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1 Linear dependence

We say a set of vectors is linearly dependent if there is some vector in the
set that can be expressed as a linear combination of the others. If a set of
vectors is not linearly dependent, we say it is linearly independent.1

Examples.

1. The set {(1, 0, 0), (0, 1, 0), (2, 2, 0)} is linearly dependent, because the
third vector is twice the sum of the first two.

2. The set {(1, 0, 0), (1, 1, 0)} is linearly independent; there is no way to
write either vector as a scaling of the other.

3. The empty set is (trivially) linearly independent.

4. Any set containing 0 (the empty sum) is linearly dependent.

Equivalent definition: A set of vectors S is linearly dependent if 0 can be
written as a “not-all-zeros” linear combination of a non-empty subset of S;
i.e., for some distinct v1, . . . ,vk ∈ S with k ≥ 1, and some c1, . . . , ck ∈ R not
all equal to 0,

c1v1 + · · ·+ ckvk = 0.

This version doesn’t “blame” any individual vector for the linear dependence.

Example. The set {(1, 0, 0), (0, 1, 0), (2, 2, 0)} is linearly dependent because

2

10
0

 + 2

01
0

 + (−1)

22
0

 =

00
0

 .

1We say a list of vectors (v1, . . . ,vk) is linearly dependent (or “v1, . . . ,vk are linearly dependent”) if
either (i) some vector in the list appears more than once, or (ii) the set {v1, . . . ,vk} is linearly dependent. If
neither (i) nor (ii) holds, it is linearly independent. By “k linearly independent vectors”, we mean a linearly
independent list of k distinct vectors.
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2 CR factorization

The following algorithm takes as input an m × n matrix A and returns a
subset2 of its columns that (as we’ll see) is linearly independent.

Algorithm 1 Greedy algorithm for CR factorization
Input: A = [a1, . . . , an], an m× n matrix.
1: Initialize C to the empty list of m-vectors.
2: for k = 1, . . . , n do
3: If ak is not in CS(C), then append ak to the end of C.
4: end for
5: return C.

Example. Consider the execution of Algorithm 1 on the following matrix:

A =

 ↑ ↑ ↑ ↑
a1 a2 a3 a4
↓ ↓ ↓ ↓

 =

1 2 3 4
2 4 4 4
3 6 5 4

 .

• Initially: C is the empty list.

• Iteration k = 1: a1 /∈ CS(C), so a1 is appended to C. At the end of
this iteration,

C =

 ↑
a1
↓

 =

12
3

 .

• Iteration k = 2: a2 = 2a1, so there is no change to C.

• Iteration k = 3: a3 /∈ CS(C), so a3 is appended to C. At the end of
this iteration,

C =

 ↑ ↑
a1 a3
↓ ↓

 =

1 3
2 4
3 5

 .

• Iteration k = 4: a4 = 2a3 − 2a1, so there is no change to C.

2The algorithm returns a list of columns (in the form of a matrix). However, it will be guaranteed that
the columns in the list are distinct.
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Let d be the number of m-vectors in C at the end of Algorithm 1, so C
is an m × d matrix. Later, we’ll see that the number d is a fundamental
property of the matrix A.

Throughout the execution of Algorithm 1, the vectors in C are, by con-
struction, linearly independent (cf. Theorem 5, the Growth Theorem). If a
column of A is not appended to C, then it is a linear combination of the
previous columns that were appended to C.

Therefore, alongside the execution of Algorithm 1 (or in another loop over
the columns of A), we can construct a d × n matrix R such that, for each
k = 1, . . . , n:

• If ak was the ith column appended to C, then the kth column of R has
a 1 as its ith component and 0’s elsewhere.

• If ak was not appended to C, then the kth column of R reveals how
to express ak as a linear combination of the vectors among a1, . . . , ak−1

that were appended to C. By Theorem 1, there is only one choice for
this column of R.

Theorem 1 (Unique Representations Theorem). If the columns of a matrix
B are linearly independent, and Bx = By, then x = y.

Proof. Let B = [b1, . . . ,bk] be matrix whose columns are k linearly inde-
pendent vectors. Suppose Bx = By for some x = (x1, . . . , xk) and y =
(y1, . . . , yk). Then B(x− y) = 0, meaning

(x1 − y1)b1 + · · ·+ (xk − yk)bk = 0.

Suppose for sake of contradiction that x ̸= y. Then xi ̸= yi for some i;
without loss of generality, assume i = 1. We can thus “solve for b1”:

b1 = −x2 − y2
x1 − y1

b2 − · · · − xk − yk
x1 − y1

bk,

so b1 is a linear combination of the other bi’s, a contradiction of the linear
independence of {b1, . . . ,bk}. Hence we conclude that x = y.

