
Vector spaces and bases
COMS 3251 Fall 2022 (Daniel Hsu)

1 Vector spaces

The n-dimensional Cartesian space Rn is an example of a vector space. Infor-
mally, vector spaces are collections of objects that can be “added” together
and that can be “scaled”, and these notions of adding and scaling behave in
the way we would expect from standard algebra. Besides n-tuples of numbers,
many other collections of objects share these properties, including polynomi-
als, matrices, functions, and sequences; we just need to suitably define what
it means to add and scale these objects.

Formally, a (real) vector space is a mathematical structure consisting of a
set V of objects, which we call vectors, bundled together with two operations,
add : V× V → V and scale : R× V → V, described as follows.

• Vector addition: Given any two vectors u,v ∈ V, add(u,v) returns
another vector in V. We usually write this as u+ v.

• Scalar multiplication: Given any scalar c ∈ R and vector v ∈ V,
scale(c,v) returns another vector in V. We usually write this as cv.

These operations must satisfy the following so-called vector space properties:

VS1 (Vector addition is commutative.) For all u,v ∈ V,

add(u,v) = add(v,u).

VS2 (Vector addition is associative.) For all u,v,w ∈ V,

add(u, add(v,w)) = add(add(u,v),w).

VS3 (Vector addition has an identity.) There exists a vector 0V ∈ V (called
the zero vector) such that for all v ∈ V,

add(0V,v) = v.

(We’ll often omit the subscript V in 0V.)
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VS4 (Vector addition has inverses.) For every v ∈ V, there exists a vector
u ∈ V, called an additive inverse of v, such that

add(u,v) = 0V.

An additive inverse of v is usually written as −v.1

VS5 (Scalar multiplication has an identity.) For all v ∈ V,

scale(1,v) = v

(where 1 ∈ R is the multiplicative identity in R).

VS6 (Scalar multiplication is associative.) For all v ∈ V and c, d ∈ R,

scale(c, scale(d,v)) = scale(c d,v).

VS7 (Scalar multiplication distributes over vector addition.) For all u,v ∈
V and c ∈ R,

scale(c, add(u,v)) = add(scale(c,u), scale(c,v)).

VS8 (Scalar multiplication distributes over scalar addition.) For all v ∈ V
and c, d ∈ R,

scale(c+ d,v) = add(scale(c,v), scale(d,v)).

What we have defined above are vector spaces over the real numbers R. One
can generalize even further (though we will not do so) to vector spaces over
certain other “number systems” called fields, such as the rational numbers,
the complex numbers, and the integers modulo a prime power q.

The vector space properties may seem rather “obvious” for Rn. But their
purpose is to spell-out the required properties for (other) vector spaces that
will make them behave like Rn in the sense that we have studied it so far.
Thus, we can develop techniques for working with all of these vector spaces in
a unified way. After all, we don’t have different arithmetic rules for kilograms
and meters, even though mass and distance are different types of scalars.

The vector space properties also help us understand which (possibly in-
tuitive) properties of Rn are not necessarily shared by other vector spaces.
For instance, the notion of “distance” between vectors is something that goes
beyond vector spaces, but it is one we may be accustomed to in Rn.

1We don’t need to assume that additive inverses are unique, as it will be implied by other properties.
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Note. Some of the notation we have been using are not technically opera-
tions explicitly specified by a vector space, such as u+v+w and u−v. We
are really using shorthand and appealing to some vector space properties to
ensure that these notations are unambiguous:

u+ v +w = u+ (v +w) = (u+ v) +w,

where the latter equality is by VS2; and

u− v = u+ (−v),

where the meaning of −v comes from VS4.

In this course, our primary focus will remain on Rn (and subspaces of
Rn, defined next), although it is useful to keep in mind other common vector
spaces to appreciate the wide applicability of linear algebra. We will take
examples from some of these other vector spaces.

Examples.

