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1 Linear dependence

We say a set of vectors is linearly dependent if there is some vector in the
set that can be expressed as a linear combination of the others. If a set of
vectors is not linearly dependent, we say it is linearly independent.ﬂ

Examples.

1. The set {(1,0,0),(0,1,0),(2,2,0)} is linearly dependent, because the
third vector is twice the sum of the first two.

2. The set {(1,0,0),(1,1,0)} is linearly independent; there is no way to
write either vector as a scaling of the other.

3. The empty set is (trivially) linearly independent.
4. Any set containing 0 (the empty sum) is linearly dependent. |

Equivalent definition: A set of vectors 8 is linearly dependent if O can be
written as a ‘“not-all-zeros” linear combination of a non-empty subset of S;
i.e., for some distinct vq,..., vy € 8 with k£ > 1, and some ¢y, ...,c; € R not
all equal to 0,

avi+---+cve = 0.

This version doesn’t “blame” any individual vector for the linear dependence.

Example. Theset {(1,0,0),(0,1,0),(2,2,0)} is linearly dependent because

1 0 2 0
2 (0] + 2 (1] + (-1) |2] = |o]. 1

0 0 0 0
'We say a list of vectors (vi,...,vy) is linearly dependent (or “vi,...,v} are linearly dependent”) if
either (i) some vector in the list appears more than once, or (ii) the set {vy,..., vy} is linearly dependent. If

neither (i) nor (ii) holds, it is linearly independent. By “k linearly independent vectors”, we mean a linearly
independent list of k distinct vectors.




Linear dependence COMS 3251 Fall 2022 (Daniel Hsu)

2 CR factorization

The following algorithm takes as input an m x n matrix A and returns a
subsetf] of its columns that (as we’ll see) is linearly independent.

Algorithm 1 Greedy algorithm for CR factorization
Input: A =[a,...,a,], an m X n matrix.
1: Initialize C' to the empty list of m-vectors.
2. for k=1,...,ndo
3: If a; is not in CS(C'), then append ay, to the end of C.
4: end for
5. return C.

Example. Consider the execution of Algorithm [1] on the following matrix:

L I 1234
A= |a; ay a3 a4| = (2 4 4 4
e 4 365 4

Initially: C' is the empty list.

Iteration k = 1: a; ¢ CS(C), so a; is appended to C. At the end of
this iteration,

4 1
C = al = 2
1 3

Iteration k = 2: ay = 2ay, so there is no change to C.

[teration k = 3: ag ¢ CS(C), so az is appended to C. At the end of
this iteration,

T 1 13
C = a; ag = 2 4
UG 35
e Iteration k = 4: a4 = 2a3 — 2ay, so there is no change to C. |

2The algorithm returns a list of columns (in the form of a matrix). However, it will be guaranteed that
the columns in the list are distinct.
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Let d be the number of m-vectors in C' at the end of Algorithm [T}, so C
is an m X d matrix. Later, we’ll see that the number d is a fundamental
property of the matrix A.

Throughout the execution of Algorithm [T} the vectors in C are, by con-
struction, linearly independent (cf. Theorem , the Growth Theorem). If a
column of A is not appended to C, then it is a linear combination of the
previous columns that were appended to C.

Therefore, alongside the execution of Algorithm (1| (or in another loop over

the columns of A), we can construct a d x n matrix R such that, for each
k=1,...,n:

e If a; was the ith column appended to C, then the kth column of R has
a 1 as its ith component and 0’s elsewhere.

e If a; was not appended to C', then the kth column of R reveals how
to express a; as a linear combination of the vectors among ay,...,a;_;
that were appended to C'. By Theorem [I], there is only one choice for
this column of R.

Theorem 1 (Unique Representations Theorem). If the columns of a matriz
B are linearly independent, and Bx = By, then x =y.

Proof. Let B = [by,...,bi] be matrix whose columns are k linearly inde-
pendent vectors. Suppose Bx = By for some x = (z1,...,2;) and y =
(y1,-.-,9k). Then B(x —y) = 0, meaning

(1 —y) b1+ -+ (x, —yp) b = 0.

