
Orthogonality and least squares
COMS 3251 Fall 2022 (Daniel Hsu)

1 Inner products and orthonormal bases

1.1 Lengths

Consider 2-vectors in the Cartesian plane as we imagine them in the real
physical space. The length (a.k.a. norm) of a 2-vector v = (v1, v2), denoted
by ∥v∥, has a formula provided by the Pythagorean Theorem:

∥v∥ =
√

v21 + v22.

The length ∥v∥ is the distance between the point v and the origin 0, and the
length ∥u− v∥ is the distance between points u and v.

The notion of a norm generalizes to 3-vectors (displacements in three-
dimensional Cartesian space) and also to n-vectors. The norm of an n-vector
v = (v1, . . . , vn) is

∥v∥ =
√

v21 + · · ·+ v2n.

Observe that ∥v∥ = 0 if and only if v = 0.
A unit vector is a vector of length 1. For example, each of the standard

basis vectors e1, . . . , en is a unit vector. If v ̸= 0, then 1
∥v∥v is a unit vector.

Theorem 1 (Triangle Inequality). For any n-vectors u and v,

∥u+ v∥ ≤ ∥u∥+ ∥v∥.

1.2 Angles and inner products

Again, consider 2-vectors in the Cartesian plane. Unit vectors correspond to
points on the unit circle, which are specified by the angle between the vector
and the first standard basis vector e1 = (1, 0).

• If the angle between e1 and the unit vector u = (u1, u2) is α ∈ [0, 2π),
then

u1 = cos(α), u2 = sin(α).
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• If u = (u1, u2) = (cos(α), sin(α)) and v = (v1, v2) = (cos(β), sin(β)),
then the angle between u and v is

cos(α− β) = cos(α) cos(β) + sin(α) sin(β) = u1v1 + u2v2.

This motivates the concept of the inner product (a.k.a. dot product) between
u and v, denoted by ⟨u,v⟩, and defined by

⟨u,v⟩ = u1v1 + u2v2.

(We sometimes read “⟨u,v⟩” aloud as “u dot v”.) This definition makes
sense for all 2-vectors, not just the unit vectors, and its interpretation is

⟨u,v⟩ = ∥u∥ ∥v∥ cos(“angle between u and v”).

Inner products are more convenient to reason about than angles since they
possess a certain property related to linearity, discussed below.

The concept of inner product generalizes to n-vectors. The inner product
between u = (u1, . . . , un) and v = (v1, . . . , vn) is defined to be

⟨u,v⟩ = u1v1 + · · ·+ unvn.

The inner product is a real-valued, two-argument function. Moreover, it
satisfies the following important properties:

IP1 (The inner product is symmetric.) For all vectors u and v,

⟨u,v⟩ = ⟨v,u⟩.

IP2 (The inner product is positive definite.) For all vectors v,

⟨v,v⟩ ≥ 0,

and ⟨v,v⟩ = 0 if and only if v = 0.

(Note that ⟨v,v⟩ gives the squared norm: ⟨v,v⟩ = ∥v∥2.)

IP3 (The inner product is linear in the first argument.) For all vectors x, y,
and z, and all real numbers c.

⟨cx+ y, z⟩ = c ⟨x, z⟩+ ⟨y, z⟩.
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IP1 and IP3 together imply that the inner product is bilinear : it is linear in
each argument when the other argument value is held fixed.

The inner product also satisfies the following inequality.

Theorem 2 (Cauchy-Schwarz Inequality). For any n-vectors u and v,

⟨u,v⟩ ≤ ∥u∥ ∥v∥.

Equality holds if and only if v = cu for some real number c.

Example. Suppose you are given a non-zero n-vector x, and you would
like to find a unit vector v that makes ⟨x,v⟩ as large as possible. By the
Cauchy-Schwarz Inequality, the value of ⟨x,v⟩ is always at most ∥x∥, since
∥v∥ = 1 for a unit vector v. And we also know that the inequality holds
with equality if v = cx for some real number c. For this to hold and for v to
be a unit vector, it had better be that c = 1/∥x∥. So v = x/∥x∥ solves this
optimization problem, and it achieves value ⟨x,v⟩ = ∥x∥.

Finally, observe that if uT is the linear functional corresponding to u, then

⟨u,v⟩ = uTv.

So uTv is also a commonly-used notation for inner product between n-vectors
u and v. (Another notation is u • v, to go along with the term dot product.)

1.3 Inner products for general vector spaces

Any (real) vector space V may be upgraded by introducing of a real-valued,
two-argument function ⟨·, ·⟩V : V×V→ R with the same properties IP1–IP3
of the inner product that we have defined for n-vectors. When we start with
a vector space V and then “upgrade” (or “equip”) it with a function ⟨·, ·⟩V
satisfying IP1–IP3, we say that (V, ⟨·, ·⟩V) is a (real) inner product space.1

The n-dimensional Cartesian space Rn, equipped with the inner product
we have previously defined for n-vectors (i.e., the (standard) Euclidean in-
ner product), is called the n-dimensional Euclidean space. Henceforth, unless
stated otherwise, we’ll use Rn to refer to this inner product space.