1. The polynomials (with real coefficients), denoted by P(R). A polynomial
in P(R) is an expression of the form

a0t
0 + a1t+ a2t

2 + · · ·+ adt
d.

In this expression,

• t is a variable (a.k.a. indeterminant, formal variable); and tk, for
any non-negative integer k, is the kth power of t;

• d can be any non-negative integer; and

• the ak’s can be any real numbers, and ak is called the coefficient
of tk in the polynomial f .

• The coefficient for tk is 0 if tk does not appear in the expression.
We also usually drop t0 from the expression and just write a0 +
a1t+ a2t

2 + · · ·+ adt
d.

The degree of a polynomial f(t) ∈ P(R) is the largest k such that f has
a non-zero coefficient for tk. Two polynomials f(t) and g(t) are equal
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if they have the same degree, and if, for each k, their coefficients for tk

are the same. The zero polynomial 0(t) has coefficient 0 for all tk (and,
by convention, we say its degree is −1).

To add polynomials f(t) and g(t), we create a new polynomial for which
the coefficient of each tk is the sum of the corresponding coefficients of
f(t) and g(t). And to scale a polynomial f(t) by the scalar c, we create
a new polynomial for which the coefficient of each tk is obtained by
multiplying the corresponding coefficient of f(t) by c.

2. The polynomials (with real coefficients) of degree at most d, denoted by
Pd(R).
The rules for adding and scaling are just as they are for P(R). We just
need to ensure that these operations always leave us with a polynomial
of degree at most d, and indeed they do.

The vector space Pd(R) resembles Rd+1.2 On the other hand, P(R) is
rather different.

3. The m× n matrices (with real entries), denoted by Mm×n(R).
We have already defined how to add and scale such matrices.

The vector space Mm×n(R) resembles Rmn.

4. The (real-valued) continuous functions on R, denoted by C(R,R).
Recall, from calculus, that functions f ∈ C(R,R), such as such as
f(t) = sin(t) and f(t) = et, are those that satisfy some tedious property
involving epsilons and deltas.3

To add two functions f : R → R and g : R → R, we create a new
function h : R → R such that h(t) = f(t) + g(t) for all t ∈ R. And to
scale a function f : R → R by c ∈ R, we create a new function h : R → R
such that h(t) = cf(t) for all t ∈ R. Checking that f +g ∈ C(R,R) and
cf ∈ C(R,R) can be done using an argument involving epsilons and
deltas.

2In particular, Pd(R) and Rd+1 are isomorphic, which means that there is a bijective linear map between
the two spaces.

3A function f : R → R is continuous if, for every t0 ∈ R and every ϵ > 0, there exists δ > 0 such that
f(t) ∈ (f(t0)− ϵ, f(t0) + ϵ) for every t ∈ (t0 − δ, t0 + δ).
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The vector space C(R,R) is very different from Rn, and also very dif-
ferent from P(R).

5. The (real-valued) continuous functions on [0, 1], denoted by C([0, 1],R).
This similar to C(R,R), except that we only consider the behavior of
functions on the interval [0, 1]. For example, f(t) = |t| and g(t) = t are
different functions when considered in C(R,R), but they are the same
function in C([0, 1],R).

6. The (real-valued) functions on S, denoted by RS. Here, S may be any
set (e.g., S = R, S = N, S = {1, . . . , n}, S = {1, . . . ,m} × {1, . . . , n}).
The rules for adding and scaling functions in RS are the same as that
for C(R,R), except we consider t ∈ S.

Notice that RS for S = {1, . . . , n} resembles Rn, and RS for S =
{1, . . . ,m} × {1, . . . , n} resembles Mm×n(R). The set of all real-valued
functions on [0, 1] is R[0,1], which contains C([0, 1],R).

7. Vector space containing only the zero vector {0}. A minimal vector
space is one that only contains the zero vector (mandated by VS3).
Note that the zero vector can be interpreted however you like (e.g., a
zero polynomial, a matrix with all entries equal to 0). There’s not any
point in defining how to add or scale vectors in this space, since the
output must always be 0.