Suppose for sake of contradiction that x # y. Then z; # y; for some i;
without loss of generality, assume ¢ = 1. We can thus “solve for by”:

XTo — T —
b1:—2 y2b2—---— k ykbk,
L1 — Y1 11—
so by is a linear combination of the other b;’s, a contradiction of the linear
independence of {by,...,b;}. Hence we conclude that x =y. O

The matrix R from above is a transcript for the execution of Algorithm
on input A. It also shows how to “reproduce” A via matrix multiplication:

A = CR.
This is called the CR factorization of A.
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Continuing the previous example. For the columns of A that were not
included in C, we have

2 1 3 13 5]

41 = 221 +0 |4 = (2 4 {O ,

|7 3] 15 |3 5] -

4] (1] 3] (1 3] Ly

4 =-=2 (2| +2 |4 = (2 4 [ NE

4] 3] 5] |3 5] :

Therefore,
1 3
1 20 =2 1 20 =2
A = 3451{001 2]—03, where R_[()Ol 2]. |

From the CR factorization A = C'R, we see that every linear combination
of the columns of A is a linear combination of the columns of C'. In other

words, CS(A) = CS(C).

3 Reduced row echelon form

The matrix R described above has a property called reduced row echelon
form. It is a special case of a property called row echelon form.

e We say a matrix is in row echelon form (REF) if:

— any all-zeros row appears below all non-zero rows; and

— for any non-zero row, the left-most non-zero entry—which is called
the leading entry (a.k.a. pivot) for the row—is in a column that is
strictly to the right of the columns that contain leading entries of
any previous rows.

e We say a matrix is in reduced row echelon form (RREF) if:

— the matrix is in REF;
— every leading entry is equal to 1; and

— the column containing a leading entry has 0’s in all other entires.

(It is typical to drop the all-zeros rows of a matrix in REF or RREF.)
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Example of a matrix in REF.

2 4 10 16
00 5 10
00 0 0

This matrix has two non-zero rows. The leading entry of each non-zero row
is underlined. The leading entry for the first row is in the first column. The
leading entry for the second row is in the third column. |

Example of a matrix in RREF.
120 -2 .
001 2
Our discussion about Algorithm [1] has established the following theorem.

Theorem 2. The execution of Algorithm |1} on a matric A € R"™ " pro-
duces, for some d € {0,...,n}, a matriz C € R™? of d linearly independent
columns of A; furthermore, there exists a matrizx R € R™" in RREF, without
any all-zeros rows, such that A = CR.

A remarkable property of matrices in RREF is the following theorem.

Theorem 3. The non-zero rows of a matrix in RREF are linearly indepen-
dent.

Proof. If the jth row of the matrix has a leading entry in the kth column,
then all other non-zero rows of the matrix have 0’s in their kth entries, and
hence the jth row is not in the span of the other non-zero rows. ]

4 Rank

Recall that d denotes the number of linearly independent columns picked out
by the execution of Algorithm [Ijon A. We'll see next that this number d is
a fundamental quantity associated with A.

Theorem 3| implies that the d rows of the aforementioned matrix R are
linearly independent. Since A = C'R, every row of A is a linear combination
of the d rows of R.

In fact, it turns out that A must also have d linearly independent rows.
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Theorem 4. For any non-negative integer k and any matrix A, the following
statements are equivalent:

e A has at least k linearly independent columns.
e A has at least k linearly independent rows.

Proof. Since we can interchange the roles of rows and columns, it suffices to
prove that if A has at least k linearly independent rows, then A has at least
k linearly independent columns.

So assume A has at least k linearly independent rows. Now consider the
execution of Algorithm [Ijon A. Say it produces a matrix C' with d linearly
independent columns; let R be the d x n matrix in RREF such that A = CR
as guaranteed by Theorem [2 Since the rows of A are linear combinations
of the d rows of R, and there are at least k linearly independent rows of
A (by assumption), it must be that d > k (Fact [I)). Since C' contains d
linearly independent columns of A, it follows that A has at least k linearly
independent columns. ]

Fact 1. Let € and W be finite sets of vectors. If W is a linearly independent
subset of span(€), then |[W| < |€].

Theorem [4] is a fundamental theorem of linear algebra, tying together the
columns of a matrix and the rows of a matrix, which a priori may otherwise
seem to not have anything to do with each other.

Define the rank of a matrix A to be the (maximum) number of linearly
independent columns in A. By Proposition [l (below), this number is the
same as the number of column vectors in C returned by the execution of
Algorithm [1] on input A. And by Theorem [ it is also the (maximum)
number of linearly independent rows of A.

Proposition 1. If a matriz A contains k linearly independent columns, then
the execution of Algorithm 1) on input A will produce a matriz C containing
k linearly independent columns of A.