1We’ll usually just refer to V itself as the inner product space, leaving implicit what the inner product is.
We’ll also drop the subscript V from ⟨·, ·⟩V when the inner product is clear from context (e.g., the standard
Euclidean inner product for Euclidean space).
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Example. Let V = C([−1, 1],R), the space of continuous real-valued func-
tions defined on the interval [−1, 1]. We equip V with ⟨·, ·⟩V, defined by

⟨f, g⟩V =

∫ 1

−1
f(t)g(t) dt.

It can be verified that ⟨·, ·⟩V satisfies IP1–IP3.

Another example. Let V = Rn, but instead of considering the Euclidean
inner product, we equip V with ⟨·, ·⟩V, defined by

⟨u,v⟩V =
n∑

i=1

1

i2
uivi

for u = (u1, . . . , un) and v = (v1, . . . , vn). Again, ⟨·, ·⟩V satisfies IP1–IP3.
However, e.g., note that ⟨e2, e2⟩V = 1/4 rather than 1.

General inner product spaces (V, ⟨·, ·⟩V) share many of the “geometric”
properties we are familiar with from Euclidean space. For instance, it satisfies
the Cauchy-Schwarz Inequality (Theorem 2). Moreover, we can define a
notion of length based on the inner product by

∥v∥V =
√
⟨v,v⟩V.

Like the notion of length from Euclidean space, this notion of length ∥·∥V
satisfies the following properties that qualify it to be a norm:

N1 (The norm is positive definite.) For all v ∈ V, ∥v∥V ≥ 0; equality holds
if and only if v = 0V.

N2 (The norm is absolutely homogeneous.) For all v ∈ V and all c ∈ R,
∥cv∥V = |c| ∥v∥V.

N3 (The norm satisfies the triangle inequality.) For all u,v ∈ V, ∥u+v∥V ≤
∥u∥V + ∥v∥V.

(We typically refer to ∥u− v∥V as the distance between u and v.)
Finally, much like the way linear functionals on Rn are given by row

vectors, each linear functional T : V→ R on a general inner product space V
is uniquely specified by some vector u ∈ V, via T (v) = ⟨u,v⟩V.
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2 Orthogonality

2.1 Orthogonal vectors

Two vectors u and v from an inner product space V are orthogonal (a.k.a. per-
pendicular) if ⟨u,v⟩V = 0. Recall in the context of 2-vectors, this means that
either one of the vectors is 0, or the cosine of the angle between them is
0—i.e., the angle is a right angle.

A set of vectors from an inner product space is orthogonal if every pair of
distinct vectors in it is orthogonal to each other.2

Theorem 3 (Pythagorean Theorem). Suppose q1, . . . ,qn are orthogonal vec-
tors from an inner product space V. Then

∥q1 + · · ·+ qn∥2V = ∥q1∥2V + · · ·+ ∥qn∥2V.

Proof. “Expand the square” and use orthogonality:

∥q1 + · · ·+ qn∥2V = ⟨q1 + · · ·+ qn,q1 + · · ·+ qn⟩V

=
n∑

i=1

⟨qi,qi⟩V +
n∑

i=1

∑
j ̸=i

������:0⟨qi,qj⟩V =
n∑

i=1

∥qi∥2V.

Example. The set of 2-vectors {(1, 1), (2,−2)} is orthogonal; the squared
lengths of the vectors are 2 and 8. The sum of the vectors is (3,−1), and it
has squared length 10.

If a set (or list) of unit vectors is orthogonal, then we say it is orthonormal.

2.2 Orthogonal subspaces

If V and W are both subspaces of the same inner product space (e.g., Rn),
then we say they are orthogonal subspaces if every vector v ∈ V is orthogonal
to every vector w ∈W.

2We say a list of vectors (q1, . . . ,qk) is orthogonal (or “q1, . . . ,qk are orthogonal”) if they are distinct
and {q1, . . . ,qk} is orthogonal.
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Examples.

• Let V = {(x, 0, 0) : x ∈ R} and W = {(0, y, z) : (y, z) ∈ R2} be sub-
spaces of 3-dimensional Euclidean space. Then V andW are orthogonal:
for any v = (v1, v3, v3) ∈ V and w = (w1, w2, w3) ∈W,

⟨v,w⟩ = v1w1 + v1w2 + v3w3 = v1 · 0 + 0 · w2 + 0 · w3 = 0.

