Linear dependence COMS 3251 Fall 2022 (Daniel Hsu)

1 Linear dependence

We say a set of vectors is linearly dependent if there is some vector in the set that can be expressed as a linear combination of the others. If a set of vectors is not linearly dependent, we say it is linearly independent. $]^{1}$

Examples.

1. The set $\{(1,0,0),(0,1,0),(2,2,0)\}$ is linearly dependent, because the third vector is twice the sum of the first two.
2. The set $\{(1,0,0),(1,1,0)\}$ is linearly independent; there is no way to write either vector as a scaling of the other.
3. The empty set is (trivially) linearly independent.
4. Any set containing $\mathbf{0}$ (the empty sum) is linearly dependent.

Equivalent definition: A set of vectors \mathcal{S} is linearly dependent if $\mathbf{0}$ can be written as a "not-all-zeros" linear combination of a non-empty subset of \mathcal{S}; i.e., for some distinct $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k} \in \mathcal{S}$ with $k \geq 1$, and some $c_{1}, \ldots, c_{k} \in \mathbb{R}$ not all equal to 0 ,

$$
c_{1} \mathbf{v}_{1}+\cdots+c_{k} \mathbf{v}_{k}=\mathbf{0} .
$$

This version doesn't "blame" any individual vector for the linear dependence.

Example. The set $\{(1,0,0),(0,1,0),(2,2,0)\}$ is linearly dependent because

$$
2\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]+2\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]+(-1)\left[\begin{array}{l}
2 \\
2 \\
0
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] .
$$

[^0]
2 CR factorization

The following algorithm takes as input an $m \times n$ matrix A and returns a subset ${ }^{2}$ 2 of its columns that (as we'll see) is linearly independent.

```
Algorithm 1 Greedy algorithm for CR factorization
Input: }A=[\mp@subsup{\mathbf{a}}{1}{},\ldots,\mp@subsup{\mathbf{a}}{n}{}]\mathrm{ , an }m\timesn\mathrm{ matrix.
    Initialize C to the empty list of m-vectors.
    for }k=1,\ldots,n\mathrm{ do
        If \mp@subsup{\mathbf{a}}{k}{}\mathrm{ is not in CS}(C), then append }\mp@subsup{\mathbf{a}}{k}{}\mathrm{ to the end of }C\mathrm{ .
    end for
    return C.
```

Example. Consider the execution of Algorithm 1 on the following matrix:

$$
A=\left[\begin{array}{cccc}
\uparrow & \uparrow & \uparrow & \uparrow \\
\mathbf{a}_{1} & \mathbf{a}_{2} & \mathbf{a}_{3} & \mathbf{a}_{4} \\
\downarrow & \downarrow & \downarrow & \downarrow
\end{array}\right]=\left[\begin{array}{llll}
1 & 2 & 3 & 4 \\
2 & 4 & 4 & 4 \\
3 & 6 & 5 & 4
\end{array}\right] .
$$

- Initially: C is the empty list.
- Iteration $k=1: \mathbf{a}_{1} \notin \operatorname{CS}(C)$, so \mathbf{a}_{1} is appended to C. At the end of this iteration,

$$
C=\left[\begin{array}{c}
\uparrow \\
\mathbf{a}_{1} \\
\downarrow
\end{array}\right]=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right] .
$$

- Iteration $k=2: \mathbf{a}_{2}=2 \mathbf{a}_{1}$, so there is no change to C.
- Iteration $k=3: \mathbf{a}_{3} \notin \operatorname{CS}(C)$, so \mathbf{a}_{3} is appended to C. At the end of this iteration,

$$
C=\left[\begin{array}{cc}
\uparrow & \uparrow \\
\mathbf{a}_{1} & \mathbf{a}_{3} \\
\downarrow & \downarrow
\end{array}\right]=\left[\begin{array}{ll}
1 & 3 \\
2 & 4 \\
3 & 5
\end{array}\right] .
$$

- Iteration $k=4: \mathbf{a}_{4}=2 \mathbf{a}_{3}-2 \mathbf{a}_{1}$, so there is no change to C.

