Fundamental subspaces

COMS 3251 Fall 2022 (Daniel Hsu)

1 Column space

Recall that the <u>column space</u> of an $m \times n$ matrix A, written $\mathsf{CS}(A)$, is the span of the columns of A. Moreover, we have seen that $\mathsf{CS}(A)$ is a subspace of \mathbb{R}^m , and that $\mathsf{CS}(A) = \mathsf{CS}(C)$, where C comes from the CR factorization of A. Since the columns of C are linearly independent, they form a basis for $\mathsf{CS}(A)$, and hence the dimension of $\mathsf{CS}(A)$ is equal to the number of columns of C, which is rank(A).

2 Nullspace

2.1 Definition and basic properties

The <u>nullspace</u> of an $m \times n$ matrix A, written $\mathsf{NS}(A)^1$, is the set of vectors $\mathbf{x} \in \mathbb{R}^n$ such that $A\mathbf{x} = \mathbf{0}$, i.e., the solution set for the homogeneous system of linear equations with coefficient matrix A. It is also the set of vectors that are "nullified" by the linear transformation $T_A \colon \mathbb{R}^n \to \mathbb{R}^m$ given by $T_A(\mathbf{v}) = A\mathbf{v}$.

Proposition 1. The nullspace of an $m \times n$ matrix A is a subspace of \mathbb{R}^n .

Proof. It is clear from the definition that $NS(A) \subseteq \mathbb{R}^n$. So it suffices to verify that NS(A) satisfies SS1, SS2, and SS3. First, suppose $\mathbf{u}, \mathbf{v} \in NS(A)$. Then for any $c \in \mathbb{R}$, linearity of matrix-vector multiplication guarantees

$$A(c\mathbf{u} + \mathbf{v}) = c(A\mathbf{u}) + (A\mathbf{v}) = c\mathbf{0} + \mathbf{0} = \mathbf{0},$$

so $c \mathbf{u} + \mathbf{v} \in \mathsf{NS}(A)$ as well. This verifies SS1 and SS2. Second, $\mathbf{0} \in \mathsf{NS}(A)$ since $A\mathbf{0} = \mathbf{0}$. This verifies SS3.

The following proposition follows immediately from definitions.

Proposition 2. The columns of an $m \times n$ matrix A are linearly independent if and only if $NS(A) = \{0\}$.

¹Some texts refer to the nullspace of A by N(A).

Proposition 2 says that $A\mathbf{x} = \mathbf{0}$ has exactly one solution—namely, $\mathbf{x} = \mathbf{0}$ —if and only if the columns of A are linearly independent.

So if the columns of A are not linearly independent, then there is a "non-trivial" (i.e., not just $\{0\}$) subspace of solutions to $A\mathbf{x} = \mathbf{0}$. To truly "solve" $A\mathbf{x} = \mathbf{0}$, we need to characterize the entire subspace of solutions, and we can do so by determining a basis for the subspace. So our goal will be to find a basis for $\mathsf{NS}(A)$.

2.2 Basis for the nullspace

The CR factorization of A gives one way to determine a basis for NS(A). Recall that if $d = \operatorname{rank}(A)$, then in the CR factorization A = CR, the matrix $C = [\mathbf{c}_1, \ldots, \mathbf{c}_d]$ contains a maximal subset of linearly independent columns of A, and $R = [\mathbf{r}_1, \ldots, \mathbf{r}_n]$ is a matrix in RREF, with no all-zeros rows, that reveals how to reconstruct every column of $A = [\mathbf{a}_1, \ldots, \mathbf{a}_n]$ using linear combinations of those in C. Let $PV(R) = \{i_1, \ldots, i_d\} \subseteq \{1, \ldots, n\}$ be the indices of columns that contain a pivot in R (indices of pivot variables), with $i_1 < \cdots < i_d$, and let $FV(R) = \{1, \ldots, n\} \setminus PV(R)$ (indices of free variables). Note that if $k \in FV(R)$ and $\mathbf{r}_k = (r_{1,k}, \ldots, r_{d,k})$, then

$$\mathbf{a}_k = C\mathbf{r}_k = \sum_{j=1}^d r_{j,k} \mathbf{a}_{i_j}.$$

We define a special solution \mathbf{s}_k to $A\mathbf{x} = \mathbf{0}$ for each $k \in \mathsf{FV}(R)$ as follows.