• Let V = {(x, y, 0) : (x, y) ∈ R2} and W = {(0, y, z) : (y, z) ∈ R2} be
subspaces of 3-dimensional Euclidean space. Then V and W are not
orthogonal: V and W both contain v = (0, 1, 0), and ⟨v,v⟩ = 1.

Fact 1. Orthogonal subspaces intersect only at the origin 0.

Proof. A vector in the intersection of orthogonal subspaces must be orthog-
onal to itself, so the (squared) norm of the vector must be zero.

Proposition 1. Let A be an m× n matrix.

1. CS(AT) and NS(A) are orthogonal subspaces of Rn.

2. CS(A) and NS(AT) are orthogonal subspaces of Rm.

Proof. We just prove the first claim, as the second claim follows from the same
proof after interchanging the roles of columns and rows. Consider any vector
in CS(AT); write it as ATu for some m-vector u. This vector corresponds to
a linear functional on Rn, written as uTA, so for any n-vector v,

⟨ATu,v⟩ = (uTA)v.

In particular, for any v ∈ NS(A), by associativity of matrix multiplication,3

(uTA)v = uT(Av) = uT0 = 0. (1)

So every vector in CS(AT) is orthogonal to every vector in NS(A).

3The key step (uTA)v = uT(Av) can be rewritten using inner products as ⟨ATu,v⟩ = ⟨u, Av⟩; these are
inner products in two different spaces, Rn and Rm. The transpose AT of A (changing rows of A to columns
of AT) is the unique matrix that ensures ⟨ATu,v⟩ = ⟨u, Av⟩ for all u ∈ Rm and v ∈ Rn.
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2.3 Orthogonal complements

Proposition 1 tells us that the nullspace of an m× n matrix A contains only
vectors that are orthogonal to the row space CS(AT). In fact, the nullspace
contains all vectors that are orthogonal to the row space. This is, indeed, one
way to interpret the definition of nullspace: NS(A) = {x ∈ Rn : Ax = 0}; it
is the set of vectors orthogonal to every row of A, and hence it is the set of
vectors orthogonal to every linear combination of rows of A.

For any subspace W of an inner product space V, define the orthogonal
complement of W, written W⊥ (and read aloud as “W perp”), to be

W⊥ = {v ∈ V : ⟨w,v⟩V = 0 for all w ∈W}.

Fact 2. If W is a subspace of an inner product space V, then W⊥ is a subspace
of V, and W and W⊥ are orthogonal subspaces.

Proof. The proof that W⊥ is a subspace of V is completely analogous to the
proof that NS(A) is a subspace for any matrix A. The fact that W and W⊥

are orthogonal follows by definition.

In this notation, we have NS(A) = CS(AT)⊥: the nullspace of A is the
orthogonal complement of the row space of A. In fact, it is also the case that
the row space is the orthogonal complement of the nullspace.

Theorem 4. Let A be an m× n matrix.

1. NS(A) = CS(AT)⊥ and CS(AT) = NS(A)⊥.

2. NS(AT) = CS(A)⊥ and CS(A) = NS(AT)⊥.

Proof. We already saw that NS(A) = CS(AT)⊥, essentially by definition. We
now prove that CS(AT) = NS(A)⊥. Suppose for sake of contradiction that
there exists a vector v ∈ Rn that is orthogonal to every vector in the nullspace
of A, and yet v /∈ CS(AT). Consider the matrix B that is the same as A with
an additional row vT. Since v /∈ CS(AT), the Growth Theorem implies that
the dimension of the row space of B is one more than the dimension of the
row space of A: rank(B) = rank(A)+ 1. On the other hand, the nullspace of
B is the same as the nullspace of A, since v is orthogonal to every vector in
NS(A). Using the Dimension Theorem with B tells us

rank(B) + dim(NS(B)) = rank(A) + 1 + dim(NS(A)) = n,

7



Orthogonality and least squares COMS 3251 Fall 2022 (Daniel Hsu)

but using it with A tells us rank(A) + dim(NS(A)) = n. This is a contradic-
tion, so we conclude no such vector v exists. Hence CS(AT) = NS(A)⊥.

Switching the roles of rows and columns proves the second claim.

3 Orthonormal bases and orthoprojectors

3.1 Orthonormal bases

Recall that a basis for a vector space V is a minimal collection of vectors by
which you can construct all of V simply via linear combination. If V is, in fact,
an inner product space, then bases that are orthonormal (i.e., composed of
orthonormal vectors) are especially convenient. We use the term orthonormal
basis (ONB) for a (ordered) basis that is orthonormal.

Examples. The standard ordered basis (e1, . . . , en) is an ONB for Rn. For
n = 2, this is ([

1
0

]
,

[
0
1

])
.

Pick any θ ∈ [0, 2π). Then([
cos(θ)
sin(θ)

]
,

[
− sin(θ)
cos(θ)

])
is also an ONB for R2. Each vector is a unit vector, since cos(θ)2+sin(θ)2 = 1
for any θ. And the vectors are clearly orthogonal.