Because general vector spaces permit linear combinations, the concept of
linear independence—which we had defined for Rn—can be directly “ported”
over to general vector spaces. Also, many of the theorems we have seen for Rn

also hold for general vector spaces (with cosmetic changes). Here are some
of them:

Theorem 1 (Unique Representations Theorem). Suppose V is a vector space,
{b1, . . .bn} is a set of n linearly independent vectors from V, and

x1 b1 + · · ·+ xn bn = y1 b1 + · · ·+ yn bn.

Then (x1, . . . , xn) = (y1, . . . , yn).

Theorem 2 (Growth Theorem). Let S be a set of vectors from a vector space
V, and let v be a vector not in S.
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• If v ∈ span(S), then S ∪ {v} is linearly dependent and

span(S) = span(S ∪ {v}).

• If v /∈ span(S), then

span(S) ⊊ span(S ∪ {v});

and if, additionally, S is linearly independent, then so is S ∪ {v}.

Theorem 3 (Removal Theorem). Let S be a set of vectors from a vector
space V.

• If S is linearly dependent, then there is a vector v ∈ S such that

span(S \ {v}) = span(S).

• If S is linearly independent, then every proper subset S′ ⊊ S is linearly
independent and

span(S′) ⊊ span(S).

Theorem 4 (Exchange Theorem). Let E and W be finite sets of vectors from
a vector space V such that span(E) = V. If W is a linearly independent subset
of V, then

• |W| ≤ |E|, and

• there is a subset F ⊆ E with |F| = |E|−|W| such that V = span(W∪F).

2 Subspaces

Suppose V is a vector space (over R). We say a subset W ⊆ V is a sub-
space of V if it is a vector space with the same vector addition and scalar
multiplication operations as V.

To check that W ⊆ V is a vector space, we need to verify the following:

• The vector addition and scalar multiplication operations, which we de-
fined for V, only return vectors in W when used on vectors from W.
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• The vector space properties VS1–VS8 hold for W.

Fortunately, many of the vector space properties hold for W because they
hold for vectors in V. So, it turns out to be necessary and sufficient for
W ⊆ V to satisfy the following:

SS1 (W is closed under vector addition.) add(u,v) ∈ W for all u,v ∈ W.

SS2 (W is closed under scalar multiplication.) scale(c,v) ∈ W for all c ∈ R
and v ∈ W.

SS3 (VS3 holds for W.) 0 ∈ W.

SS1 and SS2 make sure that the vector addition and scalar multiplication
only return vectors in W when used on vectors in W. We already know that
VS1, VS2, and VS5–VS8 hold for vectors in V, so they also hold for vectors
in W; SS3 ensures that VS3 holds for W.

It may seem like we forgot to ensure that VS4 holds for W. But it turns
out that we get it for free (after ensuring SS1–SS3). Indeed, for any v ∈ V,
the unique additive inverse of v is scale(−1,v) (as proved in Theorem 11 from
Appendix B). For v ∈ W, SS2 ensures that scale(−1,v) ∈ W as well, so the
unique additive inverse of any vector in W is also contained in W.

Examples.

1. Both V and {0} are subspaces of V for any vector space V.

2. Pd(R) is a subspace of P(R) for any non-negative integer d.

3. Pd(R) is a subspace of Pd′(R) whenever d ≤ d′.

4. We say a polynomial f(t) ∈ P(R) is even if f(t) = f(−t). An example
of an even polynomial is f(t) = 2t4 + t2 + 3, and an example of a
non-even polynomial is f(t) = t5. The even polynomials Peven(R) is a
subspace of P(R).

5. C([0, 1],R) is a subspace of R[0,1].
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6. We say a function f : R → R is periodic with period P > 0 if f(t+P ) =
f(t) for all t ∈ R. The subset Cperiodic([0, 1],R) of C([0, 1],R) that are
periodic with period 1 is a subspace of C([0, 1],R). In the context of
functions defined on [0, 1], periodicity simply requires f(0) = f(1).