The matrix R from above is a transcript for the execution of Algorithm 1
on input A. It also shows how to “reproduce” A via matrix multiplication:

A = CR.

This is called the CR factorization of A.
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Continuing the previous example. For the columns of A that were not
included in C, we have24

7

 = 2

12
3

 + 0

34
5

 =

1 3
2 4
3 5

 [
2
0

]
,

44
4

 = −2

12
3

 + 2

34
5

 =

1 3
2 4
3 5

[−2
2

]
.

Therefore,

A =

1 3
2 4
3 5

[
1 2 0 −2
0 0 1 2

]
= CR, where R =

[
1 2 0 −2
0 0 1 2

]
.

From the CR factorization A = CR, we see that every linear combination
of the columns of A is a linear combination of the columns of C. In other
words, CS(A) = CS(C).

3 Reduced row echelon form

The matrix R described above has a property called reduced row echelon
form. It is a special case of a property called row echelon form.

• We say a matrix is in row echelon form (REF) if:

– any all-zeros row appears below all non-zero rows; and

– for any non-zero row, the left-most non-zero entry—which is called
the leading entry (a.k.a. pivot) for the row—is in a column that is
strictly to the right of the columns that contain leading entries of
any previous rows.

• We say a matrix is in reduced row echelon form (RREF) if:

– the matrix is in REF;

– every leading entry is equal to 1; and

– the column containing a leading entry has 0’s in all other entires.

(It is typical to drop the all-zeros rows of a matrix in REF or RREF.)
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Example of a matrix in REF.2 4 10 16
0 0 5 10
0 0 0 0


This matrix has two non-zero rows. The leading entry of each non-zero row
is underlined. The leading entry for the first row is in the first column. The
leading entry for the second row is in the third column.

Example of a matrix in RREF.[
1 2 0 −2
0 0 1 2

]
Our discussion about Algorithm 1 has established the following theorem.

Theorem 2. The execution of Algorithm 1 on a matrix A ∈ Rm×n pro-
duces, for some d ∈ {0, . . . , n}, a matrix C ∈ Rm×d of d linearly independent
columns of A; furthermore, there exists a matrix R ∈ Rd×n in RREF, without
any all-zeros rows, such that A = CR.

A remarkable property of matrices in RREF is the following theorem.

Theorem 3. The non-zero rows of a matrix in RREF are linearly indepen-
dent.

Proof. If the jth row of the matrix has a leading entry in the kth column,
then all other non-zero rows of the matrix have 0’s in their kth entries, and
hence the jth row is not in the span of the other non-zero rows.

4 Rank

Recall that d denotes the number of linearly independent columns picked out
by the execution of Algorithm 1 on A. We’ll see next that this number d is
a fundamental quantity associated with A.

Theorem 3 implies that the d rows of the aforementioned matrix R are
linearly independent. Since A = CR, every row of A is a linear combination
of the d rows of R.

In fact, it turns out that A must also have d linearly independent rows.
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Theorem 4. For any non-negative integer k and any matrix A, the following
statements are equivalent:

• A has at least k linearly independent columns.

• A has at least k linearly independent rows.

Proof. Since we can interchange the roles of rows and columns, it suffices to
prove that if A has at least k linearly independent rows, then A has at least
k linearly independent columns.

So assume A has at least k linearly independent rows. Now consider the
execution of Algorithm 1 on A. Say it produces a matrix C with d linearly
independent columns; let R be the d×n matrix in RREF such that A = CR
as guaranteed by Theorem 2. Since the rows of A are linear combinations
of the d rows of R, and there are at least k linearly independent rows of
A (by assumption), it must be that d ≥ k (Fact 1). Since C contains d
linearly independent columns of A, it follows that A has at least k linearly
independent columns.

Fact 1. Let E and W be finite sets of vectors. If W is a linearly independent
subset of span(E), then |W| ≤ |E|.

Theorem 4 is a fundamental theorem of linear algebra, tying together the
columns of a matrix and the rows of a matrix, which a priori may otherwise
seem to not have anything to do with each other.

Define the rank of a matrix A to be the (maximum) number of linearly
independent columns in A. By Proposition 1 (below), this number is the
same as the number of column vectors in C returned by the execution of
Algorithm 1 on input A. And by Theorem 4, it is also the (maximum)
number of linearly independent rows of A.

Proposition 1. If a matrix A contains k linearly independent columns, then
the execution of Algorithm 1 on input A will produce a matrix C containing
k linearly independent columns of A.

Proof. Suppose A has k linearly independent columns. By Theorem 4, A
has k linearly independent rows. The claim is now proved using the same
argument from (the second paragraph of) the proof of Theorem 4.
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Corollary 1. The rank of a matrix A is equal to all of the following:

• the number of columns of A in C returned by the execution of Algo-
rithm 1 on input A,

• the number of linearly independent columns of A, and

• the number of linearly independent rows of A.