Very important example. Consider the vector space V = Cperiodic([0, 2π],R)
of continuous, real-valued functions on [0, 2π] that are periodic with pe-
riod 2π, equipped with the inner product

⟨f, g⟩V =
1

2π

∫ 2π

0

f(t)g(t) dt.

The following set behaves much like an ONB for V:

{1} ∪
{√

2 cos(kt) : k ∈ N
}
∪
{√

2 sin(kt) : k ∈ N
}
.
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A bit of calculus verifies that each function has norm 1, and also that every
distinct pair is orthogonal. The reason it is technically not a basis is because
to express some functions in V, we may need to linearly combine infinitely-
many basis vectors. Such representations of periodic functions are called
Fourier series. Here are two examples:

t(t− π)(t− 2π) = 6
√
2
∞∑
k=1

1

k3

√
2 sin(kt);

min{t/π, 2− t/π} =
1

2
− 2
√
2

π2

∞∑
odd k = 1

1

k2

√
2 cos(kt).

(Try plotting finite prefixes of these series.) These representations are ob-
tained using the method described in the theorem below, which converts
between the time domain (values f(t) for every “time” t) and the frequency
domain (coefficients of sines and cosines in its Fourier series).

The following theorem shows how to obtain the coordinate representation
of a vector from an inner product space with respect to a basis of non-zero
orthogonal vectors.

Theorem 5. Let {q1, . . . ,qk} be an orthogonal set of k non-zero vectors from
an inner product space V. If x = c1q1+ · · ·+ ckqk for some scalars c1, . . . , ck,
then

ci =
⟨x,qi⟩V
∥qi∥2V

for all i ∈ {1, . . . , k}.

Proof. By linearity of the inner product and orthogonality of {q1, . . . ,qk},

⟨x,qi⟩V = c1 ⟨q1,qi⟩V + · · ·+ ck ⟨qk,qi⟩V = ci ⟨qi,qi⟩V = ci ∥qi∥2V

for each i ∈ {1, . . . , k}. Solve for each ci proves the claim.

The following corollary specializes to the case of an ONB.

Corollary 1. Let {q1, . . . ,qn} be an ONB for an n-dimensional inner product
space V. For every x ∈ V,

x = ⟨x,q1⟩V q1 + · · ·+ ⟨x,qn⟩V qn

and ∥x∥2V = ⟨x,q1⟩2V + · · ·+ ⟨x,qn⟩2V.
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e1

e2

v

q1q2

Figure 1: The dashed lines suggest how to compute the length of the 2-vector
v two different ways: the gray lines use the ONB (e1, e2), the green lines use
the ONB (q1,q2).

Proof. The first identity is immediate from Theorem 5 and the assumption
that the qi’s are unit vectors. Let ci = ⟨qi,x⟩V for each i ∈ {1, . . . , n}. By
the Pythagorean Theorem (Theorem 3) and absolute homogeneity,

∥x∥2V = ∥c1 q1 + · · ·+ cn qn∥2V = ∥c1 q1∥2V + · · ·+ ∥cn qn∥2V

= c21�����*1

∥q1∥2V + · · ·+ c2n�
����*1

∥qn∥2V.

(The second identity in Corollary 1 is known as Parseval’s identity.)

Example. Let V = R2, and for some θ ∈ [0, 2π), consider the ordered basis
Q = (q1,q2), where q1 = (cos(θ), sin(θ)) and q2 = (− sin(θ), cos(θ))). The
vector v = (3, 4) has squared norm 32 + 42 = 25; it can also be computed as

⟨q1,v⟩2 + ⟨q2,v⟩2 = (3 cos(θ) + 4 sin(θ)))2 + (−3 sin(θ) + 4 cos(θ))2

= (9 + 16)(sin2(θ) + cos2(θ)) = 25.

See Figure 1 for another example.

Corollary 1 shows that, for orthonormal bases, getting the coordinate
representation of a vector is conceptually simple:

[x]Q =

⟨q1,x⟩V
...

⟨qn,x⟩V

 ,

where Q = (q1, . . . ,qn) is the (ordered) ONB for V. The coordinates also
provide another way to compute the squared norm:

∥x∥2V = ∥[x]Q∥2;
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the right-hand side norm is the standard Euclidean norm for n-vectors.
If, in the same context as above, V = Rn and Q = [q1, . . . ,qn] is the n×n

matrix with the basis vectors as columns, then [x]Q = QTx.4 It is clear that
[qi]Q = ei for each i ∈ {1, . . . , n}, and therefore QTQ = I. Moreover, for any
x ∈ Rn, we have QQTx = Q[x]Q = x, so QQT = I as well. This shows that Q
is invertible, and its inverse is Q−1 = QT. A square matrix with orthonormal
columns is called an orthogonal matrix.5

Below is a related corollary of Theorem 5 for general inner product spaces.

