since $\cos(\theta)^2 + \sin(\theta)^2 = 1$ for any θ . And the vectors are clearly orthogonal.

Very important example. Consider the vector space $\mathbb{V} = \mathsf{C}_{\mathsf{periodic}}([0, 2\pi], \mathbb{R})$ of continuous, real-valued functions on $[0, 2\pi]$ that are periodic with period 2π , equipped with the inner product

$$\langle f,g \rangle_{\mathbb{V}} = \frac{1}{2\pi} \int_0^{2\pi} f(t)g(t) \,\mathrm{d}t.$$

The following set behaves much like an ONB for \mathbb{V} :

$$\{1\} \cup \left\{\sqrt{2}\cos(kt) : k \in \mathbb{N}\right\} \cup \left\{\sqrt{2}\sin(kt) : k \in \mathbb{N}\right\}.$$

A bit of calculus verifies that each function has norm 1, and also that every distinct pair is orthogonal. The reason it is technically not a basis is because to express some functions in \mathbb{V} , we may need to linearly combine infinitelymany basis vectors. Such representations of periodic functions are called *Fourier series*. Here are two examples:

$$\begin{split} t(t-\pi)(t-2\pi) &= 6\sqrt{2}\sum_{k=1}^{\infty}\frac{1}{k^3}\sqrt{2}\sin(kt);\\ \min\{t/\pi, 2-t/\pi\} &= \frac{1}{2} - \frac{2\sqrt{2}}{\pi^2}\sum_{\text{odd } k = 1}^{\infty}\frac{1}{k^2}\sqrt{2}\cos(kt). \end{split}$$

(Try plotting finite prefixes of these series.) These representations are obtained using the method described in the theorem below, which converts between the <u>time domain</u> (values f(t) for every "time" t) and the <u>frequency</u> domain (coefficients of sines and cosines in its Fourier series).

The following theorem shows how to obtain the coordinate representation of a vector from an inner product space with respect to a basis of non-zero orthogonal vectors.

Theorem 5. Let $\{\mathbf{q}_1, \ldots, \mathbf{q}_k\}$ be an orthogonal set of k non-zero vectors from an inner product space \mathbb{V} . If $\mathbf{x} = c_1\mathbf{q}_1 + \cdots + c_k\mathbf{q}_k$ for some scalars c_1, \ldots, c_k , then

$$c_i = \frac{\langle \mathbf{x}, \mathbf{q}_i \rangle_{\mathbb{V}}}{\|\mathbf{q}_i\|_{\mathbb{V}}^2} \quad for \ all \ i \in \{1, \dots, k\}.$$

Proof. By linearity of the inner product and orthogonality of $\{\mathbf{q}_1, \ldots, \mathbf{q}_k\}$,

$$\langle \mathbf{x}, \mathbf{q}_i \rangle_{\mathbb{V}} = c_1 \langle \mathbf{q}_1, \mathbf{q}_i \rangle_{\mathbb{V}} + \dots + c_k \langle \mathbf{q}_k, \mathbf{q}_i \rangle_{\mathbb{V}} = c_i \langle \mathbf{q}_i, \mathbf{q}_i \rangle_{\mathbb{V}} = c_i ||\mathbf{q}_i||_{\mathbb{V}}^2$$

for each $i \in \{1, \ldots, k\}$. Solve for each c_i proves the claim.

The following corollary specializes to the case of an ONB.

Corollary 1. Let $\{\mathbf{q}_1, \ldots, \mathbf{q}_n\}$ be an ONB for an n-dimensional inner product space \mathbb{V} . For every $\mathbf{x} \in \mathbb{V}$,

$$\mathbf{x} = \langle \mathbf{x}, \mathbf{q}_1 \rangle_{\mathbb{V}} \mathbf{q}_1 + \dots + \langle \mathbf{x}, \mathbf{q}_n \rangle_{\mathbb{V}} \mathbf{q}_n$$

and $\|\mathbf{x}\|_{\mathbb{V}}^2 = \langle \mathbf{x}, \mathbf{q}_1 \rangle_{\mathbb{V}}^2 + \dots + \langle \mathbf{x}, \mathbf{q}_n \rangle_{\mathbb{V}}^2.$

Figure 1: The dashed lines suggest how to compute the length of the 2-vector \mathbf{v} two different ways: the gray lines use the ONB $(\mathbf{e}_1, \mathbf{e}_2)$, the green lines use the ONB $(\mathbf{q}_1, \mathbf{q}_2)$.

Proof. The first identity is immediate from Theorem 5 and the assumption that the \mathbf{q}_i 's are unit vectors. Let $c_i = \langle \mathbf{q}_i, \mathbf{x} \rangle_{\mathbb{V}}$ for each $i \in \{1, \ldots, n\}$. By the Pythagorean Theorem (Theorem 3) and absolute homogeneity,

$$\|\mathbf{x}\|_{\mathbb{V}}^{2} = \|c_{1}\,\mathbf{q}_{1} + \dots + c_{n}\,\mathbf{q}_{n}\|_{\mathbb{V}}^{2} = \|c_{1}\,\mathbf{q}_{1}\|_{\mathbb{V}}^{2} + \dots + \|c_{n}\,\mathbf{q}_{n}\|_{\mathbb{V}}^{2}$$
$$= c_{1}^{2}\|\mathbf{q}_{1}\|_{\mathbb{V}}^{2} + \dots + c_{n}^{2}\|\mathbf{q}_{n}\|_{\mathbb{V}}^{2} \qquad \Box$$

(The second identity in Corollary 1 is known as *Parseval's identity*.)