(What about additional constraints, such as f(0) = f(1/3) = f(1)?)

7. {(x, y, 0) : (x, y) ∈ R2} is a subspace of R3.

(What about {(x, y, 1) : (x, y) ∈ R2}?)

8. If V is a vector space, and if W1 and W2 are both subspaces of V, then
W1 ∩W2 is also a subspace of V.
(What about W1 ∪W2?)

9. If V is a vector space and S ⊆ V, then span(S) is a subspace of V.
Let us verify this example, since it is particularly important in this
course. First we establish SS1 and SS2. Suppose u and v are in span(S).
This means we can write each of u and v as a linear combination
of vectors from S. Let {s1, . . . , sn} ⊆ S be the union of the vectors
involved in these linear combinations, and write u = x1s1 + · · · + xnsn
and v = y1s1 + · · · + ynsn. Then for any scalar c ∈ R, we can write
cu+ v = (cx1 + y1)s1 + · · ·+ (cxn + yn)sn. (Here, we have used several
vector space properties enjoyed by V.) Therefore cu + v ∈ span(S) as
well; this establishes SS1 and SS2. To establish SS3, observe that the
“empty” linear combination of vectors from S results in 0, and hence
0 ∈ span(S).

(Can a subspace of V contain S but not span(S)?)

10. If A is an m× n matrix, then CS(A) is a subspace of Rm.

This is really just a special case of the previous example, since CS(A)
is the span of the columns of A, and each column of A is an m-vector.

Because a subspace is, in its own right, a vector space, the theorems
we have enumerated above for general vector spaces are also applicable to
subspaces of general vector spaces.
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3 Bases

We say a set of vectors B from a vector space V is a basis for V if:

1. B is linearly independent, and

2. span(B) = V.

(The plural form of “basis” is “bases”.) Thus, a basis for a vector space V is
a minimal collection of vectors by which we can construct all of V simply via
linear combination. A basis is finite if its size (a.k.a. cardinality) is finite.

Example. A basis for R4 is E4 = {e1, e2, e3, e4}, where

e1 =


1
0
0
0

 , e2 =


0
1
0
0

 , e3 =


0
0
1
0

 , e4 =


0
0
0
1

 .

Observe that ei cannot be obtained as a linear combination of the other
ej’s, since the other ej’s (for j ̸= i) have 0’s in the ith component. So E4

is linearly independent. Any 4-vector x = (x1, x2, x3, x4) can be written as
x = x1e1+x2e2+x3e3+x4e4. So every 4-vector is in span(E4). (This naturally
generalizes to En = {e1, . . . , en}, for any n.)

The basis from the previous example is called the standard basis (a.k.a. co-
ordinate basis). And it is easy to generalize the example to Rn for any n
(and with it, the definition of the standard basis for Rn; the symbol “ei” is
commonly used to denote the ith standard basis vector, regardless of n). But
the standard basis is not the only basis for Rn, as the next example shows.

Example. Another basis for R4 is F4 = {f1, f2, f3, f4}, where

f1 =


1
0
0
0

 , f2 =


1
1
0
0

 , f3 =


1
1
1
0

 , f4 =


1
1
1
1

 .
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For instance, the vector x = (5, 4, 8,−1) can be expressed as a linear combi-
nation of f1, f2, f3, f4 in the following way:

x = f1 − 4 f2 + 9 f3 − f4.

In general, we define Fn = {f1, . . . , fn} for Rn for any n. We verify that Fn

is a basis for Rn. (Caution: Unlike the standard basis, Fn is not a commonly-
used basis; we only define it here for this example.)

Note that e1 = f1, and ei = fi − fi−1 for every i > 1. So every standard
basis vector can be obtained as a linear combinations of vectors in Fn. This
implies that span(Fn) = Rn.