Corollary 2. If {q1, . . . ,qk} is an orthogonal set of k non-zero vectors from
an inner product space V, then it is linearly independent.

Proof. Apply Theorem 5 with x = 0 to deduce that any linear combination
of distinct vectors form {q1, . . . ,qk} must be the all-zeros combination.

Corollary 2, with the Subspace Dimension Theorem, implies that every
orthonormal subset of an inner product space of dimension n has cardinality
at most n.

3.2 Gram-Schmidt orthogonalization

The following algorithm takes as input linearly independent vectors from an
inner product space, and returns an orthogonal set of non-zero vectors that
has the same span. To get an ONB for the span, divide each vector in the
output by its norm.

Algorithm 1 Gram-Schmidt orthogonalization
Input: Linearly independent vectors b1, . . . ,bd from inner product space V.
1: for k = 1, . . . , d do

2: Let qk = bk −
k−1∑
j=1

⟨bk,qj⟩V
∥qj∥2V

qj.

3: end for
4: return {q1, . . . ,qd}.

4In the special case where Q is the standard ordered basis, we have Q = I. So the n-vector itself is its
own coordinate representation with respect to the standard basis.

5That was not a typo. An n × n matrix with n orthonormal columns is called an “orthogonal matrix”,
not “orthonormal matrix”. Confusing . . .
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The summation in Line 2 of Algorithm 1 can be recognized as the “part”
of bk that is in the span of {q1, . . . ,qk−1}, so qk is set to the remaining “part”
of bk. Precisely what these “parts” are will be explained in the context of
orthogonal projections later.

Example. Consider the execution of Algorithm 1 on the following vectors:

[
b1 b2 b3

]
=

1 2 2
1 0 2
0 1 1

 .

• Iteration k = 1:
q1 = b1 = (1, 1, 0).

(The sum from j = 1 to 0 is the empty sum.)

• Iteration k = 2:

q2 = b2 −
⟨b2,q1⟩
∥q1∥2

q1 = (2, 0, 1)− 2

2
(1, 1, 0) = (1,−1, 1).

• Iteration k = 3:

q3 = b3 −
⟨b3,q1⟩
∥q1∥2

q1 −
⟨b3,q2⟩
∥q2∥2

q2

= (2, 2, 1)− 4

2
(1, 1, 0)− 1

3
(1,−1, 1)

=

(
−1
3
,
1

3
,
2

3

)
.

Theorem 6. The execution of Algorithm 1 on d linearly independent vectors
B = {b1, . . . ,bd} from an inner product space V returns an orthogonal set
Q = {q1, . . . ,qd} of d non-zero vectors with span(Q) = span(B).

Proof. The proof is by induction on d. The base case d = 0 is trivial since
B = Q = ∅. So, for some d ≥ 1, assume as the inductive hypothesis that
Q− = {q1, . . . ,qd−1} is an orthogonal set of d − 1 non-zero vectors with
span(Q−) = span({b1, . . . ,bd−1}). We need to show (i) qd is non-zero, (ii)
Q− ∪ {qd} is orthogonal, and (iii) span(Q− ∪ {qd}) = span(B).
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To prove (i), we assume for sake of contradiction that qd = 0. Then
Line 2 in Algorithm 1 shows that bd ∈ span(Q−), and we know span(Q−) =
span({b1, . . . ,bd−1}) by the inductive hypothesis. This implies that the set
{b1, . . . ,bd} is linearly dependent, a contradiction. So we conclude qd ̸= 0.

To prove (ii), it suffices to show that ⟨qd,qk⟩V = 0 for each k ∈ {1, . . . , d−
1}. For each such k, using linearity of the inner product and the orthogonality
of Q− from the inductive hypothesis, we have

⟨qd,qk⟩V = ⟨bd,qk⟩V −
d−1∑
j=1

⟨bd,qj⟩V
∥qj∥2V

⟨qj,qk⟩V

= ⟨bd,qk⟩V −
⟨bd,qk⟩V
�
���∥qk∥2V

������⟨qk,qk⟩V = ⟨bd,qk⟩V − ⟨bd,qk⟩V = 0.

Finally, to prove (iii), note that span(Q− ∪ {qd}) ⊆ span(B) follows from
the inductive hypothesis that span(Q−) = span({b1, . . . ,bd−1}) and the fact
qd ∈ span(Q− ∪ B). We have shown, in (i) and (ii), that Q− ∪ {qd} is an
orthogonal set of non-zero vectors, and hence it is linearly independent by
Corollary 2. This implies dim(span(Q− ∪ {qd})) = d = dim(span(B)), so the
Subspace Dimension Theorem implies that span(Q− ∪ {qd}) = span(B).