Example. Let $\mathbb{V} = \mathbb{R}^2$, and for some $\theta \in [0, 2\pi)$, consider the ordered basis $\mathcal{Q} = (\mathbf{q}_1, \mathbf{q}_2)$, where $\mathbf{q}_1 = (\cos(\theta), \sin(\theta))$ and $\mathbf{q}_2 = (-\sin(\theta), \cos(\theta)))$. The vector $\mathbf{v} = (3, 4)$ has squared norm $3^2 + 4^2 = 25$; it can also be computed as

$$\langle \mathbf{q}_1, \mathbf{v} \rangle^2 + \langle \mathbf{q}_2, \mathbf{v} \rangle^2 = (3\cos(\theta) + 4\sin(\theta)))^2 + (-3\sin(\theta) + 4\cos(\theta))^2$$

= $(9 + 16)(\sin^2(\theta) + \cos^2(\theta)) = 25.$

See Figure 1 for another example.

Corollary 1 shows that, for orthonormal bases, getting the coordinate representation of a vector is conceptually simple:

$$[\mathbf{x}]_{\mathfrak{Q}} \;=\; egin{bmatrix} \langle \mathbf{q}_1, \mathbf{x}
angle_{\mathbb{V}} \ dots \ \langle \mathbf{q}_n, \mathbf{x}
angle_{\mathbb{V}} \end{bmatrix},$$

where $\Omega = (\mathbf{q}_1, \ldots, \mathbf{q}_n)$ is the (ordered) ONB for \mathbb{V} . The coordinates also provide another way to compute the squared norm:

$$\|\mathbf{x}\|_{\mathbb{V}}^2 = \|[\mathbf{x}]_{\mathbb{Q}}\|^2;$$

the right-hand side norm is the standard Euclidean norm for n-vectors.

If, in the same context as above, $\mathbb{V} = \mathbb{R}^n$ and $Q = [\mathbf{q}_1, \ldots, \mathbf{q}_n]$ is the $n \times n$ matrix with the basis vectors as columns, then $[\mathbf{x}]_{\mathbb{Q}} = Q^{\mathsf{T}}\mathbf{x}^4$ It is clear that $[\mathbf{q}_i]_{\mathbb{Q}} = \mathbf{e}_i$ for each $i \in \{1, \ldots, n\}$, and therefore $Q^{\mathsf{T}}Q = I$. Moreover, for any $\mathbf{x} \in \mathbb{R}^n$, we have $QQ^{\mathsf{T}}\mathbf{x} = Q[\mathbf{x}]_{\mathbb{Q}} = \mathbf{x}$, so $QQ^{\mathsf{T}} = I$ as well. This shows that Q is invertible, and its inverse is $Q^{-1} = Q^{\mathsf{T}}$. A square matrix with orthonormal columns is called an *orthogonal matrix*.⁵

Below is a related corollary of Theorem 5 for general inner product spaces.

Corollary 2. If $\{\mathbf{q}_1, \ldots, \mathbf{q}_k\}$ is an orthogonal set of k non-zero vectors from an inner product space \mathbb{V} , then it is linearly independent.

Proof. Apply Theorem 5 with $\mathbf{x} = \mathbf{0}$ to deduce that any linear combination of distinct vectors form $\{\mathbf{q}_1, \ldots, \mathbf{q}_k\}$ must be the all-zeros combination. \Box

Corollary 2, with the Subspace Dimension Theorem, implies that every orthonormal subset of an inner product space of dimension n has cardinality at most n.

3.2 Gram-Schmidt orthogonalization

The following algorithm takes as input linearly independent vectors from an inner product space, and returns an orthogonal set of non-zero vectors that has the same span. To get an ONB for the span, divide each vector in the output by its norm.

Algorithm 1 Gram-Schmidt orthogonalization

Input: Linearly independent vectors $\mathbf{b}_1, \ldots, \mathbf{b}_d$ from inner product space \mathbb{V} . 1: for $k = 1, \ldots, d$ do

2: Let
$$\mathbf{q}_k = \mathbf{b}_k - \sum_{j=1}^{k-1} \frac{\langle \mathbf{b}_k, \mathbf{q}_j \rangle_{\mathbb{V}}}{\|\mathbf{q}_j\|_{\mathbb{V}}^2} \mathbf{q}_j.$$

3: end for

4: return
$$\{\mathbf{q}_1,\ldots,\mathbf{q}_d\}$$
.

⁴In the special case where Ω is the standard ordered basis, we have Q = I. So the *n*-vector itself is its own coordinate representation with respect to the standard basis.

⁵That was not a typo. An $n \times n$ matrix with n orthonormal columns is called an "orthogonal matrix", not "orthonormal matrix". Confusing ...

The summation in Line 2 of Algorithm 1 can be recognized as the "part" of \mathbf{b}_k that is in the span of $\{\mathbf{q}_1, \ldots, \mathbf{q}_{k-1}\}$, so \mathbf{q}_k is set to the remaining "part" of \mathbf{b}_k . Precisely what these "parts" are will be explained in the context of orthogonal projections later.

