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1 Systems of linear equations

Solving systems of linear equations is a ubiquitous problem in many areas.
A system of m linear equations in n unknowns looks like the following:

A1,1x1 + A1,2x2 + · · · + A1,nxn = b1
A2,1x1 + A2,2x2 + · · · + A2,nxn = b2

...

Am,1x1 + Am,2x2 + · · · + Am,nxn = bm.

(1)

The Ai,j’s are the coefficients (stand-ins for some scalars), the bi’s are the
right-hand side values (also stand-ins for more scalars), and x1, . . . , xn are
the unknowns (a.k.a. variables). If the right-hand side values are all 0, then
we say the system is homogeneous.

“Solving” a system means finding values for the variables x1, . . . , xn so
that all m equations hold, or declaring that no such values exist. A system
could have multiple solutions; the solution set is the set of all solutions. If the
solution set is empty, the system is inconsistent. Otherwise, it is consistent.

Example. A system of 3 linear equations in the 4 unknowns (x1, x2, x3, x4):
x1 + 2x2 + 3x3 + 4x4 = 3

2x1 + 4x2 + 4x3 + 4x4 = 2

3x1 + 6x2 + 5x3 + 4x4 = 1.

Asking whether this system of linear equations is consistent is the same as
asking whether (3, 2, 1) is in span({(1, 2, 3), (2, 4, 6), (3, 4, 5), (4, 4, 4)}).

The system (1) can be equivalently written in matrix form:A1,1 · · · A1,n
... . . . ...

Am,1 · · · Am,n


︸ ︷︷ ︸

A


x1
...

xn


︸ ︷︷ ︸

x

=

 b1
...
bm


︸ ︷︷ ︸

b

,

1
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i.e.,
Ax = b.

Here, A ∈ Mm×n(R) is the coefficient (left-hand side) matrix, b ∈ Rm is the
right-hand side vector, and x = (x1, . . . , xn) is the vector of unknowns. Each
row of A, along with the corresponding right-hand side value in b, specifies
a linear equation in the system.

Note that if A = [a1, . . . , an], so the m-vector aj contains the coefficients
for variable xj in the m linear equations, then asking whether Ax = b is
consistent is the same as asking whether b is in CS(A). And a solution x =
(x1, . . . , xn) (assuming one exists) specifies how to linearly combine a1, . . . , an
to produce b:

x1a1 + · · ·+ xnan = b.

One last common way of writing a system of linear equations is to omit
the vector of unknowns all together, and to put A and b together in a single
matrix, called an augmented matrix [A | b]:

A1,1 A1,2 · · · A1,n b1
A2,1 A2,2 · · · A2,n b2
...

... . . . ...
...

Am,1 Am,2 · · · Am,n bm

 .

A vertical line is used to separate the coefficient matrix from the right-hand
side vector.

Continuing the previous example. The system in matrix form:

1 2 3 4
2 4 4 4
3 6 5 4



x1
x2
x3
x4

 =

32
1

 .

As a linear combination of 3-vectors:

x1

12
3

+ x2

24
6

+ x3

34
5

+ x4

44
4

 =

32
1

 .
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As an augmented matrix:  1 2 3 4 3
2 4 4 4 2
3 6 5 4 1

 .

2 Elimination

2.1 Basic idea of Elimination

Elimination is an ancient algorithm for determining if a system of linear
equations is consistent, and also for finding a solution when one exists.

The basic idea of Elimination is to transform the system into another one
that is somewhat easier to solve:

Ax = b −→ Rx = c.

This transformation is called a reduction from the problem of solving Ax = b
to the problem of solving Rx = c. The reduction is solution-preserving: the
new system has the same solution set as the original system. In particular, it
will be the case that Rx = c is consistent if and only if Ax = b is consistent.

2.2 Elementary row operations

The steps of Elimination are usually described as (elementary) row opera-
tions ; each step can be viewed as modifying a row (or two rows) of A, and the
corresponding entries of b. (Or, equivalently, the row operations are applied
to the augmented matrix [A | b].) Here are the possible row operations:

1. Swap row i and row j.

(To “undo” this operation, swap rows i and j again.)

2. Multiply row i by a non-zero scalar.

(To “undo” this operation, divide row i by the same non-zero scalar.)