Using mathematical induction, we prove that {f1, . . . , fi} is linearly inde-
pendent for every i. The singleton set {f1} is linearly independent since f1 is
not the zero vector. This covers the base case. And for any i > 1, the vector
fi is not in span({f1, . . . , fi−1}) on account of the 1 in the ith component in
fi. So by the inductive hypothesis that {f1, . . . , fi−1} is linearly independent,
and the Growth Theorem, the set {f1, . . . , fi} is linearly independent.

Even though there may be many different bases for a vector space V, they
all have exactly the same number of vectors.

Theorem 5 (Size-of-Basis Theorem). Suppose a vector space V has a finite
basis. Then all bases for V have exactly the same number of vectors.

Proof. Let E denote a finite basis for V, and consider any other basis B for
V. (Here, we denote cardinality of a set S by |S|.)

Suppose for sake of contradiction that |B| > |E|. Let B′ be a subset of
B containing exactly |E| + 1 vectors. Since B is linearly independent, so is
B′ by the Removal Theorem (Theorem 3). And since B′ is a set of vectors
from V = span(E), the Exchange Theorem implies that |B′| ≤ |E|. But this is
impossible because |B′| = |E|+1: So it must be that B is finite and |B| ≤ |E|.

Now we reverse the roles of E and B. Since B is a basis for V, we have
span(B) = V. And since E is a linearly independent set of vectors from
V = span(B), the Exchange Theorem (Theorem 4) implies that |E| ≤ |B|.

Hence, we conclude that |B| = |E|.

The size of a finite basis for V, which is the same for every such basis,
is called the dimension of V, written dim(V).4 For example, dim(Rn) = n

4In this class, infinite dimensional vector spaces will only come up occasionally in examples. The main
focus of the class will be on finite dimensional vector spaces, and Rn in particular.
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because the standard basis has n vectors, e1, e2, . . . , en.

Theorem 6 (Basis Sufficiency Theorem). Let V be an n-dimensional vector
space. Then the following statements are equivalent:

1. B is a basis for V.

2. B is a set of n linearly independent vectors from V.

3. B is a set of n vectors from V with span(B) = V.

Proof. The first statement implies the other two by the definition of basis
and the Size-of-Basis Theorem (Theorem 5).

We now show that the second statement implies the first statement. Let
B be a set of n linearly independent vectors from V, and let E denote a basis
for V of size n. By the Exchange Theorem (Theorem 4), there is a subset F
of |E| − |B| vectors from E such that V = span(B ∪ F). Since |E| = |B|, we
can take F = ∅, so V = span(B). So B is a basis for V.

Finally, we show that the third statement implies the first statement.
Let B be a set of n vectors from V with span(B) = V, and suppose for
sake of contradiction that B is not linearly independent. Then by (repeated
application of) the Removal Theorem (Theorem 3), there is a strict subset
B′ ⊊ B of B that is linearly independent and span(B′) = V. So B′ is a basis
for V with fewer than n vectors. By the Size-of-Basis Theorem (Theorem 5),
this is impossible. So we conclude that B is linearly independent, and since
span(B) = V, B is a basis for V.

If a linearly independent set of vectors from a finite-dimensional vector
space is not a basis, then it can be “completed” to become a basis—i.e.,
augmented with additional vectors so that the resulting set is a basis. This
is the a direct consequence of the Exchange Theorem (Theorem 4) and the
definition of basis.

Theorem 7 (Basis Completion Theorem). Let W be a linearly independent
set of k vectors from an n-dimensional vector space V. There exists a subset
F of n− k vectors such that W ∪ F is a basis for V.
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More examples.

1. A basis for P2(R) is
{1, t, t2},

so the dimension of P2(R) is 3.

2. A basis for M3×2(R) is
1 0
0 0
0 0

 ,

0 0
1 0
0 0

 ,

0 0
0 0
1 0

 ,

0 1
0 0
0 0

 ,

0 0
0 1
0 0

 ,

0 0
0 0
0 1

,

so the dimension of M3×2(R) is 6.