Example. Consider the execution of Algorithm 1 on the following vectors:

$$\begin{bmatrix} \mathbf{b}_1 & \mathbf{b}_2 & \mathbf{b}_3 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 2 \\ 1 & 0 & 2 \\ 0 & 1 & 1 \end{bmatrix}.$$

• Iteration k = 1:

$$\mathbf{q}_1 = \mathbf{b}_1 = (1, 1, 0).$$

(The sum from j = 1 to 0 is the empty sum.)

• Iteration k = 2:

$$\mathbf{q}_2 = \mathbf{b}_2 - \frac{\langle \mathbf{b}_2, \mathbf{q}_1 \rangle}{\|\mathbf{q}_1\|^2} \mathbf{q}_1 = (2, 0, 1) - \frac{2}{2} (1, 1, 0) = (1, -1, 1).$$

• Iteration k = 3:

$$\mathbf{q}_{3} = \mathbf{b}_{3} - \frac{\langle \mathbf{b}_{3}, \mathbf{q}_{1} \rangle}{\|\mathbf{q}_{1}\|^{2}} \mathbf{q}_{1} - \frac{\langle \mathbf{b}_{3}, \mathbf{q}_{2} \rangle}{\|\mathbf{q}_{2}\|^{2}} \mathbf{q}_{2}$$

= $(2, 2, 1) - \frac{4}{2} (1, 1, 0) - \frac{1}{3} (1, -1, 1)$
= $\left(-\frac{1}{3}, \frac{1}{3}, \frac{2}{3}\right).$

Theorem 6. The execution of Algorithm 1 on d linearly independent vectors $\mathcal{B} = {\mathbf{b}_1, \ldots, \mathbf{b}_d}$ from an inner product space \mathbb{V} returns an orthogonal set $\Omega = {\mathbf{q}_1, \ldots, \mathbf{q}_d}$ of d non-zero vectors with $\operatorname{span}(\Omega) = \operatorname{span}(\mathcal{B})$.

Proof. The proof is by induction on d. The base case d = 0 is trivial since $\mathcal{B} = \mathcal{Q} = \emptyset$. So, for some $d \geq 1$, assume as the inductive hypothesis that $\mathcal{Q}^- = \{\mathbf{q}_1, \ldots, \mathbf{q}_{d-1}\}$ is an orthogonal set of d - 1 non-zero vectors with $\operatorname{span}(\mathcal{Q}^-) = \operatorname{span}(\{\mathbf{b}_1, \ldots, \mathbf{b}_{d-1}\})$. We need to show (i) \mathbf{q}_d is non-zero, (ii) $\mathcal{Q}^- \cup \{\mathbf{q}_d\}$ is orthogonal, and (iii) $\operatorname{span}(\mathcal{Q}^- \cup \{\mathbf{q}_d\}) = \operatorname{span}(\mathcal{B})$.

To prove (i), we assume for sake of contradiction that $\mathbf{q}_d = \mathbf{0}$. Then Line 2 in Algorithm 1 shows that $\mathbf{b}_d \in \operatorname{span}(\mathbb{Q}^-)$, and we know $\operatorname{span}(\mathbb{Q}^-) =$ $\operatorname{span}(\{\mathbf{b}_1,\ldots,\mathbf{b}_{d-1}\})$ by the inductive hypothesis. This implies that the set $\{\mathbf{b}_1,\ldots,\mathbf{b}_d\}$ is linearly dependent, a contradiction. So we conclude $\mathbf{q}_d \neq \mathbf{0}$.

To prove (ii), it suffices to show that $\langle \mathbf{q}_d, \mathbf{q}_k \rangle_{\mathbb{V}} = 0$ for each $k \in \{1, \ldots, d-1\}$. For each such k, using linearity of the inner product and the orthogonality of Ω^- from the inductive hypothesis, we have

$$\begin{aligned} \langle \mathbf{q}_d, \mathbf{q}_k \rangle_{\mathbb{V}} &= \langle \mathbf{b}_d, \mathbf{q}_k \rangle_{\mathbb{V}} - \sum_{j=1}^{d-1} \frac{\langle \mathbf{b}_d, \mathbf{q}_j \rangle_{\mathbb{V}}}{\|\mathbf{q}_j\|_{\mathbb{V}}^2} \langle \mathbf{q}_j, \mathbf{q}_k \rangle_{\mathbb{V}} \\ &= \langle \mathbf{b}_d, \mathbf{q}_k \rangle_{\mathbb{V}} - \frac{\langle \mathbf{b}_d, \mathbf{q}_k \rangle_{\mathbb{V}}}{\|\mathbf{q}_k\|_{\mathbb{V}}^2} \langle \mathbf{q}_k, \mathbf{q}_k \rangle_{\mathbb{V}} = \langle \mathbf{b}_d, \mathbf{q}_k \rangle_{\mathbb{V}} - \langle \mathbf{b}_d, \mathbf{q}_k \rangle_{\mathbb{V}} = 0. \end{aligned}$$