3. Subtract a multiple of row i from row j (for i ̸= j).

(To “undo” this operation, add the same multiple of row i to row j.)

3
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It turns out to be important that every row operation has a corresponding
“undo” operation of the same “type”; we will return to this point later.

The goal is to apply these row operations until the resulting coefficient
matrix is in reduced row echelon form (RREF). It is a bit tedious to write
down the precise algorithm for determining the sequence of row operations.
So, instead, we’ll just illustrate it by example.

Continuing the previous example. Subtract 2 times row 1 from row 2: 1 2 3 4 3
2 4 4 4 2
3 6 5 4 1

 −→

 1 2 3 4 3
0 0 −2 −4 −4
3 6 5 4 1

 .

Subtract 3 times row 1 from row 3: 1 2 3 4 3
0 0 −2 −4 −4
3 6 5 4 1

 −→

 1 2 3 4 3
0 0 −2 −4 −4
0 0 −4 −8 −8

 .

Multiply row 2 by −1/2: 1 2 3 4 3
0 0 −2 −4 −4
0 0 −4 −8 −8

 −→

 1 2 3 4 3
0 0 1 2 2
0 0 −4 −8 −8

 .

Subtract −4 times row 2 from row 3: 1 2 3 4 3
0 0 1 2 2
0 0 −4 −8 −8

 −→

 1 2 3 4 3
0 0 1 2 2
0 0 0 0 0

 .

Subtract 3 times row 2 from row 1: 1 2 3 4 3
0 0 1 2 2
0 0 0 0 0

 −→

 1 2 0 −2 −3
0 0 1 2 2
0 0 0 0 0

 .

Note that the final coefficient matrix is in RREF.
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2.3 Solving a system with coefficient matrix in RREF

Once the coefficient matrix is in RREF, there is a simple rule for determining
if the system is consistent, and also for finding a solution if one exists.

Theorem 1. A system of linear equations Rx = c with coefficient matrix R
in RREF is consistent if and only if every all-zeros row of R has a 0 as the
corresponding right-hand side value in c.

Proof. There are exactly two possible situations.

Case 1: The coefficient matrix R has an all-zeros row where the corre-
sponding right-hand side value in c is non-zero.

In this case, there is a linear equation in the system of the form

0x1 + · · ·+ 0xn = ci

for some ci ̸= 0. That equation cannot be satisfied by any values of (x1, . . . , xn),
so the system is inconsistent.

Case 2: Every all-zeros row in the coefficient matrix R has 0 as the corre-
sponding right-hand side value in c.

In this case, we can drop (i.e., ignore) these all-zeros rows (if any), as they
correspond to the trivial equation

0x1 + · · ·+ 0xn = 0,

which is always satisfied. What remains is a system in which the coefficient
matrix is in RREF without any all-zeros rows. So each row has a first non-
zero entry, called the pivot, with value 1; and the column in which a pivot
occurs appears has only a single non-zero component.

The columns containing a pivot correspond to a subset of variables, called
pivot variables (a.k.a. basic variables). The remaining variables are called
free variables (a.k.a. non-basic variables). Each pivot variable has a non-zero
coefficient (equal to 1) in exactly one equation, and for that equation, the
only other variables with non-zero coefficients are free variables. Therefore,
for any assignment of values to the free variables, we can uniquely determine a
value for each pivot variable so that every equation in the system is satisfied.
This shows that the system is consistent.
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The second case in the proof of Theorem 1 describes how one might find
a solution to the system of linear equations Rx = c (with R in RREF) when
it is consistent. One simple possibility is the following:

• Assign xj = 0 for every free variable xj.

• Assign to each pivot variable xj the right-hand side value of the equation
in which xj appears. That is, if pivot variable xj appears in the ith
equation, then assign xj = ci.

But this is only one possibility; there could be others! We will discuss later
a method for characterizing all solutions to the system in a succinct way.

To summarize: the system of linear equations can either be inconsistent
(Case 1 in the proof of Theorem 1), or it can be consistent (Case 2). And if
it is consistent, it turns out it can either have exactly one solution (no free
variables), or it can have infinitely-many solutions (at least one free variable).

Continuing the previous example. The augmented matrix for the final
system is  1 2 0 −2 −3

0 0 1 2 2
0 0 0 0 0

 .