3. A basis for {0} is the empty set, so the dimension of {0} is 0.

4. A basis for P(R) is
{1, t, t2, t3, . . .},

an infinite collection of vectors. The dimension of P(R) is infinite.

5. It turns out C(R,R) also has a basis, but not one we can explicitly
describe.5

Finally, a important use of a basis is to (fully) characterize a linear trans-
formation between vector spaces by its action on a basis for the input space.

Theorem 8 (Unique Linear Transformation Theorem). Let V and W be vec-
tor spaces, and suppose {v1, . . . ,vn} is a basis for V. For any w1, . . . ,wn ∈
W, there is exactly one linear transformation T : V → W such that T (vi) =
wi for all i ∈ {1, . . . , n}.

Thus, if linear transformations T : V → W and U : V → W agree on their
behavior on a basis for V, then they must agree everywhere—i.e., they must
be the same linear transformation.

If W is a subspace of the vector space V, and if B is a finite basis for W,
then by the Size-of-Basis Theorem (Theorem 5), every basis for W has |B|
vectors—i.e., the dimension of W is |B|.

5The existence of a basis for an arbitrary vector space is guaranteed by the Axiom of Choice.
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Examples.

1. Suppose V = R3 and W = {(x, y, 0) : (x, y) ∈ R2}. Then, the set

{(1, 0, 0), (0, 1, 0)}

is a basis for W, and dim(W) = 2.

2. Suppose V = R3 and W = {(x, y, x) : (x, y) ∈ R2}. Then, the set

{(1, 0, 1), (0, 1, 0)}

is a basis for W, and dim(W) = 2.

3. Suppose V = R3 and W = {(x, 2x, 3x) : x ∈ R}. Then, the set

{(1, 2, 3)}

is a basis for W, and dim(W) = 1.

4. Recall that the even polynomials Peven(R) is a subspace of P(R). A
basis for Peven(R) is

{1, t2, t4, t6, . . .}.
Like P(R), the even polynomials also has infinite dimension.

5. For any matrix A, a basis for CS(A) is given as the columns of the
matrix C from the CR factorization of A. (Recall that these columns
of C are also columns of A.)

Theorem 9 (Subspace Dimension Theorem). If W is a subspace of a vector
space V with dim(V) < ∞, then dim(W) ≤ dim(V). Moreover, if dim(W) =
dim(V), then W = V.

Proof. Let d = dim(V). Starting with the empty set, greedily construct a
maximal linearly independent set B of vectors from W (which are also from
V). By the Size-of-Basis Theorem (Theorem 5), no linearly independent
set from V can contain more than d vectors, so |B| ≤ d. So this process
terminates with a linearly independent set B ⊂ W, with 0 ≤ |B| ≤ d, such
that for any other vector w ∈ W \B, the set B ∪ {w} is linearly dependent.
By the Growth Theorem (Theorem 2), this means that w ∈ span(B) for all
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w ∈ W\B, which, in turn, implies span(B) = W. So B is a basis for W, and
|B| = dim(W) ≤ d.

If |B| = dim(W) = d, then the Basis Sufficiency Theorem (Theorem 6)
implies that B is a basis for V, and hence W = span(B) = V.

4 Coordinate representations

As we mentioned, a basis for a vector space V provides essential building
blocks for constructing all vectors in V by linear combinations. But because
a vector space V can have many bases, a vector can be constructed in many
different ways.

When we write an n-vector v as v = (v1, . . . , vn), we implicitly interpret
the coordinates (v1, . . . , vn) as specifying a linear combination of vectors from
the standard ordered basis En = (e1, . . . , en):

v = v1 e1 + · · ·+ vn en.

Here, the ordering of the basis vectors in En is important, since we really need
ei to be the ith basis vector to match up with the coordinate vi. We use the
round (non-curly) brackets to emphasize this.6 An ordered basis for a vector
space V is a basis for V in which we specify the ordering of the basis vectors.
So (v1, . . . , vn) is the coordinate representation (a.k.a. coordinates) of v with
respect to the ordered basis En.