Finally, to prove (iii), note that $\operatorname{span}(\mathbb{Q}^- \cup \{\mathbf{q}_d\}) \subseteq \operatorname{span}(\mathcal{B})$ follows from the inductive hypothesis that $\operatorname{span}(\mathbb{Q}^-) = \operatorname{span}(\{\mathbf{b}_1, \ldots, \mathbf{b}_{d-1}\})$ and the fact $\mathbf{q}_d \in \operatorname{span}(\mathbb{Q}^- \cup \mathcal{B})$. We have shown, in (i) and (ii), that $\mathbb{Q}^- \cup \{\mathbf{q}_d\}$ is an orthogonal set of non-zero vectors, and hence it is linearly independent by Corollary 2. This implies $\dim(\operatorname{span}(\mathbb{Q}^- \cup \{\mathbf{q}_d\})) = d = \dim(\operatorname{span}(\mathcal{B}))$, so the Subspace Dimension Theorem implies that $\operatorname{span}(\mathbb{Q}^- \cup \{\mathbf{q}_d\}) = \operatorname{span}(\mathcal{B})$.

This completes the inductive step, and hence the claim follows by the principle of mathematical induction. $\hfill \Box$

Corollary 3. If \mathbb{V} is an n-dimensional inner product space, then \mathbb{V} has an orthonormal basis.

Proof. Apply Algorithm 1 to a basis for \mathbb{V} (which has *n* vectors). By Theorem 6, the output $\{\mathbf{q}_1, \ldots, \mathbf{q}_n\}$ is an orthogonal set of non-zero vectors that also spans \mathbb{V} . Let $\mathbf{u}_i = \mathbf{q}_i / \|\mathbf{q}_i\|_{\mathbb{V}}$ for each $i \in \{1, \ldots, n\}$, so $\{\mathbf{u}_1, \ldots, \mathbf{u}_n\}$ is an ONB for \mathbb{V} .

There is an analogue of the Basis Completion Theorem for ONB's. If a set of vectors \mathcal{W} from an inner product space \mathbb{V} is orthonormal, then it can be "completed" to become an ONB. This is done as follows:

- 1. Use the Basis Completion Theorem with \mathcal{W} to obtain a basis \mathcal{B} for \mathbb{V} that includes \mathcal{W} . (Note that \mathcal{B} might not be orthogonal.)
- 2. Apply Gram-Schmidt orthogonalization (Algorithm 1) on this basis \mathcal{B} , starting with the vectors from \mathcal{W} .

Since the vectors in \mathcal{W} are already orthogonal, they will be taken as-is as part of the output. This proves the following theorem.

Theorem 7 (ONB Completion Theorem). Let W be an orthonormal set of k vectors from an n-dimensional inner product space \mathbb{V} . There exists a subset \mathfrak{F} of n - k vectors such that $W \cup \mathfrak{F}$ is an ONB for \mathbb{V} .

3.3 Orthogonal projections

We say that a vector space \mathbb{V} is the <u>direct sum</u> of its subspaces \mathbb{W}_1 and \mathbb{W}_2 , written $\mathbb{V} = \mathbb{W}_1 \oplus \mathbb{W}_2$, if for every $\mathbf{x} \in \mathbb{V}$, there exists unique choices of $\mathbf{y} \in \mathbb{W}_1$ and $\mathbf{z} \in \mathbb{W}_2$ such that $\mathbf{x} = \mathbf{y} + \mathbf{z}$.

Theorem 8 (Direct Sum Theorem). Let \mathbb{V} be a finite dimensional inner product space, and let \mathbb{W} be a subspace of \mathbb{V} . Then $\mathbb{V} = \mathbb{W} \oplus \mathbb{W}^{\perp}$.

Proof. Let $\mathcal{W} = {\mathbf{w}_1, \ldots, \mathbf{w}_k}$ be an ONB for \mathbb{W} . By the ONB Completion Theorem (Theorem 7), there exists a subset $\mathcal{V} = {\mathbf{v}_1, \ldots, \mathbf{v}_\ell}$ such that $\mathcal{W} \cup \mathcal{V}$ is an ONB for \mathbb{V} (where $k + \ell = \dim(\mathbb{V})$). For any $\mathbf{x} \in \mathbb{V}$, by Corollary 1,

$$\mathbf{x} = \underbrace{\langle \mathbf{x}, \mathbf{w}_1 \rangle \mathbf{w}_1 + \dots + \langle \mathbf{x}, \mathbf{w}_k \rangle \mathbf{w}_k}_{\mathbf{y}} + \underbrace{\langle \mathbf{x}, \mathbf{v}_1 \rangle \mathbf{v}_1 + \dots + \langle \mathbf{x}, \mathbf{v}_\ell \rangle \mathbf{v}_\ell}_{\mathbf{z}}.$$
 (2)

It is clear that $\mathbf{y} \in \mathbb{W}$; moreover, $\mathbf{z} \in \mathbb{W}^{\perp}$ since every \mathbf{v}_i is orthogonal to every vector in \mathbb{W} . So the existence of the claimed \mathbf{y} and \mathbf{z} with $\mathbf{x} = \mathbf{y} + \mathbf{z}$ is proven. To show uniqueness, suppose $\mathbf{x} = \mathbf{y}' + \mathbf{z}'$ for some $\mathbf{y}' \in \mathbb{W}$ and $\mathbf{z}' \in \mathbb{W}^{\perp}$. Then $\mathbf{y} - \mathbf{y}' = \mathbf{z}' - \mathbf{z}$. But $\mathbf{y} - \mathbf{y}' \in \mathbb{W}$ and $\mathbf{z}' - \mathbf{z} \in \mathbb{W}^{\perp}$, since \mathbb{W} and \mathbb{W}^{\perp} are both subspaces of \mathbb{R}^n . Since $\mathbb{W} \cap \mathbb{W}^{\perp} = \{\mathbf{0}\}$, it follows that $\mathbf{y} = \mathbf{y}'$ and $\mathbf{z} = \mathbf{z}'$.

