
Fundamental subspaces
COMS 3251 Fall 2022 (Daniel Hsu)

1 Column space

Recall that the column space of an m × n matrix A, written CS(A), is the
span of the columns of A. Moreover, we have seen that CS(A) is a subspace
of Rm, and that CS(A) = CS(C), where C comes from the CR factorization
of A. Since the columns of C are linearly independent, they form a basis for
CS(A), and hence the dimension of CS(A) is equal to the number of columns
of C, which is rank(A).

2 Nullspace

2.1 Definition and basic properties

The nullspace of an m × n matrix A, written NS(A)1 , is the set of vectors
x ∈ Rn such that Ax = 0, i.e., the solution set for the homogeneous system of
linear equations with coefficient matrix A. It is also the set of vectors that are
“nullified” by the linear transformation TA : Rn → Rm given by TA(v) = Av.

Proposition 1. The nullspace of an m× n matrix A is a subspace of Rn.

Proof. It is clear from the definition that NS(A) ⊆ Rn. So it suffices to verify
that NS(A) satisfies SS1, SS2, and SS3. First, suppose u,v ∈ NS(A). Then
for any c ∈ R, linearity of matrix-vector multiplication guarantees

A(cu+ v) = c (Au) + (Av) = c0+ 0 = 0,

so cu + v ∈ NS(A) as well. This verifies SS1 and SS2. Second, 0 ∈ NS(A)
since A0 = 0. This verifies SS3.

The following proposition follows immediately from definitions.

Proposition 2. The columns of an m×n matrix A are linearly independent
if and only if NS(A) = {0}.

1Some texts refer to the nullspace of A by N(A).

1



Fundamental subspaces COMS 3251 Fall 2022 (Daniel Hsu)

Proposition 2 says that Ax = 0 has exactly one solution—namely, x =
0—if and only if the columns of A are linearly independent.

So if the columns of A are not linearly independent, then there is a “non-
trivial” (i.e., not just {0}) subspace of solutions to Ax = 0. To truly “solve”
Ax = 0, we need to characterize the entire subspace of solutions, and we can
do so by determining a basis for the subspace. So our goal will be to find a
basis for NS(A).

2.2 Basis for the nullspace

The CR factorization of A gives one way to determine a basis for NS(A).
Recall that if d = rank(A), then in the CR factorization A = CR, the matrix
C = [c1, . . . , cd] contains a maximal subset of linearly independent columns
of A, and R = [r1, . . . , rn] is a matrix in RREF, with no all-zeros rows,
that reveals how to reconstruct every column of A = [a1, . . . , an] using linear
combinations of those in C. Let PV(R) = {i1, . . . , id} ⊆ {1, . . . , n} be the
indices of columns that contain a pivot in R (indices of pivot variables), with
i1 < · · · < id, and let FV(R) = {1, . . . , n} \ PV(R) (indices of free variables).
Note that if k ∈ FV(R) and rk = (r1,k, . . . , rd,k), then

ak = Crk =
d∑

j=1

rj,kaij .

We define a special solution sk to Ax = 0 for each k ∈ FV(R) as follows.

1. The kth component of sk is equal to 1.

2. For each j ∈ {1, . . . , d}, the ijth component of sk is equal to −rj,k.

3. All other components of sk are equal to 0.

Therefore,

Ask = ak −
d∑

j=1

rj,kaij = 0,

so sk indeed solves Ax = 0, i.e., sk ∈ NS(A).
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Example. Consider the matrix

A =
[
a1 a2 a3 a4

]
=

1 2 3 4
2 4 4 4
3 6 5 4

 .

Its CR factorization A = CR is given by

C =
[
a1 a3

]
=

1 3
2 4
3 5

 , R =

[
1 2 0 −2
0 0 1 2

]
.

We have PV(R) = {1, 3} and FV(R) = {2, 4}. The special solutions to
Ax = 0 are

s2 =


−2
1
0
0

 , s4 =


2
0

−2
1

 .

Proposition 3. For any matrix A, the set of special solutions to Ax = 0 is
a basis for NS(A).

Proof. Let S = {sk : k ∈ FV(R)} denote the set of special solutions to
Ax = 0, where R is the matrix in RREF obtained from the CR factorization
of A. First observe that S is linearly independent, since for each ℓ ∈ FV(R),
the ℓth component of sk is non-zero if and only if ℓ = k,

So it remains to show that span(S) = NS(A). Consider any x = (x1, . . . , xn) ∈
NS(A), and now define y = (y1, . . . , yn) by

y = x−
∑

k∈FV(R)

xk sk.