Proof. Suppose A has k linearly independent columns. By Theorem [ A
has k linearly independent rows. The claim is now proved using the same
argument from (the second paragraph of) the proof of Theorem . ]
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Corollary 1. The rank of a matrix A is equal to all of the following:

e the number of columns of A in C' returned by the execution of Algo-
rithm [1 on input A,

e the number of linearly independent columns of A, and

e the number of linearly independent rows of A.

Proof. Apply Theorem [] and Proposition [I], each with k& being the number
of linearly independent columns of A. ]



Linear dependence COMS 3251 Fall 2022 (Daniel Hsu)

A  Growth Theorem

Theorem 5 (Growth Theorem). Let 8 be a set of vectors, and let v be a
vector not in 3.

o Ifv € span(8), then SU{v} is linearly dependent and

span(8) = span(SU {v}).

o If v ¢ span(8), then
span(8) C span(SU{v});
and if, additionally, 8 is linearly independent, then so is S U {v}.

Proof. Assume v € span(8). Then v can be written as a linear combination
of other vectors {vy,...,v,,} C 8, say,

V = a1Vy+ -+ V.

This means that 8 U {v} is linearly dependent. Now consider any vector
u € span(8 U {v}). This means u can be written as a linear combination of
{uy,...,u,} C8SU{Vv}, say,

u = bu; +---+byu,.

We may assume that the u;’s are distinct (else use a linear combination of
fewer vectors from 8 U {v}). If, say, u,, = v, then we can still write

u = bu+ -+ by, u, 1 +b(arvy+ -+ Vi),

which is a linear combination of vectors from 8. Hence we have u € span(8).
So we conclude that span(8 U {v}) C span(§). Since we clearly also have
span(8) C span(8 U {v}), it follows that span(8) = span(8 U {v}).

Now assume v ¢ span(8). Clearly v € span(8 U {v}). So span(8) #
span(8U{v}). Since we clearly also have span(8) C span(SU{v}), it follows
that span(8) C span(8 U {v}).

Finally, assume both that v ¢ span(8) and that 8 is linearly independent.
Suppose for the sake of contradiction that 8 U {v} is linearly dependent. By

8



Linear dependence COMS 3251 Fall 2022 (Daniel Hsu)

assumption, v is not in 8, and v is not a linear combination of vectors in S.
So the linear dependence of S U {v} implies that there is a vector u € 8 that
is not equal to v, but can be written as a linear combination of v and some

{uy,...,u,} € 8\ {u}, say,
u = byv +bug + .-+ byu,.

If by = 0, then we have expressed a vector in & as a linear combination of other
vectors in §, a contradiction of the assumption that § is linearly independent.
If by # 0, then we can “solve for v’ and write

v = bylu—bytbyuy — - — by thyuy,

which expresses v as a linear combination of vectors from §, a contradiction
of the assumption that v ¢ span(8). Therefore, we conclude that 8 U {v} is
linearly independent. ]

B Removal Theorem

Theorem 6 (Removal Theorem). Let 8 be a set of vectors.

o IfS is linearly dependent, then there is a vector v € & such that
span(8 \ {v}) = span(8).

o If 8 is linearly independent, then every proper subset 8' C 8 is linearly
independent and
span(8') ¢ span(8).

Proof. Assume & is linearly dependent. Therefore, there exists v € § such
that v can be written as a linear combination of other vectors {vy,...,v;,} C

S\ {v}, say,

V = a1Vy+ -+ QG Vm.

Now consider any vector u € span(8). This means u can be written as a
linear combination of {uy,...,u,} C 8, say,

u = bu; +---+byu,.
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We may assume that the u;’s are distinct (else use a linear combination of
fewer vectors from 8). If, say, u,, = v, then we can still write

u = bu+---+ by +bp(arvi+ -+ an Vi),

which is a linear combination of vectors from 8 \ {v}. Hence we have u €
span(8\ {v}). So we conclude that span(8) C span(8\{v}). Since we clearly
also have span(8 \ {v}) C span(8), it follows that span(8 \ {v}) = span(8).