For any subspace \mathbb{W} of a finite-dimensional inner product space \mathbb{V} , Theorem 8 uniquely decomposes every $\mathbf{x} \in \mathbb{V}$ into the sum of a "part" \mathbf{y} that lives in \mathbb{W} and an orthogonal "part" $\mathbf{z} = \mathbf{x} - \mathbf{y}$ that lives in \mathbb{W}^{\perp} . The proof shows how to extract these "parts": obtain an ONB for \mathbb{W} , compute \mathbf{y} as shown in (2), and set $\mathbf{z} = \mathbf{x} - \mathbf{y}$. We say \mathbf{y} is the <u>orthogonal projection</u> of \mathbf{x} to \mathbb{W} . **Example.** Let $\mathbb{W} = \text{span}(\{\mathbf{e}_1, \mathbf{e}_2\})$, a two-dimensional subspace of \mathbb{R}^3 . The orthogonal projection of $\mathbf{x} = (1, 2, 3) = \mathbf{e}_1 + 2\mathbf{e}_2 + 3\mathbf{e}_3$ to \mathbb{W} is $\mathbf{y} = (1, 2, 0) = \mathbf{e}_1 + 2\mathbf{e}_2$. Notice that $\mathbf{x} - \mathbf{y} = (0, 0, 3) = 3\mathbf{e}_3 \in \mathbb{W}^{\perp}$, and

$$\|\mathbf{x}\|^2 = 1^2 + 2^2 + 3^2 = \|\mathbf{y}\|^2 + \|\mathbf{x} - \mathbf{y}\|^2.$$

The linear operator P that sends an arbitrary $\mathbf{x} \in \mathbb{V}$ to the unique $\mathbf{y} = P\mathbf{x} \in \mathbb{W}$ such that $\mathbf{x} - \mathbf{y} \in \mathbb{W}^{\perp}$ is called the <u>orthogonal projection opera-</u> <u>tor</u> (a.k.a. <u>orthogonal projector</u>, <u>orthoprojector</u>) for \mathbb{W} . Note that I - P is the orthoprojector for \mathbb{W}^{\perp} , by symmetry. Both P and I - P are projection operators, in the sense that each is idempotent: $P^2 = P$ and $(I-P)^2 = I - P$.

For $\mathbb{V} = \mathbb{R}^n$, we can write P in matrix form: if $\{\mathbf{u}_1, \ldots, \mathbf{u}_r\}$ is an ONB for \mathbb{W} (so $r = \dim(\mathbb{W})$), then

$$P\mathbf{x} = \langle \mathbf{x}, \mathbf{u}_{1} \rangle \mathbf{u}_{1} + \dots + \langle \mathbf{x}, \mathbf{u}_{r} \rangle \mathbf{u}_{r}$$

$$= \begin{bmatrix} \uparrow & \uparrow \\ \mathbf{u}_{1} & \cdots & \mathbf{u}_{r} \\ \downarrow & \downarrow \end{bmatrix} \begin{bmatrix} \langle \mathbf{x}, \mathbf{u}_{1} \rangle \\ \vdots \\ \langle \mathbf{x}, \mathbf{u}_{r} \rangle \end{bmatrix} = \underbrace{\begin{bmatrix} \uparrow & \uparrow \\ \mathbf{u}_{1} & \cdots & \mathbf{u}_{r} \\ \downarrow & \downarrow \end{bmatrix}}_{U} \underbrace{\begin{bmatrix} \leftarrow & \mathbf{u}_{1}^{\mathsf{T}} \rightarrow \\ \vdots \\ \leftarrow & \mathbf{u}_{r}^{\mathsf{T}} \rightarrow \end{bmatrix}}_{U^{\mathsf{T}}} \begin{bmatrix} \uparrow \\ \mathbf{x} \\ \downarrow \end{bmatrix}.$$

So $P = UU^{\mathsf{T}}$, where U is the $n \times r$ matrix whose columns form an ONB for the subspace \mathbb{W} . Another way to write UU^{T} is as a sum of r outer products:

$$P = UU^{\mathsf{T}} = \mathbf{u}_1 \mathbf{u}_1^{\mathsf{T}} + \dots + \mathbf{u}_r \mathbf{u}_r^{\mathsf{T}}.$$

If r = 1, then we can recognize $P = \mathbf{u}_1 \mathbf{u}_1^{\mathsf{T}}$ as a special case of an elementary projection operator to a line along a hyperplane. In this special case, the line $\mathsf{CS}(\mathbf{u}_1) = \{c\mathbf{u}_1 : c \in \mathbb{R}\}$ and hyperplane $\mathsf{NS}(\mathbf{u}_1^{\mathsf{T}}) = \{\mathbf{x} \in \mathbb{R}^n : \mathbf{u}_1^{\mathsf{T}}\mathbf{x} = 0\}$ are orthogonal complements of each other.