Observe that, by linearity of matrix-vector multiplication and the facts that
x ∈ NS(A) and sk ∈ NS(A) for each k ∈ FV(R),

Ay = Ax−
∑

k∈FV(R)

xk (Ask)

= Ax−
∑

k∈FV(R)

xk 0

= Ax

= 0.
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Since the kth component of sk is 1 for each k ∈ FV(R), it follows that yk = 0
for each k ∈ FV(R). So Ay is a linear combination of {ak : k ∈ PV(R)},
which is linearly independent. Since we showed Ay = 0, it must be that
y = 0, so

0 = x−
∑

k∈FV(R)

xk sk.

This shows x ∈ span(S); hence span(S) = NS(A).

The basis for NS(A) has cardinality n − d: one vector per free variable.
So NS(A) has dimension equal to n− d = n− rank(A). We have thus shown
the following theorem.

Theorem 1 (Dimension Theorem). For any matrix A with n columns,

rank(A) + dim(NS(A)) = n.

The dimension of the nullspace of A is called the nullity of A, so Theorem 1
is also called the “Rank-Nullity Theorem”.

2.3 Solving general systems of linear equations

Elimination is able to find a solution to an arbitrary system of linear equations
Ax = b (assuming one exists, which we do for the remainder of this section).
If the columns of A are linearly independent, then that solution is unique.
However, if the columns of A are not linearly independent, then there are
infinitely-many solutions. This is because if xparticular is a solution, then so is
xparticular + z for every z ∈ NS(A):

A(xparticular + z) = Axparticular + Az = b+ 0 = b.

Given any “particular solution” xparticular to Ax = b, it turns out (as we’ll see
in Proposition 4) that the entire solution set is

{xparticular}+ NS(A).

Above, we are using sumset notation S+T = {s+ t : s ∈ S, t ∈ T}. The only
thing unsatisfying about this description is that writing “NS(A)” is not very
explicit about what vectors are in NS(A).
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But if z ∈ NS(A), then it is a linear combination of the special solutions
{sk : k ∈ FV(R)}, as per Proposition 3. So, to give an explicit description
of the entire solution set for Ax = 0, we first find any “particular solution”
xparticular to Ax = b, then we find the set of special solutions {sk : k ∈ FV(R)},
and finally we declare that the solution set is

{xparticular}+ span({sk : k ∈ FV(R)}),

or equivalently,xparticular +
∑

k∈FV(R)

ck sk : ck ∈ R for all k ∈ FV(R)

.

Proposition 4. Assume the system of linear equations Ax = b has at least
one solution, and let xparticular be any such solution. Then the solution set for
Ax = b is

{xparticular}+ span(S),

where S = {sk : k ∈ FV(R)} is the set of special solutions to Ax = 0.

Proof. Suppose x satisfies Ax = b. Then

A(x− xparticular) = Ax− Axparticular = b− b = 0,

which implies x−xparticular ∈ NS(A). Since span(S) = NS(A) by Proposition 3,
it follows that x = xparticular+(x−xparticular) ∈ {xparticular}+span(S) as claimed.

Example. Consider the system of linear equations Ax = b where

A =

1 2 3 4
2 4 4 4
3 6 5 4

 , b =

32
1

 .

Using Elimination, we transform the augmented matrix to one in which the
coefficient matrix is in RREF: 1 2 3 4 3

2 4 4 4 2
3 6 5 4 1

 −→

 1 2 0 −2 −3
0 0 1 2 2
0 0 0 0 0

 .
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To obtain a solution, we can set the values of the free variables to 0, and
assign the values of the pivot variables accordingly:

xparticular =


−3
0
2
0

 .

The special solutions to Ax = 0 are

s2 =


−2
1
0
0

 , s4 =


2
0

−2
1

 .

So the solution set for Ax = b is

−3
0
2
0

+ c2


−2
1
0
0

+ c4


2
0

−2
1

 : (c2, c4) ∈ R2

.

3 Row space

View a m × n matrix A as a stack of m row vectors. These row vectors
are just n-vectors that are lying down horizontally. Suppose these rows are
turned back into columns, and we arrange these columns side-by-side in the
same order as they were in as rows in A. The result is an n × m matrix,
called the transpose of A, written AT.

The row space of A is the span of the columns of AT, written CS(AT),
and it is a subspace of Rn.2 Our analysis of the CR factorization shows that
maximum number of linearly independent rows is the same as the maximum
number of linearly independent columns. So the dimension of CS(AT) is the
same as the dimension of CS(A), which is rank(A). A basis for CS(AT) is
provided by the rows of R from the CR factorization of A (after turning
these rows back into columns).

2It might make more sense to define the row space of A to be the set of all linear combinations of the
rows of A. But that set is not a subspace of Rn, since n-vectors are column vectors, not row vectors.