Now instead assume 8§ is linearly independent. Consider any proper subset
§ C 8, and take any v € 8\ 8. First, & is linearly independent since
otherwise there exists a vector in 8 (and hence in 8) that can be written as a
linear combination of other vectors in 8 (which are also in 8). Next, suppose
for sake of contradiction that v can be written as a linear combination of
{vi,...,vin} C &, say,

v = a1V1+"'+ame,

then there exists a vector in 8 (namely v) that can be written as a linear
combination of other vectors in 8 \ {v} (which happen to be in 8'). This
conclusion contradicts the assumption that 8 is linearly independent. Hence
v is not in span(8’). Since v € 8§ C span(8), it must be that span(8’) #
span(8). And since we clearly have span(8’) C span(8), it must be that
span(8’) C span(8). O

C Exchange Theorem

Theorem [7], given below, is an elaboration of Fact [1]

Theorem 7 (Exchange Theorem). Let & and W be finite sets of vectors. If
W is a linearly independent subset of span(€), then

e [W] < €], and

o there is a subset F C & with |F| = |E] — |[W| such that span(E) =
span(WU F).

Proof. Let m = || and n = |[W|. The proof is by induction on n. If n = 0,
then clearly n < m, and we can take ¥ = € to establish the rest of the claim.

10



Linear dependence COMS 3251 Fall 2022 (Daniel Hsu)

Now assume, as the “inductive hypothesis”, that the claim holds for a
particular value of n > 0. To complete the “inductive step”, we show that
if W C span(€) is a set of n + 1 linearly independent vectors from span(&),
then n+ 1 < m, and there exists a subset F C € with |F| = m — (n+1) such
that span(€) = span(WU F).

So let W = {wy,...,wy1} C span(€) be n + 1 linearly independent
vectors from span(€). The subset W= = {wy,...,w,} = W\ {w,,1} is
also linearly independent (by Theorem @, the Removal Theorem). By the
“iInductive hypothesis”, we have n < m, and also there exists a subset F© =
{f,,.... £} C & with |F*| = m — n such that

span(€) = span(W~ UTF™"). (1)

Since Wy, 11 € span(&) = span(W~ UJFT) as per (1) we have

Wpt1 = 1W1 + o+ apyw, + blfl + e+ bm—nfm—n (2)
for some scalars a1,...,a,,b1,...,bp—p. fn=morb =---=b,_, =0,
then |(2)| expresses w,,;1 as a linear combination of wy, ..., w,, which is im-
possible since wy, ..., W, are linearly independent by assumption. Hence,

we must have n + 1 < m (as claimed), and also that b; # 0 for some
i € {1,...,m —n}. Without loss of generality, assume that b; # 0, and

then “solve for f;” in [(2)
f1 == bl_lwnﬂ — bl_lCL1W1 — bl_lCLan — bl_lbgfg — bl_lbm_nfm_n. (3)

It is the vector f; that will be “replaced” by w;, .
Define

F = {f,... £} = F\ {1},
which has |[F| =m —n —1=m — (n+ 1) vectors. From [(3)] we see that

fi € span({wy,...,wWyi1,fo,.. ., f,}) = span(WUF).
Since we also clearly have W~ U F C span(W U ), it follows that
W UF" = W U{fij}uF C span(WUF). (4)

Recalling (1) from the “inductive hypothesis”, we have span(€) = span(W~U
FT1), which means that every vector in span(€) is a linear combination of

11
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the vectors in W~ U FT; and by [(4), each of the vectors in W~ U FT is a
linear combination of the vectors in WU &F. From this argument, we obtain
span(&) C span(WU F). Since the WU F C span(€), it follows that

span(€) = span(WUF)

as claimed.
We have thus completed the proof of the “inductive step”, so the overall
claim follows by the principle of mathematical induction. ]

The proof of Theorem [7] also justifies Algorithm 2, given below, which
finds the subset F as guaranteed under the conditions of Theorem [7]

Algorithm 2 Exchange algorithm

Input: Two lists of distinct vectors [ey,...,e,] and [wq, ..., w,].
1: if n > m then
2. return FAIL (“[wy,...,w,] is not linearly independent.”)
3. end if
4: Initialize F' = [fl, ce ,fm] = [el, ce ,em].
5 for k=1,...,n do
6: Find scalars aq,...,ar_1 and by, ..., b1 such that

Wi = aWi + -+ a1 Wit + 0 + -+ b B

7: if no such scalars are found then

8: return FAIL (“wy ¢ span({ey,...,eny}).”)

9: elseif by =--- =0b,,_1+1 = 0 then

10: return FAIL (“[wy,..., wy] is not linearly independent.”)

11: end if

12: Pick any i € {1,...,m — k + 1} such that b; # 0.

13: Discard f;, and re-number the remaining vectors F' = [f, ..., £, _&].

14: end for
15: return F.
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