The orthoprojector for a subspace \mathbb{W} is not specific to any particular ONB. So if $\{\mathbf{u}_1, \ldots, \mathbf{u}_r\}$ and $\{\mathbf{w}_1, \ldots, \mathbf{w}_r\}$ are both ONB's for \mathbb{W} , then

$$\mathbf{u}_1\mathbf{u}_1^{\mathsf{T}} + \cdots + \mathbf{u}_r\mathbf{u}_r^{\mathsf{T}} = \mathbf{w}_1\mathbf{w}_1^{\mathsf{T}} + \cdots + \mathbf{w}_r\mathbf{w}_r^{\mathsf{T}}.$$

We conclude with a very important theorem.

Theorem 9. Let A be an $m \times n$ matrix. For every $\mathbf{b} \in \mathsf{CS}(A)$, there exists a unique $\mathbf{y} \in \mathsf{CS}(A^{\mathsf{T}})$ such that $\mathbf{b} = A\mathbf{y}$.

Figure 2: Schematic diagram of the fundamental subspaces of an $m \times n$ matrix A and its action on $\mathbf{x} \in \mathbb{R}^n$. Here, $T_A \colon \mathsf{CS}(A^{\mathsf{T}}) \to \mathsf{CS}(A)$ is the bijection between $\mathsf{CS}(A^{\mathsf{T}})$ and $\mathsf{CS}(A)$, and $T_A^{-1} \colon \mathsf{CS}(A) \to \mathsf{CS}(A^{\mathsf{T}})$ is its inverse.

Proof. Fix any $\mathbf{b} \in \mathsf{CS}(A)$, so there exists $\mathbf{x} \in \mathbb{R}^n$ such that $\mathbf{b} = A\mathbf{x}$. Let \mathbf{y} be the orthogonal projection of \mathbf{x} to $\mathsf{CS}(A^{\mathsf{T}})$, so $\mathbf{z} = \mathbf{x} - \mathbf{y} \in \mathsf{NS}(A)$. By linearity, $A\mathbf{y} = A(\mathbf{x} - \mathbf{z}) = A\mathbf{x} - A\mathbf{z} = A\mathbf{x}$. This proves the existence of the vector $\mathbf{y} \in \mathsf{CS}(A^{\mathsf{T}})$ with $\mathbf{b} = A\mathbf{y}$.

Now we prove the uniqueness of \mathbf{y} . Consider any $\mathbf{x} \in \mathsf{CS}(A^{\mathsf{T}})$ such that $A\mathbf{x} = \mathbf{b}$. Then $A(\mathbf{x} - \mathbf{y}) = \mathbf{0}$, so $\mathbf{x} - \mathbf{y} \in \mathsf{NS}(A)$. On the other hand, $\mathbf{x} - \mathbf{y} \in \mathsf{CS}(A^{\mathsf{T}})$. But $\mathsf{CS}(A^{\mathsf{T}}) \cap \mathsf{NS}(A) = \{\mathbf{0}\}$ since $\mathsf{CS}(A^{\mathsf{T}}) = \mathsf{NS}(A)^{\perp}$, so it must be that $\mathbf{x} = \mathbf{y}$.

Theorem 9 implies that the linear transformation $T_A \colon \mathsf{CS}(A^{\mathsf{T}}) \to \mathsf{CS}(A)$ given by $T_A(\mathbf{x}) = A\mathbf{x}$ is *bijective*, i.e., one-to-one and onto. See Figure 2.

4 Least squares approximation

In the <u>least squares approximation</u> problem, one is given an $n \times p$ matrix A and an *n*-vector **b**, and the goal is to find a *p*-vector **x** that makes $||A\mathbf{x} - \mathbf{b}||^2$ as small as possible.

In statistics, this problem is called <u>least squares linear regression</u>, which is motivated as follows. The matrix A is a coefficient matrix for a system of n linear equations in p variables $\mathbf{x} = (x_1, \ldots, x_d)$, and the vector \mathbf{b} is the vector of right-hand side values. We would like to find a solution to the system $A\mathbf{x} = \mathbf{b}$ —i.e., a setting of the p variables (x_1, \ldots, x_p) that satisfies all n equations—but in the case that the system is inconsistent, we would like to assign values to the p variables to make all of the equations as "close" to being satisfied as possible. The quality of an assignment is judged by the sum of the squared <u>residuals</u> for the n equations. If $\mathbf{a}_i^{\mathsf{T}}$ is the *i*th row of A and b_i is the *i*th component of \mathbf{b} , then the *i*th residual of our proposed assignment is $b_i - \mathbf{a}_i^{\mathsf{T}} \mathbf{x}$. So the sum of squared residuals is

$$(b_1 - \mathbf{a}_1^{\mathsf{T}} \mathbf{x})^2 + \dots + (b_n - \mathbf{a}_n^{\mathsf{T}} \mathbf{x})^2 = \|\mathbf{b} - A\mathbf{x}\|^2.$$

Here is one approach to solving the least squares approximation problem.