[^1]Let d be the number of m-vectors in C at the end of Algorithm 1, so C is an $m \times d$ matrix. Later, we'll see that the number d is a fundamental property of the matrix A.

Throughout the execution of Algorithm 1, the vectors in C are, by construction, linearly independent (cf. Theorem 5, the Growth Theorem). If a column of A is not appended to C, then it is a linear combination of the previous columns that were appended to C.

Therefore, alongside the execution of Algorithm 1 (or in another loop over the columns of A), we can construct a $d \times n$ matrix R such that, for each $k=1, \ldots, n$:

- If \mathbf{a}_{k} was the i th column appended to C, then the k th column of R has a 1 as its i th component and 0 's elsewhere.
- If \mathbf{a}_{k} was not appended to C, then the k th column of R reveals how to express \mathbf{a}_{k} as a linear combination of the vectors among $\mathbf{a}_{1}, \ldots, \mathbf{a}_{k-1}$ that were appended to C. By Theorem 1, there is only one choice for this column of R.

Theorem 1 (Unique Representations Theorem). If the columns of a matrix B are linearly independent, and $B \mathbf{x}=B \mathbf{y}$, then $\mathbf{x}=\mathbf{y}$.

Proof. Let $B=\left[\mathbf{b}_{1}, \ldots, \mathbf{b}_{k}\right]$ be matrix whose columns are k linearly independent vectors. Suppose $B \mathbf{x}=B \mathbf{y}$ for some $\mathbf{x}=\left(x_{1}, \ldots, x_{k}\right)$ and $\mathbf{y}=$ $\left(y_{1}, \ldots, y_{k}\right)$. Then $B(\mathbf{x}-\mathbf{y})=\mathbf{0}$, meaning

$$
\left(x_{1}-y_{1}\right) \mathbf{b}_{1}+\cdots+\left(x_{k}-y_{k}\right) \mathbf{b}_{k}=\mathbf{0} .
$$

Suppose for sake of contradiction that $\mathbf{x} \neq \mathbf{y}$. Then $x_{i} \neq y_{i}$ for some i; without loss of generality, assume $i=1$. We can thus "solve for \mathbf{b}_{1} ":

$$
\mathbf{b}_{1}=-\frac{x_{2}-y_{2}}{x_{1}-y_{1}} \mathbf{b}_{2}-\cdots-\frac{x_{k}-y_{k}}{x_{1}-y_{1}} \mathbf{b}_{k},
$$

so \mathbf{b}_{1} is a linear combination of the other \mathbf{b}_{i} 's, a contradiction of the linear independence of $\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{k}\right\}$. Hence we conclude that $\mathbf{x}=\mathbf{y}$.

The matrix R from above is a transcript for the execution of Algorithm 1 on input A. It also shows how to "reproduce" A via matrix multiplication:

$$
A=C R .
$$

This is called the $C R$ factorization of A.

Continuing the previous example. For the columns of A that were not included in C, we have

$$
\begin{aligned}
& {\left[\begin{array}{l}
2 \\
4 \\
7
\end{array}\right]=2\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]+0\left[\begin{array}{l}
3 \\
4 \\
5
\end{array}\right]=\left[\begin{array}{ll}
1 & 3 \\
2 & 4 \\
3 & 5
\end{array}\right]\left[\begin{array}{l}
2 \\
0
\end{array}\right],} \\
& {\left[\begin{array}{l}
4 \\
4 \\
4
\end{array}\right]=-2\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]+2\left[\begin{array}{l}
3 \\
4 \\
5
\end{array}\right]=\left[\begin{array}{ll}
1 & 3 \\
2 & 4 \\
3 & 5
\end{array}\right]\left[\begin{array}{r}
-2 \\
2
\end{array}\right] .}
\end{aligned}
$$

Therefore,

$$
A=\left[\begin{array}{ll}
1 & 3 \\
2 & 4 \\
3 & 5
\end{array}\right]\left[\begin{array}{rrrr}
1 & 2 & 0 & -2 \\
0 & 0 & 1 & 2
\end{array}\right]=C R, \quad \text { where } \quad R=\left[\begin{array}{rrrr}
1 & 2 & 0 & -2 \\
0 & 0 & 1 & 2
\end{array}\right]
$$

From the CR factorization $A=C R$, we see that every linear combination of the columns of A is a linear combination of the columns of C. In other words, $\operatorname{CS}(A)=\operatorname{CS}(C)$.