This completes the inductive step, and hence the claim follows by the
principle of mathematical induction.

Corollary 3. If V is an n-dimensional inner product space, then V has an
orthonormal basis.

Proof. Apply Algorithm 1 to a basis for V (which has n vectors). By Theo-
rem 6, the output {q1, . . . ,qn} is an orthogonal set of non-zero vectors that
also spans V. Let ui = qi/∥qi∥V for each i ∈ {1, . . . , n}, so {u1, . . . ,un} is
an ONB for V.

There is an analogue of the Basis Completion Theorem for ONB’s. If a
set of vectors W from an inner product space V is orthonormal, then it can
be “completed” to become an ONB. This is done as follows:

1. Use the Basis Completion Theorem with W to obtain a basis B for V
that includes W. (Note that B might not be orthogonal.)

2. Apply Gram-Schmidt orthogonalization (Algorithm 1) on this basis B,
starting with the vectors from W.
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Since the vectors in W are already orthogonal, they will be taken as-is as
part of the output. This proves the following theorem.

Theorem 7 (ONB Completion Theorem). Let W be an orthonormal set of k
vectors from an n-dimensional inner product space V. There exists a subset
F of n− k vectors such that W ∪ F is an ONB for V.

3.3 Orthogonal projections

We say that a vector space V is the direct sum of its subspaces W1 and W2,
written V = W1 ⊕W2, if for every x ∈ V, there exists unique choices of
y ∈W1 and z ∈W2 such that x = y + z.

Theorem 8 (Direct Sum Theorem). Let V be a finite dimensional inner
product space, and let W be a subspace of V. Then V = W⊕W⊥.

Proof. Let W = {w1, . . . ,wk} be an ONB for W. By the ONB Completion
Theorem (Theorem 7), there exists a subset V = {v1, . . . ,vℓ} such that W∪V
is an ONB for V (where k + ℓ = dim(V)). For any x ∈ V, by Corollary 1,

x = ⟨x,w1⟩w1 + · · ·+ ⟨x,wk⟩wk︸ ︷︷ ︸
y

+ ⟨x,v1⟩v1 + · · ·+ ⟨x,vℓ⟩vℓ︸ ︷︷ ︸
z

. (2)

It is clear that y ∈ W; moreover, z ∈ W⊥ since every vi is orthogonal to
every vector in W. So the existence of the claimed y and z with x = y + z
is proven. To show uniqueness, suppose x = y′ + z′ for some y′ ∈ W and
z′ ∈ W⊥. Then y − y′ = z′ − z. But y − y′ ∈ W and z′ − z ∈ W⊥, since
W and W⊥ are both subspaces of Rn. Since W ∩W⊥ = {0}, it follows that
y = y′ and z = z′.

For any subspace W of a finite-dimensional inner product space V, Theo-
rem 8 uniquely decomposes every x ∈ V into the sum of a “part” y that lives
in W and an orthogonal “part” z = x−y that lives in W⊥. The proof shows
how to extract these “parts”: obtain an ONB for W, compute y as shown in
(2), and set z = x− y. We say y is the orthogonal projection of x to W.

14
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Example. Let W = span({e1, e2}), a two-dimensional subspace of R3. The
orthogonal projection of x = (1, 2, 3) = e1+2e2+3e3 to W is y = (1, 2, 0) =
e1 + 2e2. Notice that x− y = (0, 0, 3) = 3e3 ∈W⊥, and

∥x∥2 = 12 + 22 + 32 = ∥y∥2 + ∥x− y∥2.

The linear operator P that sends an arbitrary x ∈ V to the unique y =
Px ∈ W such that x − y ∈ W⊥ is called the orthogonal projection opera-
tor (a.k.a. orthogonal projector, orthoprojector) for W. Note that I − P is
the orthoprojector for W⊥, by symmetry. Both P and I − P are projection
operators, in the sense that each is idempotent: P 2 = P and (I−P )2 = I−P .

For V = Rn, we can write P in matrix form: if {u1, . . . ,ur} is an ONB
for W (so r = dim(W)), then

Px = ⟨x,u1⟩u1 + · · ·+ ⟨x,ur⟩ur

=

 ↑ ↑
u1 · · · ur

↓ ↓

⟨x,u1⟩
...

⟨x,ur⟩

 =

 ↑ ↑
u1 · · · ur

↓ ↓


︸ ︷︷ ︸

U

← uT
1 →
...

← uT
r →


︸ ︷︷ ︸

UT

↑x
↓

 .

So P = UUT, where U is the n× r matrix whose columns form an ONB for
the subspace W. Another way to write UUT is as a sum of r outer products:

P = UUT = u1u
T

1 + · · ·+ uru
T

r.