1. Compute the orthogonal projection of \mathbf{b} to $\mathsf{CS}(A)$.

We've seen the steps for getting the orthoprojector P for $\mathsf{CS}(A)$ in Section 3.3. The key step involves obtaining an ONB for $\mathsf{CS}(A)$ via, say, Gram-Schmidt orthogonalization (Algorithm 1).

Let $\mathbf{b}_0 = P\mathbf{b}$ denote the application of P to \mathbf{b} , i.e., the orthogonal projection of \mathbf{b} to $\mathsf{CS}(A)$.

2. Since $\mathbf{b}_0 \in \mathsf{CS}(A)$, we simply need to solve the system of linear equations $A\mathbf{x} = \mathbf{b}_0$, which is guaranteed to have a solution. This can be done using Elimination.

Why does this work? We need to show that among all vectors in CS(A), the orthogonal projection of **b** to CS(A) is the one closest to **b**. This is the content of the next theorem.

Theorem 10. Let \mathbb{W} be a subspace of \mathbb{R}^n , and let **b** denote any *n*-vector. If $P\mathbf{b}$ is the orthogonal projection of **b** to \mathbb{W} , then for any $\mathbf{w} \in \mathbb{W}$,

$$\|\mathbf{b} - \mathbf{w}\|^2 = \|P\mathbf{b} - \mathbf{w}\|^2 + \|\mathbf{b} - P\mathbf{b}\|^2 \ge \|\mathbf{b} - P\mathbf{b}\|^2,$$

where the inequality holds with equality if and only if $\mathbf{w} = P\mathbf{b}$.

Proof. Write $\mathbf{b} - \mathbf{w} = P(\mathbf{b} - \mathbf{w}) + (I - P)(\mathbf{b} - \mathbf{w})$. Note that $P(\mathbf{b} - \mathbf{w}) \in \mathbb{W}$ and $(I - P)(\mathbf{b} - \mathbf{w}) \in \mathbb{W}^{\perp}$, so by the Pythagorean Theorem (Theorem 3),

$$\|\mathbf{b} - \mathbf{w}\|^2 = \|P(\mathbf{b} - \mathbf{w})\|^2 + \|(I - P)(\mathbf{b} - \mathbf{w})\|^2.$$
(3)

Since $\mathbf{w} \in \mathbb{W}$, it follows that $P\mathbf{w} = \mathbf{w}$ and $(I - P)\mathbf{w} = \mathbf{0}$. Therefore $P(\mathbf{b} - \mathbf{w}) = P\mathbf{b} - \mathbf{w}$ and $(I - P)(\mathbf{b} - \mathbf{w}) = \mathbf{b} - P\mathbf{b}$. Plugging back into (3), we get $\|\mathbf{b} - \mathbf{w}\|^2 = \|P\mathbf{b} - \mathbf{w}\|^2 + \|\mathbf{b} - P\mathbf{b}\|^2$, which is always at least $\|\mathbf{b} - P\mathbf{b}\|^2$ since the norm is non-negative. The fact that equality holds if and only if $\mathbf{w} = P\mathbf{b}$ follows by the positive definiteness of the norm. \Box

The two-stage procedure we described for solving the least squares approximation problem is a bit roundabout, especially if the ONB for CS(A) is not needed for anything else. A more direct approach is motivated as follows.

- We are seeking the unique vector $\mathbf{b}_0 \in \mathsf{CS}(A)$ such that $\mathbf{b} \mathbf{b}_0$ is orthogonal to every vector in $\mathsf{CS}(A)$. (This is what is means for \mathbf{b}_0 to be the orthogonal projection of \mathbf{b} to $\mathsf{CS}(A)$, as we have discussed above.) Since $\mathbf{b}_0 \in \mathsf{CS}(A)$, we know there is a *p*-vector \mathbf{x} such that $\mathbf{b}_0 = A\mathbf{x}$.
- Every vector in CS(A) is a linear combination of columns of A. Therefore, for $A\mathbf{x}$ to be the orthogonal projection of \mathbf{b} to CS(A), it is equivalent to ensure that $\mathbf{b} - A\mathbf{x}$ is orthogonal to every column of CS(A). This condition can be expressed using matrix-vector multiplication:

$$A^{\mathsf{T}}(\mathbf{b} - A\mathbf{x}) = \mathbf{0}.$$

(Recall that the rows of A^{T} are the columns of A.)

• Rearranging terms in the equation above gives the following system of p linear equations in p unknowns $\mathbf{x} = (x_1, \ldots, x_p)$:

$$(A^{\mathsf{T}}A)\mathbf{x} = A^{\mathsf{T}}\mathbf{b}. \tag{4}$$

As we have argued in the first bullet above, this system is guaranteed to have a solution. But it is possible that it has more than one solution (and hence infinitely-many solutions). The p linear equations in (4) are collectively called the <u>normal equations</u>. It turns out the normal equations have a unique solution precisely when rank(A) = p. This is implied by the following theorem.

Theorem 11. For any matrix A, $NS(A) = NS(A^{T}A)$ and $rank(A) = rank(A^{T}A)$.