The only all-zeros row in the coefficient matrix has a 0 for its corresponding
right-hand side value. So this system is consistent. The pivot variables are
x1 and x3 (P = {1, 3}), and the free variables are x2 and x4 (F = {2, 4}).
The non-trivial equations are:{

x1 + 2x2 − 2x4 = −3

x3 + 2x4 = 2.

Suppose we assign x2 = 0 and x4 = 0:{
x1 + �

��*
0

2x2 − �
��*

0
2x4 = −3

x3 + ���*
0

2x4 = 2.

Then to satisfy the first equation, we should set x1 = −3; and to satisfy
the second equation, we should set x3 = 2. So one solution to the system is
(x1, x2, x3, x4) = (−3, 0, 2, 0).
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Another example. Consider the same (original) coefficient matrix as in
the previous example, but now instead a different right-hand side vector:
(1,−2, 1). Here is the augmented matrix: 1 2 3 4 1

2 4 4 4 −2
3 6 5 4 1

 .

Since the coefficient matrix is the same as in the previous example, we can
apply the same sequence of row operations to bring the coefficient matrix
into RREF. So we just have to apply this same sequence of row operations
to the right-hand side vector (1,−2, 1): 1

−2
1

 −→

 1
−4
1

 −→

 1
−4
−2

 −→

 1
2

−2

 −→

12
6

 −→

−5
2
6

 .

The resulting augmented matrix is 1 2 0 −2 −5
0 0 1 2 2
0 0 0 0 6

 .

In this case, the all-zeros row in the coefficient matrix has a non-zero corre-
sponding right-hand side value of 6, so the system is inconsistent.

3 Row operations and inverses

The correctness of reduction performed by Elimination relies crucially on its
row operations and the fact that each has an associated “undo” operation.

Elimination applies a sequence of row operations to change the augmented
matrix for the original system to an augmented matrix in which the coeffi-
cient matrix is in RREF. Each step modifies one or two of the rows of this
augmented matrix. We can equivalently view each step as applying the trans-
formation to every column of the augmented matrix simultaneously.

Continuing the previous example. Applying the operation “subtract 2
times row 1 from row 2” to each column of the augmented matrix:
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• First column: 12
3

 −→

10
3


• Second column: 24

6

 −→

20
6


• Third column: 34

5

 −→

 3
−2
5


• Etc.

It turns out that this operation is equivalent to multiplying the column by
the following 3× 3 matrix:  1 0 0

−2 1 0
0 0 1

 .

To see this, observe its behavior on a generic 3-vector a = (a1, a2, a3): 1 0 0
−2 1 0
0 0 1

a1a2
a3

 =

 a1
a2 − 2a1

a3

 .

We have precisely subtracted 2 times the first component from the second
component; the other components remain the same.

In general, the matrix corresponding to a row operation for a system of
m linear equations is obtained by starting with the m ×m identity matrix,
and then applying the row operation to this identity matrix. These matrices
corresponding to row operations are called elementary matrices.
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Examples.

• “Subtract 3 times row 1 from row 3”: 1 0 0
0 1 0

−3 0 1

 .

• “Multiply row 2 by −1/2”: 1 0 0
0 −1

2 0
0 0 1

 .

• “Swap row 2 and row 3”: 1 0 0
0 0 1
0 1 0

 .

We say an operator T : Rm → Rm is invertible if there exists another op-
erator, denoted by T−1 : Rm → Rm and called the inverse of T , that satisfies

T−1(T (v)) = T (T−1(v)) = v for all m-vectors v.

The relationship is symmetric: T is the inverse of T−1.

Proposition 1. Any row operation for a system of m linear equations is spec-
ified by applying an operator T : Rm → Rm to every column of the augmented
matrix for the system. This operator T is linear and invertible.

Proof. The first claim follows from the fact that row operations perform the
same operation to each column of an augmented matrix. The claim that
the operator is linear follows from the fact that the operator is specified by
matrix-vector multiplication with an elementary matrix. Finally, the claim
that the operator is invertible comes from the fact that every row operation
has a corresponding “undo” operation.