3 Reduced row echelon form

The matrix R described above has a property called reduced row echelon form. It is a special case of a property called row echelon form.

- We say a matrix is in row echelon form (REF) if:
- any all-zeros row appears below all non-zero rows; and
- for any non-zero row, the left-most non-zero entry-which is called the leading entry (a.k.a. pivot) for the row-is in a column that is strictly to the right of the columns that contain leading entries of any previous rows.
- We say a matrix is in reduced row echelon form (RREF) if:
- the matrix is in REF;
- every leading entry is equal to 1 ; and
- the column containing a leading entry has 0 's in all other entires. (It is typical to drop the all-zeros rows of a matrix in REF or RREF.)

Example of a matrix in REF.

$$
\left[\begin{array}{cccc}
\underline{2} & 4 & 10 & 16 \\
0 & 0 & \underline{5} & 10 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

This matrix has two non-zero rows. The leading entry of each non-zero row is underlined. The leading entry for the first row is in the first column. The leading entry for the second row is in the third column.

Example of a matrix in RREF.

$$
\left[\begin{array}{rrrr}
\underline{1} & 2 & 0 & -2 \\
0 & 0 & \underline{1} & 2
\end{array}\right]
$$

Our discussion about Algorithm 1 has established the following theorem.
Theorem 2. The execution of Algorithm 1 on a matrix $A \in \mathbb{R}^{m \times n}$ produces, for some $d \in\{0, \ldots, n\}$, a matrix $C \in \mathbb{R}^{m \times d}$ of d linearly independent columns of A; furthermore, there exists a matrix $R \in \mathbb{R}^{d \times n}$ in $R R E F$, without any all-zeros rows, such that $A=C R$.

A remarkable property of matrices in RREF is the following theorem.
Theorem 3. The non-zero rows of a matrix in RREF are linearly independent.

Proof. If the j th row of the matrix has a leading entry in the k th column, then all other non-zero rows of the matrix have 0's in their k th entries, and hence the j th row is not in the span of the other non-zero rows.

4 Rank

Recall that d denotes the number of linearly independent columns picked out by the execution of Algorithm 1 on A. We'll see next that this number d is a fundamental quantity associated with A.

Theorem 3 implies that the d rows of the aforementioned matrix R are linearly independent. Since $A=C R$, every row of A is a linear combination of the d rows of R.

In fact, it turns out that A must also have d linearly independent rows.

Theorem 4. For any non-negative integer k and any matrix A, the following statements are equivalent:

- A has at least k linearly independent columns.
- A has at least k linearly independent rows.

Proof. Since we can interchange the roles of rows and columns, it suffices to prove that if A has at least k linearly independent rows, then A has at least k linearly independent columns.

So assume A has at least k linearly independent rows. Now consider the execution of Algorithm 1 on A. Say it produces a matrix C with d linearly independent columns; let R be the $d \times n$ matrix in RREF such that $A=C R$ as guaranteed by Theorem 2. Since the rows of A are linear combinations of the d rows of R, and there are at least k linearly independent rows of A (by assumption), it must be that $d \geq k$ (Fact 11). Since C contains d linearly independent columns of A, it follows that A has at least k linearly independent columns.

Fact 1. Let \mathcal{E} and \mathcal{W} be finite sets of vectors. If \mathcal{W} is a linearly independent subset of $\operatorname{span}(\mathcal{E})$, then $|\mathcal{W}| \leq|\mathcal{E}|$.

Theorem 4 is a fundamental theorem of linear algebra, tying together the columns of a matrix and the rows of a matrix, which a priori may otherwise seem to not have anything to do with each other.