Proof. We first show $NS(A) \subseteq NS(A^{T}A)$. If $A\mathbf{x} = \mathbf{0}$, then

 $(A^{\mathsf{T}}A)\mathbf{x} = A^{\mathsf{T}}(A\mathbf{x}) = A^{\mathsf{T}}\mathbf{0} = \mathbf{0}.$

Now we show $NS(A^{T}A) \subseteq NS(A)$. If $(A^{T}A)\mathbf{x} = \mathbf{0}$, then

$$\mathbf{x}^{\mathsf{T}}(A^{\mathsf{T}}A)\mathbf{x} = \mathbf{x}^{\mathsf{T}}\mathbf{0} = 0.$$

But the left-hand side above can also be written as $(A\mathbf{x})^{\mathsf{T}}(A\mathbf{x}) = ||A\mathbf{x}||^2$, which is zero only if $A\mathbf{x} = \mathbf{0}$ by positive definiteness of the norm.

We conclude that $NS(A) = NS(A^{T}A)$. In particular, dim $(NS(A)) = dim(NS(A^{T}A))$. By the Dimension Theorem, rank $(A) = rank(A^{T}A)$.

If the $p \times p$ matrix $A^{\mathsf{T}}A$ has rank p, then it is invertible (by the Invertibility Theorem), and in this case, the unique solution to (4) is given by the algebraic expression

$$\mathbf{x} = (A^{\mathsf{T}}A)^{-1}A^{\mathsf{T}}\mathbf{b},$$

and an expression for the orthogonal projection of \mathbf{b} is

$$\mathbf{b}_0 = A\mathbf{x} = A(A^{\mathsf{T}}A)^{-1}A^{\mathsf{T}}\mathbf{b}.$$

In this case, the orthoprojector for $\mathsf{CS}(A)$ is given by

$$P = A(A^{\mathsf{T}}A)^{-1}A^{\mathsf{T}}.$$

But even if (4) has infinitely-many solutions, all of them yield the same (unique) vector $A\mathbf{x} = P\mathbf{b} \in \mathsf{CS}(A)$. So every solution \mathbf{x} to (4) is a minimizer of the least squares approximation objective $||A\mathbf{x} - \mathbf{b}||^2$.

A Proofs of the Cauchy-Schwarz Inequality and Triangle Inequality

There are many proofs of the Cauchy-Schwarz Inequality. In the case of 2-vectors, it follows immediately from the fact that the cosine function has range [-1, 1].

Proof of Theorem 2. Suppose either of **u** or **v** is the zero vector. Then the inequality is true since $\langle \mathbf{u}, \mathbf{v} \rangle = 0$. So we may assume that neither **u** nor **v** is the zero vector. Let *a* and *b* denote positive real numbers such that ab = 1. By the non-negativity of the norm and bilinearity of the inner product,

$$0 \leq ||a\mathbf{u} - b\mathbf{v}||^2 = \langle a\mathbf{u} - b\mathbf{v}, a\mathbf{u} - b\mathbf{v} \rangle = a^2 \langle \mathbf{u}, \mathbf{u} \rangle - 2 \langle \mathbf{u}, \mathbf{v} \rangle + b^2 \langle \mathbf{v}, \mathbf{v} \rangle,$$

where the last step uses ab = 1. Rearranging terms and dividing by 2 gives

$$\langle \mathbf{u}, \mathbf{v} \rangle \leq \frac{a^2}{2} \langle \mathbf{u}, \mathbf{u} \rangle + \frac{b^2}{2} \langle \mathbf{v}, \mathbf{v} \rangle = \frac{a^2}{2} \|\mathbf{u}\|^2 + \frac{b^2}{2} \|\mathbf{v}\|^2.$$

Since this inequality is true for any positive numbers a and b with ab = 1, we can choose $a = \sqrt{\|\mathbf{v}\|/\|\mathbf{u}\|}$ and $b = \sqrt{\|\mathbf{u}\|/\|\mathbf{v}\|}$, so the right-hand side becomes $\|\mathbf{u}\| \|\mathbf{v}\|$. This proves the claimed inequality.

Now suppose $\langle \mathbf{u}, \mathbf{v} \rangle = \|\mathbf{u}\| \|\mathbf{v}\|$ and neither \mathbf{u} nor \mathbf{v} is the zero vector. Then the first displayed inequality above (with the prescribed choices of a > 0 and b > 0) must hold with equality:

$$0 = \|a\mathbf{u} - b\mathbf{v}\|^2.$$

Since only the zero vector has norm equal to 0, we conclude that $a\mathbf{u} = b\mathbf{v}$. So \mathbf{u} and \mathbf{v} are scalar multiples of each other.

The Triangle Inequality (Theorem 1) is a consequence of the Cauchy-Schwarz Inequality (Theorem 2).

Proof of Theorem 1. Bilinearity of the inner product and Theorem 2 imply

$$\|\mathbf{u} + \mathbf{v}\|^{2} = \langle \mathbf{u}, \mathbf{u} \rangle + 2 \langle \mathbf{u}, \mathbf{v} \rangle + \langle \mathbf{v}, \mathbf{v} \rangle$$

$$\leq \|\mathbf{u}\|^{2} + 2 \|\mathbf{u}\| \|\mathbf{v}\| + \|\mathbf{v}\|^{2}.$$

The final right-hand side above is $(\|\mathbf{u}\| + \|\mathbf{v}\|)^2$.

20

 \square