Proof. Apply Theorem 4 and Proposition 1, each with k being the number
of linearly independent columns of A.
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A Growth Theorem

Theorem 5 (Growth Theorem). Let S be a set of vectors, and let v be a
vector not in S.

• If v ∈ span(S), then S ∪ {v} is linearly dependent and

span(S) = span(S ∪ {v}).

• If v /∈ span(S), then

span(S) ⊊ span(S ∪ {v});

and if, additionally, S is linearly independent, then so is S ∪ {v}.

Proof. Assume v ∈ span(S). Then v can be written as a linear combination
of other vectors {v1, . . . ,vm} ⊆ S, say,

v = a1v1 + · · ·+ amvm.

This means that S ∪ {v} is linearly dependent. Now consider any vector
u ∈ span(S ∪ {v}). This means u can be written as a linear combination of
{u1, . . . ,un} ⊆ S ∪ {v}, say,

u = b1u1 + · · ·+ bnun.

We may assume that the ui’s are distinct (else use a linear combination of
fewer vectors from S ∪ {v}). If, say, un = v, then we can still write

u = b1u1 + · · ·+ bn−1un−1 + bn(a1v1 + · · ·+ amvm),

which is a linear combination of vectors from S. Hence we have u ∈ span(S).
So we conclude that span(S ∪ {v}) ⊆ span(S). Since we clearly also have
span(S) ⊆ span(S ∪ {v}), it follows that span(S) = span(S ∪ {v}).

Now assume v /∈ span(S). Clearly v ∈ span(S ∪ {v}). So span(S) ̸=
span(S∪{v}). Since we clearly also have span(S) ⊆ span(S∪{v}), it follows
that span(S) ⊊ span(S ∪ {v}).

Finally, assume both that v /∈ span(S) and that S is linearly independent.
Suppose for the sake of contradiction that S ∪ {v} is linearly dependent. By
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assumption, v is not in S, and v is not a linear combination of vectors in S.
So the linear dependence of S∪ {v} implies that there is a vector u ∈ S that
is not equal to v, but can be written as a linear combination of v and some
{u1, . . . ,un} ⊆ S \ {u}, say,

u = b0v + b1u1 + · · ·+ bnun.

If b0 = 0, then we have expressed a vector in S as a linear combination of other
vectors in S, a contradiction of the assumption that S is linearly independent.
If b0 ̸= 0, then we can “solve for v” and write

v = b−1
0 u− b−1

0 b1u1 − · · · − b−1
0 bnun,

which expresses v as a linear combination of vectors from S, a contradiction
of the assumption that v /∈ span(S). Therefore, we conclude that S ∪ {v} is
linearly independent.

B Removal Theorem

Theorem 6 (Removal Theorem). Let S be a set of vectors.

• If S is linearly dependent, then there is a vector v ∈ S such that

span(S \ {v}) = span(S).

• If S is linearly independent, then every proper subset S′ ⊊ S is linearly
independent and

span(S′) ⊊ span(S).

Proof. Assume S is linearly dependent. Therefore, there exists v ∈ S such
that v can be written as a linear combination of other vectors {v1, . . . ,vm} ⊆
S \ {v}, say,

v = a1v1 + · · ·+ amvm.

Now consider any vector u ∈ span(S). This means u can be written as a
linear combination of {u1, . . . ,un} ⊆ S, say,

u = b1u1 + · · ·+ bnun.
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We may assume that the ui’s are distinct (else use a linear combination of
fewer vectors from S). If, say, un = v, then we can still write

u = b1u1 + · · ·+ bn−1un−1 + bn(a1v1 + · · ·+ amvm),

which is a linear combination of vectors from S \ {v}. Hence we have u ∈
span(S\{v}). So we conclude that span(S) ⊆ span(S\{v}). Since we clearly
also have span(S \ {v}) ⊆ span(S), it follows that span(S \ {v}) = span(S).

Now instead assume S is linearly independent. Consider any proper subset
S′ ⊊ S, and take any v ∈ S \ S′. First, S′ is linearly independent since
otherwise there exists a vector in S′ (and hence in S) that can be written as a
linear combination of other vectors in S′ (which are also in S). Next, suppose
for sake of contradiction that v can be written as a linear combination of
{v1, . . . ,vm} ⊆ S′, say,

v = a1v1 + · · ·+ amvm,

then there exists a vector in S (namely v) that can be written as a linear
combination of other vectors in S \ {v} (which happen to be in S′). This
conclusion contradicts the assumption that S is linearly independent. Hence
v is not in span(S′). Since v ∈ S ⊆ span(S), it must be that span(S′) ̸=
span(S). And since we clearly have span(S′) ⊆ span(S), it must be that
span(S′) ⊊ span(S).