If r = 1, then we can recognize P = u1u
T
1 as a special case of an elementary

projection operator to a line along a hyperplane. In this special case, the line
CS(u1) = {cu1 : c ∈ R} and hyperplane NS(uT

1) = {x ∈ Rn : uT
1x = 0} are

orthogonal complements of each other.
The orthoprojector for a subspace W is not specific to any particular

ONB. So if {u1, . . . ,ur} and {w1, . . . ,wr} are both ONB’s for W, then

u1u
T

1 + · · ·+ uru
T

r = w1w
T

1 + · · ·+wrw
T

r .

We conclude with a very important theorem.

Theorem 9. Let A be an m × n matrix. For every b ∈ CS(A), there exists
a unique y ∈ CS(AT) such that b = Ay.

15
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CS(AT)

NS(A)

x = y + z

y

z

0

Ax

CS(A)

NS(AT)

0
Rn

Rm

y 7→ Ay

x 7→ Ax

z 7→ Az

Ax 7→ T−1
A (Ax)

Figure 2: Schematic diagram of the fundamental subspaces of anm×nmatrix
A and its action on x ∈ Rn. Here, TA : CS(AT) → CS(A) is the bijection
between CS(AT) and CS(A), and T−1A : CS(A)→ CS(AT) is its inverse.

Proof. Fix any b ∈ CS(A), so there exists x ∈ Rn such that b = Ax. Let
y be the orthogonal projection of x to CS(AT), so z = x − y ∈ NS(A). By
linearity, Ay = A(x− z) = Ax− Az = Ax. This proves the existence of the
vector y ∈ CS(AT) with b = Ay.

Now we prove the uniqueness of y. Consider any x ∈ CS(AT) such that
Ax = b. Then A(x − y) = 0, so x − y ∈ NS(A). On the other hand,
x − y ∈ CS(AT). But CS(AT) ∩ NS(A) = {0} since CS(AT) = NS(A)⊥, so it
must be that x = y.

Theorem 9 implies that the linear transformation TA : CS(AT) → CS(A)
given by TA(x) = Ax is bijective, i.e., one-to-one and onto. See Figure 2.

4 Least squares approximation

In the least squares approximation problem, one is given an n × p matrix A
and an n-vector b, and the goal is to find a p-vector x that makes ∥Ax−b∥2
as small as possible.

16
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In statistics, this problem is called least squares linear regression, which
is motivated as follows. The matrix A is a coefficient matrix for a system
of n linear equations in p variables x = (x1, . . . , xd), and the vector b is
the vector of right-hand side values. We would like to find a solution to the
system Ax = b—i.e., a setting of the p variables (x1, . . . , xp) that satisfies all
n equations—but in the case that the system is inconsistent, we would like
to assign values to the p variables to make all of the equations as “close” to
being satisfied as possible. The quality of an assignment is judged by the sum
of the squared residuals for the n equations. If aT

i is the ith row of A and bi
is the ith component of b, then the ith residual of our proposed assignment
is bi − aT

ix. So the sum of squared residuals is

(b1 − aT

1x)
2 + · · ·+ (bn − aT

nx)
2 = ∥b− Ax∥2.

Here is one approach to solving the least squares approximation problem.

1. Compute the orthogonal projection of b to CS(A).

We’ve seen the steps for getting the orthoprojector P for CS(A) in
Section 3.3. The key step involves obtaining an ONB for CS(A) via,
say, Gram-Schmidt orthogonalization (Algorithm 1).

Let b0 = Pb denote the application of P to b, i.e., the orthogonal
projection of b to CS(A).

2. Since b0 ∈ CS(A), we simply need to solve the system of linear equations
Ax = b0, which is guaranteed to have a solution. This can be done
using Elimination.

Why does this work? We need to show that among all vectors in CS(A),
the orthogonal projection of b to CS(A) is the one closest to b. This is the
content of the next theorem.

Theorem 10. Let W be a subspace of Rn, and let b denote any n-vector. If
Pb is the orthogonal projection of b to W, then for any w ∈W,

∥b−w∥2 = ∥Pb−w∥2 + ∥b− Pb∥2 ≥ ∥b− Pb∥2,

where the inequality holds with equality if and only if w = Pb.

17
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Proof. Write b−w = P (b−w)+ (I −P )(b−w). Note that P (b−w) ∈W
and (I − P )(b−w) ∈W⊥, so by the Pythagorean Theorem (Theorem 3),

∥b−w∥2 = ∥P (b−w)∥2 + ∥(I − P )(b−w)∥2. (3)

Since w ∈ W, it follows that Pw = w and (I − P )w = 0. Therefore
P (b − w) = Pb − w and (I − P )(b − w) = b − Pb. Plugging back into
(3), we get ∥b − w∥2 = ∥Pb − w∥2 + ∥b − Pb∥2, which is always at least
∥b − Pb∥2 since the norm is non-negative. The fact that equality holds if
and only if w = Pb follows by the positive definiteness of the norm.