Define the rank of a matrix A to be the (maximum) number of linearly independent columns in A. By Proposition 1 (below), this number is the same as the number of column vectors in C returned by the execution of Algorithm 1 on input A. And by Theorem 4, it is also the (maximum) number of linearly independent rows of A.

Proposition 1. If a matrix A contains k linearly independent columns, then the execution of Algorithm 1 on input A will produce a matrix C containing k linearly independent columns of A.

Proof. Suppose A has k linearly independent columns. By Theorem 4, A has k linearly independent rows. The claim is now proved using the same argument from (the second paragraph of) the proof of Theorem 4.

Corollary 1. The rank of a matrix A is equal to all of the following:

- the number of columns of A in C returned by the execution of Algorithm 1 on input A,
- the number of linearly independent columns of A, and
- the number of linearly independent rows of A.

Proof. Apply Theorem 4 and Proposition 1, each with k being the number of linearly independent columns of A.

A Growth Theorem

Theorem 5 (Growth Theorem). Let \mathcal{S} be a set of vectors, and let \mathbf{v} be a vector not in \mathcal{S}.

- If $\mathbf{v} \in \operatorname{span}(\mathcal{S})$, then $\mathcal{S} \cup\{\mathbf{v}\}$ is linearly dependent and

$$
\operatorname{span}(\mathcal{S})=\operatorname{span}(\mathcal{S} \cup\{\mathbf{v}\})
$$

- If $\mathbf{v} \notin \operatorname{span}(\mathcal{S})$, then

$$
\operatorname{span}(\mathcal{S}) \subsetneq \operatorname{span}(\mathcal{S} \cup\{\mathbf{v}\}) ;
$$

and if, additionally, \mathcal{S} is linearly independent, then so is $\mathcal{S} \cup\{\mathbf{v}\}$.
Proof. Assume $\mathbf{v} \in \operatorname{span}(\mathcal{S})$. Then \mathbf{v} can be written as a linear combination of other vectors $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{m}\right\} \subseteq \mathcal{S}$, say,

$$
\mathbf{v}=a_{1} \mathbf{v}_{1}+\cdots+a_{m} \mathbf{v}_{m} .
$$

This means that $\mathcal{S} \cup\{\mathbf{v}\}$ is linearly dependent. Now consider any vector $\mathbf{u} \in \operatorname{span}(\mathcal{S} \cup\{\mathbf{v}\})$. This means \mathbf{u} can be written as a linear combination of $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{n}\right\} \subseteq \mathcal{S} \cup\{\mathbf{v}\}$, say,

$$
\mathbf{u}=b_{1} \mathbf{u}_{1}+\cdots+b_{n} \mathbf{u}_{n}
$$

We may assume that the \mathbf{u}_{i} 's are distinct (else use a linear combination of fewer vectors from $\mathcal{S} \cup\{\mathbf{v}\})$. If, say, $\mathbf{u}_{n}=\mathbf{v}$, then we can still write

$$
\mathbf{u}=b_{1} \mathbf{u}_{1}+\cdots+b_{n-1} \mathbf{u}_{n-1}+b_{n}\left(a_{1} \mathbf{v}_{1}+\cdots+a_{m} \mathbf{v}_{m}\right),
$$

which is a linear combination of vectors from \mathcal{S}. Hence we have $\mathbf{u} \in \operatorname{span}(\mathcal{S})$. So we conclude that $\operatorname{span}(\mathcal{S} \cup\{\mathbf{v}\}) \subseteq \operatorname{span}(\mathcal{S})$. Since we clearly also have $\operatorname{span}(\mathcal{S}) \subseteq \operatorname{span}(\mathcal{S} \cup\{\mathbf{v}\})$, it follows that $\operatorname{span}(\mathcal{S})=\operatorname{span}(\mathcal{S} \cup\{\mathbf{v}\})$.