- 1. The kth component of \mathbf{s}_k is equal to 1.
- 2. For each $j \in \{1, \ldots, d\}$, the i_j th component of \mathbf{s}_k is equal to $-r_{j,k}$.
- 3. All other components of \mathbf{s}_k are equal to 0.

Therefore,

$$A\mathbf{s}_k = \mathbf{a}_k - \sum_{j=1}^d r_{j,k} \mathbf{a}_{i_j} = \mathbf{0},$$

so \mathbf{s}_k indeed solves $A\mathbf{x} = \mathbf{0}$, i.e., $\mathbf{s}_k \in \mathsf{NS}(A)$.

Example. Consider the matrix

$$A = \begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \mathbf{a}_3 & \mathbf{a}_4 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 4 & 4 \\ 3 & 6 & 5 & 4 \end{bmatrix}$$

Its CR factorization A = CR is given by

$$C = \begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_3 \end{bmatrix} = \begin{bmatrix} 1 & 3\\ 2 & 4\\ 3 & 5 \end{bmatrix}, \qquad R = \begin{bmatrix} 1 & 2 & 0 & -2\\ 0 & 0 & 1 & 2 \end{bmatrix}$$

We have $PV(R) = \{1,3\}$ and $FV(R) = \{2,4\}$. The special solutions to $A\mathbf{x} = \mathbf{0}$ are

$$\mathbf{s}_2 = \begin{bmatrix} -2\\1\\0\\0 \end{bmatrix}, \quad \mathbf{s}_4 = \begin{bmatrix} 2\\0\\-2\\1 \end{bmatrix}.$$

Proposition 3. For any matrix A, the set of special solutions to $A\mathbf{x} = \mathbf{0}$ is a basis for NS(A).

Proof. Let $S = {\mathbf{s}_k : k \in \mathsf{FV}(R)}$ denote the set of special solutions to $A\mathbf{x} = \mathbf{0}$, where R is the matrix in RREF obtained from the CR factorization of A. First observe that S is linearly independent, since for each $\ell \in \mathsf{FV}(R)$, the ℓ th component of \mathbf{s}_k is non-zero if and only if $\ell = k$,

So it remains to show that span(\mathcal{S}) = NS(A). Consider any $\mathbf{x} = (x_1, \ldots, x_n) \in$ NS(A), and now define $\mathbf{y} = (y_1, \ldots, y_n)$ by

$$\mathbf{y} = \mathbf{x} - \sum_{k \in \mathsf{FV}(R)} x_k \, \mathbf{s}_k.$$

Observe that, by linearity of matrix-vector multiplication and the facts that $\mathbf{x} \in \mathsf{NS}(A)$ and $\mathbf{s}_k \in \mathsf{NS}(A)$ for each $k \in \mathsf{FV}(R)$,

$$A\mathbf{y} = A\mathbf{x} - \sum_{k \in \mathsf{FV}(R)} x_k (A\mathbf{s}_k)$$
$$= A\mathbf{x} - \sum_{k \in \mathsf{FV}(R)} x_k \mathbf{0}$$
$$= A\mathbf{x}$$
$$= \mathbf{0}.$$

Since the kth component of \mathbf{s}_k is 1 for each $k \in \mathsf{FV}(R)$, it follows that $y_k = 0$ for each $k \in \mathsf{FV}(R)$. So $A\mathbf{y}$ is a linear combination of $\{\mathbf{a}_k : k \in \mathsf{PV}(R)\}$, which is linearly independent. Since we showed $A\mathbf{y} = \mathbf{0}$, it must be that $\mathbf{y} = \mathbf{0}$, so

$$\mathbf{0} = \mathbf{x} - \sum_{k \in \mathsf{FV}(R)} x_k \, \mathbf{s}_k.$$

This shows $\mathbf{x} \in \text{span}(\mathcal{S})$; hence $\text{span}(\mathcal{S}) = \mathsf{NS}(A)$.