Suppose F = (f1, . . . , fn) is an ordered basis for V = Rn, where the coor-
dinates for fj with respect to En is fj = (f1,j, . . . , fn,j):

fj = f1,j e1 + · · ·+ fn,j en.

How can we find the coordinates of a given vector v ∈ Rn with respect to F,
where v is given as coorindates v = (v1, . . . , vn) with respect to En? That is,
how do we find (x1, . . . , xn) such that v = x1f1 + · · ·+ xnfn?

Answer: Solve (e.g., using Elimination) the system of linear equations
where the jth column of the coefficient matrix F ∈ Mn×n(R) is (f1,j, . . . , fn,j),
and the right-hand side vector is (v1, . . . , vn). Since F has n linearly inde-
pendent columns, it is invertible by the Invertibility Theorem. The solution
can be expressed algebraically as F−1v.

6The use of curly braces in {e1, . . . , en} usually implies that the set is unordered. Round brackets
(a.k.a. parentheses) are usually used to specify tuples or lists, which are always ordered.
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Example. Recall that

F4 =



1
0
0
0

 ,


1
1
0
0

 ,


1
1
1
0

 ,


1
1
1
1




is an ordered basis for the vector space R4. To obtain the coordinates of
v = (5, 4, 8,−1) with respect to F4, we solve

1 1 1 1
0 1 1 1
0 0 1 1
0 0 0 1



x1
x2
x3
x4

 =


5
4
8

−1

 .

The unique solution is (x1, x2, x3, x4) = (1,−4, 9,−1).

We generalize the concept of coordinates in Rn to arbitrary n-dimensional
vector spaces V with respect to an ordered basis F = (f1, . . . , fn) for V as
follows. The coordinate representation (a.k.a. coordinates) of a vector v ∈ V
with respect to F is the (unique) vector of coefficients (c1, . . . , cn) ∈ Rn such
that v = c1f1 + · · ·+ cnfn. We use the notation [v]F to denote this coefficient
vector. The transformation [ · ]F : V → Rn is called the standard representa-
tion map for V with respect to F.

An important property of the standard representation map is linearity.7

Theorem 10. Let F = (f1, . . . , fn) be an ordered basis for a vector space V.
Then [ · ]F : V → Rn is linear.

Proof. Pick any u,v ∈ V and scalar c. We need to show that [cu + v]F =
c [u]F + [v]F. Let (x1, . . . , xn) = [u]F, (y1, . . . , yn) = [v]F, and (z1, . . . , zn) =
c [u]F + [v]F. We claim that (z1, . . . , zn) = [cu+ v]F:

z1 f1 + · · ·+ zn fn = (c x1 + y1) f1 + · · ·+ (c xn + yn) fn
= c (x1 f1 + · · ·+ xn fn) + (y1 f1 + · · ·+ yn fn)

= cu+ v.

Hence [cu+ v]F = c [u]F + [v]F, so [ · ]F is linear.

7Going in the opposite direction (from coordinates to vectors in V) is also linear. In fact, for any vectors
v1, . . . ,vn ∈ V, the linear transformation T : Rn → V defined by T (x1, . . . , xn) = x1v1+ · · ·+xnvn is linear.
This is a generalization of matrix-vector multiplication: T (x) = [v1, . . . ,vn]x.
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The standard representation map with respect to an ordered basis is useful
for computation; it allows us to work with coordinate vectors, just as we have
been doing with vectors in Cartesian spaces.

Example. Let V = P2(R), and consider the polynomial f(t) = 3t2+2t+1 ∈
V. One ordered basis for V is F = (1, t, t2), and another is H = (1, t, t2 − 1).
We have [f(t)]F = (1, 2, 3). To get [f(t)]H, we first determine

[1]H = (1, 0, 0), [t]H = (0, 1, 0), [t2]H = (1, 0, 1),

and then we compute the matrix-vector product

[f(t)]H =

[1]H [t]H [t2]H

[f(t)]F
 =

1 0 1
0 1 0
0 0 1

12
3

 =

42
3

 .