If the invertible operator T is linear, then it turns out its inverse is also
linear. (We already knew this was true for the operators corresponding to
row operations, since the “undo” operator for a row operation is also a row
operation.)
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Proposition 2. If T : Rm → Rm is an invertible linear operator with inverse
transformation T−1 : Rn → Rn, then T−1 is linear.

Proof. Consider any m-vectors u and v and any scalar c. Let x = T−1(u)
and y = T−1(v). Now consider T−1(cu+ v):

T−1(cu+ v) = T−1(c T (x) + T (y))

= T−1(T (cx+ y))

= cx+ y

= c T−1(u) + T−1(v).

Above, the second equality follows by linearity of T . So T−1 is linear.

An m×m matrix B is invertible if the linear operator T : Rm → Rm given
by T (x) = Bx is invertible. We denote its inverse by B−1, and it satisfies
B−1B = BB−1 = I. A matrix that is invertible is also called non-singular ; a
matrix that is not invertible is called singular.

Theorem 2. If a square matrix is invertible, then its columns are linearly
independent.

Proof. Let b1, . . . ,bm denote the columns of an m×m matrix B. We’ll prove
the contrapositive of the claim.

Suppose {b1, . . . ,bm} is a set ofm linearly dependent vectors. This means
that there are scalars c1, . . . , cm ∈ R, not all equal to 0, such that

c1 b1 + · · ·+ cm bm = 0.

We’ll now show that two different m-vectors x and y have Bx = By, so the
transformation given by B is not invertible. Let x = 0 and y = (c1, . . . , cm).
Clearly, Bx = 0 and

By = c1 b1 + · · ·+ cm bm = 0,

and yet x ̸= y since not all ci’s are equal to 0.
Now suppose instead that the columns are not distinct, i.e., bi = bj for

some i ̸= j. Then x = 0 and y = ei − ej ̸= 0 satisfy Bx = By = 0 yet
x ̸= y. (Here, ek is the m-vector whose kth component is equal to 1 and all
other components are equal to 0.)
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4 Correctness of Elimination

Suppose the row operations carried out by Elimination correspond to the
elementary matrices E1, E2, . . . , Ek. Then Elimination produces a sequence
of systems of linear equations:

Ax = b

↓
(E1A)x = E1b

↓
(E2E1A)x = E2E1b

↓
...

↓
(Ek · · ·E2E1A)x = Ek · · ·E2E1b.

The final system has coefficient matrix Ek · · ·E2E1A and right-hand side
vector Ek · · ·E2E1b. The overall transformation performed by Elimination is

E = Ek · · ·E2E1,

which is the operator that first applies E1, then applies E2, and so on (i.e.,
a composition of linear operators). So the final system has coefficient matrix
EA and right-hand side vector Eb:

(EA)x = Eb.

So, if x is a solution to the original system Ax = b, then x is a solution
to the final system (EA)x = Eb, since (EA)x = E(Ax).

Furthermore, if x is a solution to the final system (EA)x = Eb, then it
is also a solution to the original system Ax = b. The reason for this is that
E is also invertible, and its inverse is

E−1 = (Ek · · ·E2E1)
−1 = E−1

1 E−1
2 · · ·E−1

k .

Notice that we compose the inverses of E1, E2, . . . , Ek in the reverse of order
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in which they appear in E.1 Starting from (EA)x = Eb, and applying E−1

to both sides of the equation, we obtain Ax = b.
We have thus justified the Elimination algorithm for solving a system of

linear equations. Elimination reduces the problem of solving Ax = b to the
problem of solving Rx = c, where the coefficient matrix R = EA is in RREF,
and c = Eb. The reduction is solution-preserving because E is invertible.
Solving Rx = c is handled by the rule detailed in Theorem 1.

We note that Elimination is closely connected to the CR factorization, as
both lead to the same RREF matrix.

Theorem 3. Let A be a matrix, and let E denote the invertible linear trans-
formation performed by Elimination to bring A to the matrix EA in RREF.
Let R be obtained from EA by dropping any all-zeros rows. Then the CR
factorization of A is A = CR with the same matrix R and with C being the
first d columns of E−1, where d = rank(A).

An important consequence of Theorem 3 is that the RREF R matrix
obtained by any sequence of row operations is uniquely determined by A.

5 Inverse computation

Is it possible to determine if a given square matrix is invertible? By Theo-
rem 2, a necessary condition for being invertible is to have linearly indepen-
dent columns. It turns out this is also a sufficient condition.