The basis for NS(A) has cardinality n - d: one vector per free variable. So NS(A) has dimension equal to $n - d = n - \operatorname{rank}(A)$. We have thus shown the following theorem.

Theorem 1 (Dimension Theorem). For any matrix A with n columns,

$$\operatorname{rank}(A) + \dim(\mathsf{NS}(A)) = n.$$

The dimension of the nullspace of A is called the <u>nullity</u> of A, so Theorem 1 is also called the "Rank-Nullity Theorem".

2.3 Solving general systems of linear equations

Elimination is able to find a solution to an arbitrary system of linear equations $A\mathbf{x} = \mathbf{b}$ (assuming one exists, which we do for the remainder of this section). If the columns of A are linearly independent, then that solution is unique. However, if the columns of A are not linearly independent, then there are infinitely-many solutions. This is because if $\mathbf{x}_{particular}$ is a solution, then so is $\mathbf{x}_{particular} + \mathbf{z}$ for every $\mathbf{z} \in \mathsf{NS}(A)$:

$$A(\mathbf{x}_{\mathsf{particular}} + \mathbf{z}) = A\mathbf{x}_{\mathsf{particular}} + A\mathbf{z} = \mathbf{b} + \mathbf{0} = \mathbf{b}$$

Given any "particular solution" $\mathbf{x}_{\text{particular}}$ to $A\mathbf{x} = \mathbf{b}$, it turns out (as we'll see in Proposition 4) that the entire solution set is

$$\{\mathbf{x}_{\mathsf{particular}}\} + \mathsf{NS}(A).$$

Above, we are using <u>sumset</u> notation $S + T = {s + t : s \in S, t \in T}$. The only thing unsatisfying about this description is that writing "NS(A)" is not very explicit about what vectors are in NS(A).

But if $\mathbf{z} \in \mathsf{NS}(A)$, then it is a linear combination of the special solutions $\{\mathbf{s}_k : k \in \mathsf{FV}(R)\}$, as per Proposition 3. So, to give an explicit description of the entire solution set for $A\mathbf{x} = \mathbf{0}$, we first find any "particular solution" $\mathbf{x}_{\mathsf{particular}}$ to $A\mathbf{x} = \mathbf{b}$, then we find the set of special solutions $\{\mathbf{s}_k : k \in \mathsf{FV}(R)\}$, and finally we declare that the solution set is

$$\{\mathbf{x}_{\mathsf{particular}}\} + \operatorname{span}(\{\mathbf{s}_k : k \in \mathsf{FV}(R)\}),\$$

or equivalently,

$$\left\{ \mathbf{x}_{\mathsf{particular}} + \sum_{k \in \mathsf{FV}(R)} c_k \, \mathbf{s}_k : c_k \in \mathbb{R} \text{ for all } k \in \mathsf{FV}(R) \right\}.$$

Proposition 4. Assume the system of linear equations $A\mathbf{x} = \mathbf{b}$ has at least one solution, and let $\mathbf{x}_{particular}$ be any such solution. Then the solution set for $A\mathbf{x} = \mathbf{b}$ is

 $\{\mathbf{x}_{\mathsf{particular}}\} + \operatorname{span}(\mathbb{S}),$

where $S = {\mathbf{s}_k : k \in FV(R)}$ is the set of special solutions to $A\mathbf{x} = \mathbf{0}$.