6



Fundamental subspaces COMS 3251 Fall 2022 (Daniel Hsu)

Aside: transpose of a composition. A linear combination of the rows
of A can be expressed as yTA for some m-vector y. If such a row vector is
turned into a column (say, so that it belongs to CS(AT)), then we obtain a
linear combination of the columns of AT, written as ATy.

In general, for matrices Y and A such that the multiplication Y TA is valid,
then converting the rows of Y TA into columns is obtained by (Y TA)T = ATY .

4 Left nullspace

The left nullspace of an m× n matrix A, written NS(AT), is the nullspace of
AT. We can view NS(AT) as a subspace of Rm. By interchanging the roles of
rows and columns, we find that dim(NS(AT)) = m− rank(A), i.e.,

rank(A) + dim(NS(AT)) = m.

5 Fundamental subspaces

We defined four fundamental subspaces associated with an m× n matrix A:

1. column space CS(A), a subspace of Rm of dimension rank(A);

2. row space CS(AT), a subspace of Rn of dimension rank(A);

3. nullspace NS(A), a subspace of Rn of dimension n− rank(A);

4. left nullspace NS(AT), a subspace of Rm of dimension m− rank(A).

We can define analogous fundamental subspaces for general linear trans-
formations T : V → W between general vector spaces V and W. Here, we
just consider two of them:

• The image of T (a.k.a. range), written im(T ), is defined to be

im(T ) = {T (v) : v ∈ V},

and it is a subspace of W.
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• The kernel of T , written ker(T ), is defined to be

ker(T ) = {v ∈ V : T (v) = 0},

and it is a subspace of V.

We have the following generalization of the Dimension Theorem.

Theorem 2 (Dimension Theorem, General Version). Let V be a finite di-
mensional vector space, and W be another vector space. If T : V → W is
linear, then

dim(im(T )) + dim(ker(T )) = dim(V).
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A General proof of the Dimension Theorem

Proof of Theorem 2. Let n = dim(V), and assume it is finite. Let T : V → W
be linear. Let {v1, . . . ,vk} be a basis for ker(T ), where k = dim(ker(T )). By
the Basis Completion Theorem, there are vectors vk+1, . . .vn ∈ V such that
{v1, . . . ,vn} is a basis for V.

We claim that S = {T (vk+1), . . . , T (vn)} is a basis for im(T ) with |S| =
n− k. To do this, we need to show:

1. span(S) = im(T ),

2. T (vi) ̸= T (vj) for all k + 1 ≤ i < j ≤ n, and

3. S is linearly independent.

We first show that span(S) = im(T ). We know, by definition and linearity,
that im(T ) = span({T (v1), . . . , T (vn)}) since {v1, . . . ,vn} is a basis for V.
However, T (v1) = · · · = T (vk) = 0 since v1, . . . ,vk ∈ ker(T ). So, we have
This implies that

im(T ) = span({T (v1), . . . , T (vn)})
= span({0, T (vk+1), . . . , T (vn)})
= span(S),

where the final step follows by the Removal Theorem.
Next, we show that T (vi) ̸= T (vj) for all k + 1 ≤ i < j ≤ n. Suppose

for sake of contradiction that T (vi) = T (vj) for some k + 1 ≤ i < j ≤ n.
Then we have T (vi)− T (vj) = T (vi − vj) = 0, i.e., vi − vj ∈ ker(T ). Since
{v1, . . . ,vk} is a basis for ker(T ), there are scalars c1, . . . , ck such that

c1 v1 + · · ·+ ck vk = vi − vj.

In other words, the following linear combination of {v1, . . . ,vn} produces 0:

c1 v1 + · · ·+ ck vk + (−1)vi + vj = 0.

This is impossible because {v1, . . . ,vn} is linearly independent. So we con-
clude that T (vi) ̸= T (vj) for all k + 1 ≤ i < j ≤ n.
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Finally, we show that S is linearly independent. Suppose

bk+1 T (vk+1) + · · ·+ bn T (vn) = 0

for some scalars bk+1, . . . , bn. We want to show that bk+1 = · · · = bn = 0. By
linearity of T , we have

T (bk+1 vk+1 + · · ·+ bn vn) = 0,

so bk+1vk+1 + · · · + bnvn ∈ ker(T ). Since {v1, . . . ,vk} is a basis for ker(T ),
there are scalars c1, . . . , ck such that

c1 v1 + · · ·+ ck vk = bk+1 vk+1 + · · ·+ bn vn.

In other words, the following linear combination of {v1, . . . ,vn} produces 0:

c1 v1 + · · ·+ ck vk + (−bk+1)vk+1 + · · ·+ (−bn)vn = 0.

But {v1, . . . ,vn} is linearly independent, so it must be that bk+1 = · · · =
bn = 0, as claimed. This proves that S is linearly independent.
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