Theorem 4. If the columns of a square matrix are linearly independent, then
the matrix is invertible.

Proof. The CR factorization of an n× n matrix A with linearly independent
columns must result in C = A (all columns of A are included) and R = I
(in particular, rank(A) = n). But by Theorem 3, C = E−1, where E is the
invertible linear transformation performed by Elimination for a system with
A as the coefficient matrix. Since A = C = E−1 and E is invertible, the
matrix A is also invertible.

1This should intuitively make sense: Since Ek is the last operator applied in E, it is the first operator we
have to “undo” in the inverse E−1.
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The proof of Theorem 4 also suggests the Gauss-Jordan algorithm for
computing the inverse of a given matrix (if it exists):

• Use Elimination to transform the given matrix A to RREF.

• If the RREF matrix R is the identity matrix, then A is invertible, and
A−1 is given by the transformation carried out by Elimination, E.

A schematic trick for keeping track of E is to perform Elimination on the
augmented matrix [A | I]. Elimination transforms [A | I] to [R | E]; if
R = I, then A is invertible, and E = A−1.

Example. Consider the matrix

A =

1 1 3
2 0 4
3 1 5

 .

Applying Elimination on the augmented matrix [A | I]: 1 1 3 1 0 0
2 0 4 0 1 0
3 1 5 0 0 1

 −→

 1 0 0 −1 −1
2 1

0 1 0 1
2 −1 1

2
0 0 1 1

2
1
2 −1

2

 .

So A is invertible, and its inverse is given to the right of the vertical line in
the final augmented matrix.

Theorem 5 (Invertibility Theorem). Let A be an n×n matrix. The following
are equivalent.

1. A is invertible (a.k.a. non-singular).

2. A has rank n.

3. For any n-vector b, Ax = b has a unique solution for x.

4. Ax = 0 has x = 0 as its unique solution.

5. There is a product E of elementary matrices such that EA = I.

6. A is equal to a product of elementary matrices.

13



Elimination and row operations COMS 3251 Fall 2022 (Daniel Hsu)

A Correspondence between Elimination and
CR factorization

Proof of Theorem 3. Let E denote the invertible linear transformation car-
ried out by Elimination to bring the m×n matrix A = [a1, . . . , an] to RREF.
So the matrix EA is in RREF; note that it may have some all-zeros rows
appearing after all non-zero rows:

EA =

[
R
O

]
,

where R is a d × n matrix in RREF with no all-zeros rows, and O is the
(m− d)× n matrix containing m− d all-zeros rows.2

Let C be the m× d matrix containing the first d columns of E−1, and let
F be the m× (m− d) matrix containing the last m− d columns of E−1. So

A = E−1

[
R
O

]
=

[
C F

] [R
O

]
= CR.

(Here, we are using block-wise matrix multiplication.) Let C = [c1, . . . , cd]
and R = [r1, . . . , rn]. Observe that ak = Crk.

• If the kth column of R contains a pivot in the ith row, then

ak = Crk = ci.

The second equality is due to the RREF of R: the only non-zero com-
ponent of rk is the ith component, which must have value 1. Thus the
matrix C contains a subset of d columns of A. Moreover, C contains
columns of E−1, and the columns of E−1 are linearly independent by
Theorem 2. By the Removal Theorem, the columns of C are linearly
independent columns of A.

• If the kth column of R does not contain a pivot, and R contains i pivots
among its first k − 1 columns, then

ak = Crk ∈ span({c1, . . . , ci}).
2The only reason we need the “swap”-type row operations in Elimination is to make sure any all-zeros

rows appear at the bottom in EA. This is only needed because we have defined RREF to require this, which
in turn is only used to make some arguments like the current one a tiny bit simpler.
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The inclusion of Crk in span({c1, . . . , ci} is due to the RREF of R:
since there are only i pivots among the first k − 1 columns of R, the
last d− i components of rk must be equal to 0. So while {c1, . . . , ci} is
linearly independent, the set {c1, . . . , ci, ak} is not.

We have just described the CR factorization of the matrix A, which expresses
A = CR, where C is a matrix containing linearly independent columns of A,
and R is a matrix in RREF without any all-zeros rows.
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