Now assume $\mathbf{v} \notin \operatorname{span}(\mathcal{S})$. Clearly $\mathbf{v} \in \operatorname{span}(\mathcal{S} \cup\{\mathbf{v}\})$. So $\operatorname{span}(\mathcal{S}) \neq$ $\operatorname{span}(\mathcal{S} \cup\{\mathbf{v}\})$. Since we clearly also have $\operatorname{span}(\mathcal{S}) \subseteq \operatorname{span}(\mathcal{S} \cup\{\mathbf{v}\})$, it follows that $\operatorname{span}(\mathcal{S}) \subsetneq \operatorname{span}(\mathcal{S} \cup\{\mathbf{v}\})$.

Finally, assume both that $\mathbf{v} \notin \operatorname{span}(\mathcal{S})$ and that \mathcal{S} is linearly independent. Suppose for the sake of contradiction that $\mathcal{S} \cup\{\mathbf{v}\}$ is linearly dependent. By
assumption, \mathbf{v} is not in \mathcal{S}, and \mathbf{v} is not a linear combination of vectors in \mathcal{S}. So the linear dependence of $\mathcal{S} \cup\{\mathbf{v}\}$ implies that there is a vector $\mathbf{u} \in \mathcal{S}$ that is not equal to \mathbf{v}, but can be written as a linear combination of \mathbf{v} and some $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{n}\right\} \subseteq \mathcal{S} \backslash\{\mathbf{u}\}$, say,

$$
\mathbf{u}=b_{0} \mathbf{v}+b_{1} \mathbf{u}_{1}+\cdots+b_{n} \mathbf{u}_{n}
$$

If $b_{0}=0$, then we have expressed a vector in \mathcal{S} as a linear combination of other vectors in \mathcal{S}, a contradiction of the assumption that \mathcal{S} is linearly independent. If $b_{0} \neq 0$, then we can "solve for \mathbf{v} " and write

$$
\mathbf{v}=b_{0}^{-1} \mathbf{u}-b_{0}^{-1} b_{1} \mathbf{u}_{1}-\cdots-b_{0}^{-1} b_{n} \mathbf{u}_{n}
$$

which expresses \mathbf{v} as a linear combination of vectors from \mathcal{S}, a contradiction of the assumption that $\mathbf{v} \notin \operatorname{span}(\mathcal{S})$. Therefore, we conclude that $\mathcal{S} \cup\{\mathbf{v}\}$ is linearly independent.

B Removal Theorem

Theorem 6 (Removal Theorem). Let \mathcal{S} be a set of vectors.

- If \mathcal{S} is linearly dependent, then there is a vector $\mathbf{v} \in \mathcal{S}$ such that

$$
\operatorname{span}(\mathcal{S} \backslash\{\mathbf{v}\})=\operatorname{span}(\mathcal{S}) .
$$

- If \mathcal{S} is linearly independent, then every proper subset $\mathcal{S}^{\prime} \subsetneq \mathcal{S}$ is linearly independent and

$$
\operatorname{span}\left(\mathcal{S}^{\prime}\right) \subsetneq \operatorname{span}(\mathcal{S}) .
$$

Proof. Assume \mathcal{S} is linearly dependent. Therefore, there exists $\mathbf{v} \in \mathcal{S}$ such that \mathbf{v} can be written as a linear combination of other vectors $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{m}\right\} \subseteq$ $\mathcal{S} \backslash\{\mathbf{v}\}$, say,

$$
\mathbf{v}=a_{1} \mathbf{v}_{1}+\cdots+a_{m} \mathbf{v}_{m} .
$$

Now consider any vector $\mathbf{u} \in \operatorname{span}(\mathcal{S})$. This means \mathbf{u} can be written as a linear combination of $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{n}\right\} \subseteq \mathcal{S}$, say,

$$
\mathbf{u}=b_{1} \mathbf{u}_{1}+\cdots+b_{n} \mathbf{u}_{n}
$$

We may assume that the \mathbf{u}_{i} 's are distinct (else use a linear combination of fewer vectors from \mathcal{S}). If, say, $\mathbf{u}_{n}=\mathbf{v}$, then we can still write