Proof. Suppose \mathbf{x} satisfies $A\mathbf{x} = \mathbf{b}$. Then

$$A(\mathbf{x} - \mathbf{x}_{\mathsf{particular}}) = A\mathbf{x} - A\mathbf{x}_{\mathsf{particular}} = \mathbf{b} - \mathbf{b} = \mathbf{0},$$

which implies $\mathbf{x} - \mathbf{x}_{\mathsf{particular}} \in \mathsf{NS}(A)$. Since $\operatorname{span}(S) = \mathsf{NS}(A)$ by Proposition 3, it follows that $\mathbf{x} = \mathbf{x}_{\mathsf{particular}} + (\mathbf{x} - \mathbf{x}_{\mathsf{particular}}) \in {\mathbf{x}_{\mathsf{particular}}} + \operatorname{span}(S)$ as claimed.

Example. Consider the system of linear equations $A\mathbf{x} = \mathbf{b}$ where

$$A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 4 & 4 \\ 3 & 6 & 5 & 4 \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} 3 \\ 2 \\ 1 \end{bmatrix}.$$

Using Elimination, we transform the augmented matrix to one in which the coefficient matrix is in RREF:

$$\begin{bmatrix} 1 & 2 & 3 & 4 & 3 \\ 2 & 4 & 4 & 4 & 2 \\ 3 & 6 & 5 & 4 & 1 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 2 & 0 & -2 & | & -3 \\ 0 & 0 & 1 & 2 & | & 2 \\ 0 & 0 & 0 & 0 & | & 0 \end{bmatrix}$$

To obtain a solution, we can set the values of the free variables to 0, and assign the values of the pivot variables accordingly:

$$\mathbf{x}_{\mathsf{particular}} = \begin{bmatrix} -3\\0\\2\\0 \end{bmatrix}.$$

The special solutions to $A\mathbf{x} = \mathbf{0}$ are

$$\mathbf{s}_2 = \begin{bmatrix} -2\\1\\0\\0 \end{bmatrix}, \quad \mathbf{s}_4 = \begin{bmatrix} 2\\0\\-2\\1 \end{bmatrix}$$

So the solution set for $A\mathbf{x} = \mathbf{b}$ is

$$\left\{ \begin{bmatrix} -3\\0\\2\\0 \end{bmatrix} + c_2 \begin{bmatrix} -2\\1\\0\\0 \end{bmatrix} + c_4 \begin{bmatrix} 2\\0\\-2\\1 \end{bmatrix} : (c_2, c_4) \in \mathbb{R}^2 \right\}.$$

3 Row space

View a $m \times n$ matrix A as a stack of m row vectors. These row vectors are just *n*-vectors that are lying down horizontally. Suppose these rows are turned back into columns, and we arrange these columns side-by-side in the same order as they were in as rows in A. The result is an $n \times m$ matrix, called the *transpose* of A, written A^{T} .

The <u>row space</u> of A is the span of the columns of A^{T} , written $\mathsf{CS}(A^{\mathsf{T}})$, and it is a subspace of $\mathbb{R}^{n,2}$ Our analysis of the CR factorization shows that maximum number of linearly independent rows is the same as the maximum number of linearly independent columns. So the dimension of $\mathsf{CS}(A^{\mathsf{T}})$ is the same as the dimension of $\mathsf{CS}(A)$, which is rank(A). A basis for $\mathsf{CS}(A^{\mathsf{T}})$ is provided by the rows of R from the CR factorization of A (after turning these rows back into columns).

²It might make more sense to define the row space of A to be the set of all linear combinations of the rows of A. But that set is not a subspace of \mathbb{R}^n , since *n*-vectors are column vectors, not row vectors.

Aside: transpose of a composition. A linear combination of the rows of A can be expressed as $\mathbf{y}^{\mathsf{T}}A$ for some *m*-vector \mathbf{y} . If such a row vector is turned into a column (say, so that it belongs to $\mathsf{CS}(A^{\mathsf{T}})$), then we obtain a linear combination of the columns of A^{T} , written as $A^{\mathsf{T}}\mathbf{y}$.