C Exchange Theorem

Theorem 7, given below, is an elaboration of Fact 1.

Theorem 7 (Exchange Theorem). Let E and W be finite sets of vectors. If
W is a linearly independent subset of span(E), then

• |W| ≤ |E|, and

• there is a subset F ⊆ E with |F| = |E| − |W| such that span(E) =
span(W ∪ F).

Proof. Let m = |E| and n = |W|. The proof is by induction on n. If n = 0,
then clearly n ≤ m, and we can take F = E to establish the rest of the claim.
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Now assume, as the “inductive hypothesis”, that the claim holds for a
particular value of n ≥ 0. To complete the “inductive step”, we show that
if W ⊆ span(E) is a set of n + 1 linearly independent vectors from span(E),
then n+1 ≤ m, and there exists a subset F ⊆ E with |F| = m− (n+1) such
that span(E) = span(W ∪ F).

So let W = {w1, . . . ,wn+1} ⊆ span(E) be n + 1 linearly independent
vectors from span(E). The subset W− = {w1, . . . ,wn} = W \ {wn+1} is
also linearly independent (by Theorem 6, the Removal Theorem). By the
“inductive hypothesis”, we have n ≤ m, and also there exists a subset F+ =
{f1, . . . , fm−n} ⊆ E with |F+| = m− n such that

span(E) = span(W− ∪ F+). (1)

Since wn+1 ∈ span(E) = span(W− ∪ F+) as per (1), we have

wn+1 = a1w1 + · · ·+ anwn + b1f1 + · · ·+ bm−nfm−n (2)

for some scalars a1, . . . , an, b1, . . . , bm−n. If n = m or b1 = · · · = bm−n = 0,
then (2) expresses wn+1 as a linear combination of w1, . . . ,wn, which is im-
possible since w1, . . . ,wn+1 are linearly independent by assumption. Hence,
we must have n + 1 ≤ m (as claimed), and also that bi ̸= 0 for some
i ∈ {1, . . . ,m − n}. Without loss of generality, assume that b1 ̸= 0, and
then “solve for f1” in (2):

f1 = b−1
1 wn+1− b−1

1 a1w1−· · ·− b−1
1 anwn− b−1

1 b2f2−· · ·− b−1
1 bm−nfm−n. (3)

It is the vector f1 that will be “replaced” by wn+1.
Define

F = {f2, . . . , fm−n} = F+ \ {f1},
which has |F| = m− n− 1 = m− (n+ 1) vectors. From (3), we see that

f1 ∈ span({w1, . . . ,wn+1, f2, . . . , fm−n}) = span(W ∪ F).

Since we also clearly have W− ∪ F ⊆ span(W ∪ F), it follows that

W− ∪ F+ = W− ∪ {f1} ∪ F ⊆ span(W ∪ F). (4)

Recalling (1) from the “inductive hypothesis”, we have span(E) = span(W−∪
F+), which means that every vector in span(E) is a linear combination of
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the vectors in W− ∪ F+; and by (4), each of the vectors in W− ∪ F+ is a
linear combination of the vectors in W ∪ F. From this argument, we obtain
span(E) ⊆ span(W ∪ F). Since the W ∪ F ⊆ span(E), it follows that

span(E) = span(W ∪ F)

as claimed.
We have thus completed the proof of the “inductive step”, so the overall

claim follows by the principle of mathematical induction.

The proof of Theorem 7 also justifies Algorithm 2, given below, which
finds the subset F as guaranteed under the conditions of Theorem 7.

Algorithm 2 Exchange algorithm
Input: Two lists of distinct vectors [e1, . . . , em] and [w1, . . . ,wn].
1: if n > m then
2: return FAIL (“[w1, . . . ,wn] is not linearly independent.”)
3: end if
4: Initialize F = [f1, . . . , fm] = [e1, . . . , em].
5: for k = 1, . . . , n do
6: Find scalars a1, . . . , ak−1 and b1, . . . , bm−k+1 such that

wk = a1w1 + · · ·+ ak−1wk−1 + b1f1 + · · ·+ bm−k+1fm−k+1.

7: if no such scalars are found then
8: return FAIL (“wk /∈ span({e1, . . . , em}).”)
9: else if b1 = · · · = bm−k+1 = 0 then

10: return FAIL (“[w1, . . . ,wk] is not linearly independent.”)
11: end if
12: Pick any i ∈ {1, . . . ,m− k + 1} such that bi ̸= 0.
13: Discard fi, and re-number the remaining vectors F = [f1, . . . , fm−k].
14: end for
15: return F .
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