$$
\mathbf{u}=b_{1} \mathbf{u}_{1}+\cdots+b_{n-1} \mathbf{u}_{n-1}+b_{n}\left(a_{1} \mathbf{v}_{1}+\cdots+a_{m} \mathbf{v}_{m}\right)
$$

which is a linear combination of vectors from $\mathcal{S} \backslash\{\mathbf{v}\}$. Hence we have $\mathbf{u} \in$ $\operatorname{span}(\mathcal{S} \backslash\{\mathbf{v}\})$. So we conclude that $\operatorname{span}(\mathcal{S}) \subseteq \operatorname{span}(\mathcal{S} \backslash\{\mathbf{v}\})$. Since we clearly also have $\operatorname{span}(\mathcal{S} \backslash\{\mathbf{v}\}) \subseteq \operatorname{span}(\mathcal{S})$, it follows that $\operatorname{span}(\mathcal{S} \backslash\{\mathbf{v}\})=\operatorname{span}(\mathcal{S})$.

Now instead assume \mathcal{S} is linearly independent. Consider any proper subset $\mathcal{S}^{\prime} \subsetneq \mathcal{S}$, and take any $\mathbf{v} \in \mathcal{S} \backslash \mathcal{S}^{\prime}$. First, \mathcal{S}^{\prime} is linearly independent since otherwise there exists a vector in \mathcal{S}^{\prime} (and hence in \mathcal{S}) that can be written as a linear combination of other vectors in \mathcal{S}^{\prime} (which are also in \mathcal{S}). Next, suppose for sake of contradiction that \mathbf{v} can be written as a linear combination of $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{m}\right\} \subseteq \mathcal{S}^{\prime}$, say,

$$
\mathbf{v}=a_{1} \mathbf{v}_{1}+\cdots+a_{m} \mathbf{v}_{m},
$$

then there exists a vector in \mathcal{S} (namely \mathbf{v}) that can be written as a linear combination of other vectors in $\mathcal{S} \backslash\{\mathbf{v}\}$ (which happen to be in \mathcal{S}^{\prime}). This conclusion contradicts the assumption that \mathcal{S} is linearly independent. Hence \mathbf{v} is not in $\operatorname{span}\left(\mathcal{S}^{\prime}\right)$. Since $\mathbf{v} \in \mathcal{S} \subseteq \operatorname{span}(\mathcal{S})$, it must be that $\operatorname{span}\left(\mathcal{S}^{\prime}\right) \neq$ $\operatorname{span}(\mathcal{S})$. And since we clearly have $\operatorname{span}\left(\mathcal{S}^{\prime}\right) \subseteq \operatorname{span}(\mathcal{S})$, it must be that $\operatorname{span}\left(\mathcal{S}^{\prime}\right) \subsetneq \operatorname{span}(\mathcal{S})$.

C Exchange Theorem

Theorem 7, given below, is an elaboration of Fact 1.
Theorem 7 (Exchange Theorem). Let \mathcal{E} and \mathcal{W} be finite sets of vectors. If \mathcal{W} is a linearly independent subset of $\operatorname{span}(\mathcal{E})$, then

- $|\mathcal{W}| \leq|\mathcal{E}|$, and
- there is a subset $\mathcal{F} \subseteq \mathcal{E}$ with $|\mathcal{F}|=|\mathcal{E}|-|\mathcal{W}|$ such that $\operatorname{span}(\mathcal{E})=$ $\operatorname{span}(\mathcal{W} \cup \mathcal{F})$.

Proof. Let $m=|\mathcal{E}|$ and $n=|\mathcal{W}|$. The proof is by induction on n. If $n=0$, then clearly $n \leq m$, and we can take $\mathcal{F}=\mathcal{E}$ to establish the rest of the claim.

Now assume, as the "inductive hypothesis", that the claim holds for a particular value of $n \geq 0$. To complete the "inductive step", we show that if $\mathcal{W} \subseteq \operatorname{span}(\mathcal{E})$ is a set of $n+1$ linearly independent vectors from $\operatorname{span}(\mathcal{E})$, then $n+1 \leq m$, and there exists a subset $\mathcal{F} \subseteq \mathcal{E}$ with $|\mathcal{F}|=m-(n+1)$ such that $\operatorname{span}(\mathcal{E})=\operatorname{span}(\mathcal{W} \cup \mathcal{F})$.