In general, for matrices Y and A such that the multiplication $Y^{\mathsf{T}}A$ is valid, then converting the rows of $Y^{\mathsf{T}}A$ into columns is obtained by $(Y^{\mathsf{T}}A)^{\mathsf{T}} = A^{\mathsf{T}}Y$.

4 Left nullspace

The <u>left nullspace</u> of an $m \times n$ matrix A, written $NS(A^{\mathsf{T}})$, is the nullspace of A^{T} . We can view $NS(A^{\mathsf{T}})$ as a subspace of \mathbb{R}^m . By interchanging the roles of rows and columns, we find that $\dim(NS(A^{\mathsf{T}})) = m - \operatorname{rank}(A)$, i.e.,

$$\operatorname{rank}(A) + \dim(\mathsf{NS}(A^{\mathsf{T}})) = m.$$

5 Fundamental subspaces

We defined four *fundamental subspaces* associated with an $m \times n$ matrix A:

1. column space $\mathsf{CS}(A)$, a subspace of \mathbb{R}^m of dimension rank(A);

2. row space $\mathsf{CS}(A^{\mathsf{T}})$, a subspace of \mathbb{R}^n of dimension rank(A);

3. nullspace NS(A), a subspace of \mathbb{R}^n of dimension $n - \operatorname{rank}(A)$;

4. left nullspace $NS(A^{T})$, a subspace of \mathbb{R}^{m} of dimension $m - \operatorname{rank}(A)$.

We can define analogous fundamental subspaces for general linear transformations $T: \mathbb{V} \to \mathbb{W}$ between general vector spaces \mathbb{V} and \mathbb{W} . Here, we just consider two of them:

• The *image* of T (a.k.a. *range*), written im(T), is defined to be

$$\operatorname{im}(T) = \{T(\mathbf{v}) : \mathbf{v} \in \mathbb{V}\},\$$

and it is a subspace of \mathbb{W} .

• The kernel of T, written ker(T), is defined to be

$$\ker(T) = \{ \mathbf{v} \in \mathbb{V} : T(\mathbf{v}) = \mathbf{0} \},\$$

and it is a subspace of \mathbb{V} .

We have the following generalization of the Dimension Theorem.

Theorem 2 (Dimension Theorem, General Version). Let \mathbb{V} be a finite dimensional vector space, and \mathbb{W} be another vector space. If $T: \mathbb{V} \to \mathbb{W}$ is linear, then

 $\dim(\operatorname{im}(T)) + \dim(\operatorname{ker}(T)) = \dim(\mathbb{V}).$

A General proof of the Dimension Theorem

Proof of Theorem 2. Let $n = \dim(\mathbb{V})$, and assume it is finite. Let $T: \mathbb{V} \to \mathbb{W}$ be linear. Let $\{\mathbf{v}_1, \ldots, \mathbf{v}_k\}$ be a basis for $\ker(T)$, where $k = \dim(\ker(T))$. By the Basis Completion Theorem, there are vectors $\mathbf{v}_{k+1}, \ldots, \mathbf{v}_n \in \mathbb{V}$ such that $\{\mathbf{v}_1, \ldots, \mathbf{v}_n\}$ is a basis for \mathbb{V} .

We claim that $S = \{T(\mathbf{v}_{k+1}), \dots, T(\mathbf{v}_n)\}$ is a basis for $\operatorname{im}(T)$ with |S| = n - k. To do this, we need to show:

- 1. $\operatorname{span}(\mathfrak{S}) = \operatorname{im}(T),$
- 2. $T(\mathbf{v}_i) \neq T(\mathbf{v}_j)$ for all $k+1 \leq i < j \leq n$, and
- 3. S is linearly independent.