The two-stage procedure we described for solving the least squares ap-
proximation problem is a bit roundabout, especially if the ONB for CS(A) is
not needed for anything else. A more direct approach is motivated as follows.

• We are seeking the unique vector b0 ∈ CS(A) such that b − b0 is
orthogonal to every vector in CS(A). (This is what is means for b0

to be the orthogonal projection of b to CS(A), as we have discussed
above.) Since b0 ∈ CS(A), we know there is a p-vector x such that
b0 = Ax.

• Every vector in CS(A) is a linear combination of columns of A. There-
fore, for Ax to be the orthogonal projection of b to CS(A), it is equiv-
alent to ensure that b − Ax is orthogonal to every column of CS(A).
This condition can be expressed using matrix-vector multiplication:

AT(b− Ax) = 0.

(Recall that the rows of AT are the columns of A.)

• Rearranging terms in the equation above gives the following system of
p linear equations in p unknowns x = (x1, . . . , xp):

(ATA)x = ATb. (4)

As we have argued in the first bullet above, this system is guaranteed
to have a solution. But it is possible that it has more than one solution
(and hence infinitely-many solutions).
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The p linear equations in (4) are collectively called the normal equations.
It turns out the normal equations have a unique solution precisely when
rank(A) = p. This is implied by the following theorem.

Theorem 11. For any matrix A, NS(A) = NS(ATA) and rank(A) = rank(ATA).

Proof. We first show NS(A) ⊆ NS(ATA). If Ax = 0, then

(ATA)x = AT(Ax) = AT0 = 0.

Now we show NS(ATA) ⊆ NS(A). If (ATA)x = 0, then

xT(ATA)x = xT0 = 0.

But the left-hand side above can also be written as (Ax)T(Ax) = ∥Ax∥2,
which is zero only if Ax = 0 by positive definiteness of the norm.

We conclude that NS(A) = NS(ATA). In particular, dim(NS(A)) =
dim(NS(ATA)). By the Dimension Theorem, rank(A) = rank(ATA).

If the p×pmatrix ATA has rank p, then it is invertible (by the Invertibility
Theorem), and in this case, the unique solution to (4) is given by the algebraic
expression

x = (ATA)−1ATb,

and an expression for the orthogonal projection of b is

b0 = Ax = A(ATA)−1ATb.

In this case, the orthoprojector for CS(A) is given by

P = A(ATA)−1AT.

But even if (4) has infinitely-many solutions, all of them yield the same
(unique) vector Ax = Pb ∈ CS(A). So every solution x to (4) is a minimizer
of the least squares approximation objective ∥Ax− b∥2.
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A Proofs of the Cauchy-Schwarz Inequality
and Triangle Inequality

There are many proofs of the Cauchy-Schwarz Inequality. In the case of
2-vectors, it follows immediately from the fact that the cosine function has
range [−1, 1].

Proof of Theorem 2. Suppose either of u or v is the zero vector. Then the
inequality is true since ⟨u,v⟩ = 0. So we may assume that neither u nor v is
the zero vector. Let a and b denote positive real numbers such that ab = 1.
By the non-negativity of the norm and bilinearity of the inner product,

0 ≤ ∥au− bv∥2 = ⟨au− bv, au− bv⟩ = a2 ⟨u,u⟩ − 2 ⟨u,v⟩+ b2 ⟨v,v⟩,

where the last step uses ab = 1. Rearranging terms and dividing by 2 gives

⟨u,v⟩ ≤ a2

2
⟨u,u⟩+ b2

2
⟨v,v⟩ =

a2

2
∥u∥2 + b2

2
∥v∥2.

Since this inequality is true for any positive numbers a and b with ab = 1,
we can choose a =

√
∥v∥/∥u∥ and b =

√
∥u∥/∥v∥, so the right-hand side

becomes ∥u∥∥v∥. This proves the claimed inequality.
Now suppose ⟨u,v⟩ = ∥u∥∥v∥ and neither u nor v is the zero vector. Then

the first displayed inequality above (with the prescribed choices of a > 0 and
b > 0) must hold with equality:

0 = ∥au− bv∥2.

Since only the zero vector has norm equal to 0, we conclude that au = bv.
So u and v are scalar multiples of each other.

The Triangle Inequality (Theorem 1) is a consequence of the Cauchy-
Schwarz Inequality (Theorem 2).

Proof of Theorem 1. Bilinearity of the inner product and Theorem 2 imply

∥u+ v∥2 = ⟨u,u⟩+ 2 ⟨u,v⟩+ ⟨v,v⟩
≤ ∥u∥2 + 2 ∥u∥ ∥v∥+ ∥v∥2.

The final right-hand side above is (∥u∥+ ∥v∥)2.
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