So let $\mathcal{W}=\left\{\mathbf{w}_{1}, \ldots, \mathbf{w}_{n+1}\right\} \subseteq \operatorname{span}(\mathcal{E})$ be $n+1$ linearly independent vectors from $\operatorname{span}(\mathcal{E})$. The subset $\mathcal{W}^{-}=\left\{\mathbf{w}_{1}, \ldots, \mathbf{w}_{n}\right\}=\mathcal{W} \backslash\left\{\mathbf{w}_{n+1}\right\}$ is also linearly independent (by Theorem 6, the Removal Theorem). By the "inductive hypothesis", we have $n \leq m$, and also there exists a subset $\mathcal{F}^{+}=$ $\left\{\mathbf{f}_{1}, \ldots, \mathbf{f}_{m-n}\right\} \subseteq \mathcal{E}$ with $\left|\mathcal{F}^{+}\right|=m-n$ such that

$$
\begin{equation*}
\operatorname{span}(\mathcal{E})=\operatorname{span}\left(\mathcal{W}^{-} \cup \mathcal{F}^{+}\right) \tag{1}
\end{equation*}
$$

Since $\mathbf{w}_{n+1} \in \operatorname{span}(\mathcal{E})=\operatorname{span}\left(\mathcal{W}^{-} \cup \mathcal{F}^{+}\right)$as per (1), we have

$$
\begin{equation*}
\mathbf{w}_{n+1}=a_{1} \mathbf{w}_{1}+\cdots+a_{n} \mathbf{w}_{n}+b_{1} \mathbf{f}_{1}+\cdots+b_{m-n} \mathbf{f}_{m-n} \tag{2}
\end{equation*}
$$

for some scalars $a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{m-n}$. If $n=m$ or $b_{1}=\cdots=b_{m-n}=0$, then (2) expresses \mathbf{w}_{n+1} as a linear combination of $\mathbf{w}_{1}, \ldots, \mathbf{w}_{n}$, which is impossible since $\mathbf{w}_{1}, \ldots, \mathbf{w}_{n+1}$ are linearly independent by assumption. Hence, we must have $n+1 \leq m$ (as claimed), and also that $b_{i} \neq 0$ for some $i \in\{1, \ldots, m-n\}$. Without loss of generality, assume that $b_{1} \neq 0$, and then "solve for \mathbf{f}_{1} " in (2);

$$
\begin{equation*}
\mathbf{f}_{1}=b_{1}^{-1} \mathbf{w}_{n+1}-b_{1}^{-1} a_{1} \mathbf{w}_{1}-\cdots-b_{1}^{-1} a_{n} \mathbf{w}_{n}-b_{1}^{-1} b_{2} \mathbf{f}_{2}-\cdots-b_{1}^{-1} b_{m-n} \mathbf{f}_{m-n} \tag{3}
\end{equation*}
$$

It is the vector \mathbf{f}_{1} that will be "replaced" by \mathbf{w}_{n+1}.
Define

$$
\mathcal{F}=\left\{\mathbf{f}_{2}, \ldots, \mathbf{f}_{m-n}\right\}=\mathcal{F}^{+} \backslash\left\{\mathbf{f}_{1}\right\},
$$

which has $|\mathcal{F}|=m-n-1=m-(n+1)$ vectors. From (3), we see that

$$
\mathbf{f}_{1} \in \operatorname{span}\left(\left\{\mathbf{w}_{1}, \ldots, \mathbf{w}_{n+1}, \mathbf{f}_{2}, \ldots, \mathbf{f}_{m-n}\right\}\right)=\operatorname{span}(\mathcal{W} \cup \mathcal{F}) .
$$