We first show that $\operatorname{span}(\mathfrak{S}) = \operatorname{im}(T)$. We know, by definition and linearity, that $\operatorname{im}(T) = \operatorname{span}(\{T(\mathbf{v}_1), \ldots, T(\mathbf{v}_n)\})$ since $\{\mathbf{v}_1, \ldots, \mathbf{v}_n\}$ is a basis for \mathbb{V} . However, $T(\mathbf{v}_1) = \cdots = T(\mathbf{v}_k) = \mathbf{0}$ since $\mathbf{v}_1, \ldots, \mathbf{v}_k \in \operatorname{ker}(T)$. So, we have This implies that

$$im(T) = span(\{T(\mathbf{v}_1), \dots, T(\mathbf{v}_n)\})$$

= span({0, T(\mathbf{v}_{k+1}), \dots, T(\mathbf{v}_n)\})
= span(\$),

where the final step follows by the Removal Theorem.

Next, we show that $T(\mathbf{v}_i) \neq T(\mathbf{v}_j)$ for all $k + 1 \leq i < j \leq n$. Suppose for sake of contradiction that $T(\mathbf{v}_i) = T(\mathbf{v}_j)$ for some $k + 1 \leq i < j \leq n$. Then we have $T(\mathbf{v}_i) - T(\mathbf{v}_j) = T(\mathbf{v}_i - \mathbf{v}_j) = \mathbf{0}$, i.e., $\mathbf{v}_i - \mathbf{v}_j \in \text{ker}(T)$. Since $\{\mathbf{v}_1, \ldots, \mathbf{v}_k\}$ is a basis for ker(T), there are scalars c_1, \ldots, c_k such that

$$c_1 \mathbf{v}_1 + \cdots + c_k \mathbf{v}_k = \mathbf{v}_i - \mathbf{v}_j.$$

In other words, the following linear combination of $\{\mathbf{v}_1, \ldots, \mathbf{v}_n\}$ produces **0**:

$$c_1 \mathbf{v}_1 + \cdots + c_k \mathbf{v}_k + (-1)\mathbf{v}_i + \mathbf{v}_j = \mathbf{0}.$$

This is impossible because $\{\mathbf{v}_1, \ldots, \mathbf{v}_n\}$ is linearly independent. So we conclude that $T(\mathbf{v}_i) \neq T(\mathbf{v}_j)$ for all $k + 1 \leq i < j \leq n$.

Finally, we show that S is linearly independent. Suppose

$$b_{k+1} T(\mathbf{v}_{k+1}) + \dots + b_n T(\mathbf{v}_n) = \mathbf{0}$$

for some scalars b_{k+1}, \ldots, b_n . We want to show that $b_{k+1} = \cdots = b_n = 0$. By linearity of T, we have

$$T(b_{k+1}\mathbf{v}_{k+1}+\cdots+b_n\mathbf{v}_n) = \mathbf{0},$$

so $b_{k+1}\mathbf{v}_{k+1} + \cdots + b_n\mathbf{v}_n \in \ker(T)$. Since $\{\mathbf{v}_1, \ldots, \mathbf{v}_k\}$ is a basis for $\ker(T)$, there are scalars c_1, \ldots, c_k such that

$$c_1 \mathbf{v}_1 + \dots + c_k \mathbf{v}_k = b_{k+1} \mathbf{v}_{k+1} + \dots + b_n \mathbf{v}_n.$$

In other words, the following linear combination of $\{\mathbf{v}_1, \ldots, \mathbf{v}_n\}$ produces **0**:

$$c_1 \mathbf{v}_1 + \dots + c_k \mathbf{v}_k + (-b_{k+1}) \mathbf{v}_{k+1} + \dots + (-b_n) \mathbf{v}_n = \mathbf{0}.$$

But $\{\mathbf{v}_1, \ldots, \mathbf{v}_n\}$ is linearly independent, so it must be that $b_{k+1} = \cdots = b_n = 0$, as claimed. This proves that S is linearly independent. \Box