The matrix in the previous example is an example of a change-of-co-
ordinates matrix. It converts representations with respect to one basis F to
representations with respect to another basisH. In general, if F = (f1, . . . , fn)
andH = (h1, . . . ,hn) are ordered bases for a vector space V, then the change-
of-coordinates matrix from F to H is the n× n matrix[f1]H · · · [fn]H

 .

This matrix is invertible, and its inverse is the n×n matrix [[h1]F, . . . , [hn]F].
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A Unique linear transformation theorem

Proof of Theorem 8. Let B = {v1, . . . ,vn}, and define T : V → W as

T (x) = [x]B,1w1 + · · ·+ [x]B,nwn,

where [x]B,i is the ith component of the n-vector [x]B. This is a composition
of linear transformations and hence is linear. It satisfies T (vi) = wi since
[vi]B = ei for all i ∈ {1, . . . , n}.

To show that T is the only linear transformation witih this property, we
suppose there is another linear transformation U : V → W with U(vi) = wi

for all i ∈ {1, . . . , n}. We show that U(x) = T (x) for all x ∈ V:

U(x) = U([x]B,1 v1 + · · ·+ [x]B,n vn)

= [x]B,1 U(v1) + · · ·+ [x]B,n U(vn) (since U is linear)

= [x]B,1w1 + · · ·+ [x]B,nwn

= T (x).

B Extra vector space properties

Theorem 11. Let V be a vector space. The following are true for all vectors
v ∈ V and all scalars c ∈ R.

(a) scale(0,v) = 0V.

(b) scale(c,0V) = 0V.

(c) scale(−1,v) is the unique additive inverse of v.

(d) If scale(c,v) = 0V and c ̸= 0, then v = 0V.

Proof.

(a) Let −v denote an additive inverse of v (as guaranteed to exist by VS4).

17
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Then

scale(0,v) = add(0V, scale(0,v)) (by VS3)

= add(scale(0,v),0V) (by VS1)

= add(scale(0,v), add(v,−v)) (by VS4)

= add(add(scale(0,v),v),−v) (by VS2)

= add(add(scale(0,v), scale(1,v)),−v) (by VS5)

= add(scale(0 + 1,v),−v) (by VS8)

= add(scale(1,v),−v) (by scalar arithmetic)

= add(v,−v) (by VS5)

= 0V (by VS4).

(b)

scale(c,0V) = scale(c, scale(0,0V)) (by Part (a))

= scale(c · 0,0V) (by VS6)

= scale(0,0V) (by scalar arithmetic)

= 0V (by Part (a)).

(c) Our goal is to show that scale(−1,v) is the (unique) additive inverse of
v. Let −v denote an additive inverse of v (as guaranteed to exist by
VS4). Then

scale(−1,v) = add(0V, scale(−1,v)) (by VS3)

= add(scale(−1,v),0V) (by VS1)

= add(scale(−1,v), add(v,−v)) (by VS4)

= add(add(scale(−1,v),v),−v) (by VS2)

= add(add(scale(−1,v), scale(1,v)),−v) (by VS5)

= add(scale(−1 + 1,v),−v) (by VS8)

= add(scale(0,v),−v) (by scalar arithmetic)

= add(0V,−v) (by Part (a))

= −v (by VS3).

So every additive inverse of vmust be scale(−1,v), and hence scale(−1,v)
is the only additive inverse of v.
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(d) Assume scale(c,v) = 0V and c ̸= 0. The latter assumption implies that
there is a scalar c−1 such that c−1c = 1. Then

v = scale(1,v) (by VS5)

= scale(c−1c,v) (by choice of c−1)

= scale(c−1, scale(c,v)) (by VS6)

= scale(c−1,0V) (by assumption)

= 0V (by Part (b)).
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