Since we also clearly have $\mathcal{W}^{-} \cup \mathcal{F} \subseteq \operatorname{span}(\mathcal{W} \cup \mathcal{F})$, it follows that

$$
\begin{equation*}
\mathcal{W}^{-} \cup \mathcal{F}^{+}=\mathcal{W}^{-} \cup\left\{\mathbf{f}_{1}\right\} \cup \mathcal{F} \subseteq \operatorname{span}(\mathcal{W} \cup \mathcal{F}) \tag{4}
\end{equation*}
$$

Recalling (1) from the "inductive hypothesis", we have $\operatorname{span}(\mathcal{E})=\operatorname{span}\left(\mathcal{W}^{-} \cup\right.$ \mathcal{F}^{+}), which means that every vector in $\operatorname{span}(\mathcal{E})$ is a linear combination of
the vectors in $\mathcal{W}^{-} \cup \mathcal{F}^{+}$; and by (4), each of the vectors in $\mathcal{W}^{-} \cup \mathcal{F}^{+}$is a linear combination of the vectors in $\mathcal{W} \cup \mathcal{F}$. From this argument, we obtain $\operatorname{span}(\mathcal{E}) \subseteq \operatorname{span}(\mathcal{W} \cup \mathcal{F})$. Since the $\mathcal{W} \cup \mathcal{F} \subseteq \operatorname{span}(\mathcal{E})$, it follows that

$$
\operatorname{span}(\mathcal{E})=\operatorname{span}(\mathcal{W} \cup \mathcal{F})
$$

as claimed.
We have thus completed the proof of the "inductive step", so the overall claim follows by the principle of mathematical induction.

The proof of Theorem 7 also justifies Algorithm 2, given below, which finds the subset \mathcal{F} as guaranteed under the conditions of Theorem 7 .

```
Algorithm 2 Exchange algorithm
Input: Two lists of distinct vectors \(\left[\mathbf{e}_{1}, \ldots, \mathbf{e}_{m}\right]\) and \(\left[\mathbf{w}_{1}, \ldots, \mathbf{w}_{n}\right]\).
    if \(n>m\) then
        return FAIL (" \(\left[\mathbf{w}_{1}, \ldots, \mathbf{w}_{n}\right]\) is not linearly independent.")
    end if
    Initialize \(F=\left[\mathbf{f}_{1}, \ldots, \mathbf{f}_{m}\right]=\left[\mathbf{e}_{1}, \ldots, \mathbf{e}_{m}\right]\).
    for \(k=1, \ldots, n\) do
        Find scalars \(a_{1}, \ldots, a_{k-1}\) and \(b_{1}, \ldots, b_{m-k+1}\) such that
            \(\mathbf{w}_{k}=a_{1} \mathbf{w}_{1}+\cdots+a_{k-1} \mathbf{w}_{k-1}+b_{1} \mathbf{f}_{1}+\cdots+b_{m-k+1} \mathbf{f}_{m-k+1}\).
            if no such scalars are found then
                return FAIL (" \(w_{k} \notin \operatorname{span}\left(\left\{\mathbf{e}_{1}, \ldots, \mathbf{e}_{m}\right\}\right)\).")
            else if \(b_{1}=\cdots=b_{m-k+1}=0\) then
                return FAIL (" \(\left[\mathbf{w}_{1}, \ldots, \mathbf{w}_{k}\right]\) is not linearly independent.")
            end if
            Pick any \(i \in\{1, \ldots, m-k+1\}\) such that \(b_{i} \neq 0\).
            Discard \(\mathbf{f}_{i}\), and re-number the remaining vectors \(F=\left[\mathbf{f}_{1}, \ldots, \mathbf{f}_{m-k}\right]\).
    end for
    return \(F\).
```


[^0]: ${ }^{1}$ We say a list of vectors $\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right)$ is linearly dependent (or " $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ are linearly dependent") if either (i) some vector in the list appears more than once, or (ii) the set $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right\}$ is linearly dependent. If neither (i) nor (ii) holds, it is linearly independent. By " k linearly independent vectors", we mean a linearly independent list of k distinct vectors.

[^1]: ${ }^{2}$ The algorithm returns a list of columns (in the form of a matrix). However, it will be guaranteed that the columns in the list are distinct.

