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Linearity of expectation
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Random unit vectors

I Let X = (X1,X2, . . . ,Xd ) be random vector with uniform
distribution on unit sphere Sd−1 := {x ∈ Rd : ‖x‖2 = 1}.

I Are X1,X2, . . . ,Xd independent?
I No! But almost . . .

I What is E(X1)?
I If σ is the pdf, then for any u = (u1, u2, . . . , ud ) ∈ Sd−1,

σ(u1, u2, . . . , ud ) = σ(−u1, u2, . . . , ud ) .

I So E(X1) = 0.
I Similarly, E(X1X2) = E(X1X2X3) = · · · = 0.
I Also for any distinct i1, i2, . . . ∈ [d ], E(Xi1Xi2 · · · ) = 0.
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Random unit vectors

I What is E(X 2
1 )?

I By linearity of expectation,

E ‖X‖2
2 =

d∑

i=1
E(X 2

i ) .

I But ‖X‖2
2 = 1 since X is a random unit vector.

I So by symmetry,
E(X 2

1 ) = 1
d .

I Nothing special about direction (1, 0, . . . , 0) ∈ Sd−1.
I For any unit vector u ∈ Sd−1,

E(〈u,X〉2) = 1
d .
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Variance
I Variance is expected (squared) deviation of random variable

from its mean:

var(X ) = E
[
(X − E(X ))2

]
.

I Another formula: var(X ) = E(X 2)− (E(X ))2.
I Can deduce (E(X ))2 ≤ E(X 2) since variance is non-negative.

I This is special case of Jensen’s inequality: for any convex
function f and any random vector X , f (E(X)) ≤ E(f (X)).

I Applying to random variable |X − E(X )|,

E |X − E(X )| ≤
√
var(X ) =: stddev(X ) .

I E.g., for uniform random unit vector X , and any u ∈ Sd−1,
E |〈u,X〉| ≤ 1/

√
d .
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Covariance

I If X and Y are random variables, then for any scalars a, b ∈ R,

var(aX + bY ) = a2 var(X ) + 2ab cov(X ,Y ) + b2 var(Y )

where

cov(X ,Y ) = E
[
(X − E(X ))(Y − E(Y ))

]
.

I If X and Y are independent, cov(X ,Y ) = 0, and hence

var(aX + bY ) = a2 var(X ) + b2 var(Y ) .

I Variance of the sum of independent random variables is the
sum of the variances.
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Symmetric random walk on Z

I Stochastic process (St)t∈Z+ .
I S0 := 0
I For t ≥ 1,

St := St−1 + Xt ,

where P(Xt = −1) = P(Xt = 1) = 1/2. Also assume
{Xt : t ∈ N} are independent. (Called Rademacher r.v.’s.)

I Sn = ∑n
t=1 Xt , sum of n iid Rademacher r.v.’s.

I var(Sn) = ∑n
t=1 var(Xt) = n.

I So expected distance from origin is

E |Sn| ≤
√
var(Sn) ≤ √n .

I Note: on some realizations, can have |Sn| = ω(√n).
I But how many?
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Tail bounds
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Tail bounds

I Markov’s inequality: for any t ≥ 0,

P(|X | ≥ t) ≤ E |X |
t .

I Proof:
t · 1{|X | ≥ t} ≤ |X | .

I Application to symmetric random walk:

P(|Sn| ≥ c
√
n) ≤ E |Sn|

c√n ≤ 1
c .
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Tail bounds from higher-order moments

I Chebyshev’s inequality: for any t ≥ 0,

P(|X − E(X )| ≥ t) ≤ var(X )
t2 .

I Proof: Apply Markov’s inequality to (X − E(X ))2.
I Application to symmetric random walk:

P(|Sn| ≥ c
√
n) ≤ var(Sn)

c2n ≤ 1
c2 .

(Improvement over 1/c from Markov’s.)
I Further improvements using higher-order moments.
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Chernoff bounds

I Use all moments simultaneously to obtain tail bound.
I Moment generating function (mgf): MX : R→ R ∪ {+∞},

defined by

MX (λ) := E exp(λX ) = 1+λE(X )+λ2

2 E(X 2)+λ3

3! E(X 3)+· · ·

I If MX (λ) is finite for some λ1 < 0 and λ2 > 0, then:
I MX (λ) is finite for all λ ∈ [λ1, λ2].
I E(X p) is finite for all p ∈ N.
I Graph of MX on [λ1, λ2] determines the distribution of X .

I Often use logarithm of MX (a.k.a. cumulant generating
function or log mgf):

ψX (λ) := lnMX (λ) .
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Facts about log mgf

I ψX (0) = 0
I ψaX+b(λ) = ψX (aλ) + bλ
I If X1,X2, . . . ,Xn are independent, and ψXi (λ) is finite for each

i , then
ψ∑n

i=1 Xi
(λ) =

n∑

i=1
ψXi (λ) .

I If ψX is finite on interval (λ1, λ2) for some λ1 < 0 and λ2 > 0,
then it is infinitely differentiable on the same (open) interval.
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Example of (log) mgfs
I X ∼ Poi(µ) (Poisson):

P(X = k) = e−µµk

k! , k ∈ Z+ .

I E(X ) = µ, var(X ) = µ

I MX (λ) =
∑∞

k=0
e−µµk

k! eλk = · · · = eµ(eλ−1)

I ψX (λ) = µ(eλ − 1)
I ψX−µ(λ) = µ(eλ − λ− 1)
I For λ ≈ 0,

ψX−µ(λ) ≈ µλ2/2 .

I X ∼ N(µ, σ2) (Normal)
I E(X ) = µ, var(X ) = σ2

I MX (λ) =
∫
eλx 1√

2πσ2 exp
(
− (x−µ)2

2σ2

)
dx = · · · = eµλ+σ2λ2/2.

I ψX−µ(λ) = σ2λ2/2.
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Cramer-Chernoff inequality
I For any t ∈ R,

P(X ≥ t) ≤ exp
(
− sup
λ≥0
{tλ− ψX (λ)}

)
.

I Proof: apply Markov’s inequality to exp(λX ),

P(X ≥ t) = P(exp(λX ) ≥ exp(λt)) ≤ E exp(λX )
exp(λt) ,

and then “optimize” the choice of λ ≥ 0.
I For any t ≥ E(X ),

P(X ≥ t) ≤ exp
(
− sup
λ∈R
{tλ− ψX (λ)}

)
.

I “Proof”: when t ≥ E(X ), the optimal λ is always ≥0.
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Fenchel conjugate

I Fenchel conjugate of f : R→ R:

f ∗(t) := sup
λ∈R

{
tλ− f (λ)

}
.

I E.g., f (λ) = λ2/2 has f ∗(t) = t2/2.
I If f is bounded above by a quadratic (“strongly smooth”), then

f ∗ is bounded below by a quadratic (“strongly convex”).
I Fenchel conjugate f ∗ is max of affine functions, hence convex.
I Cramer-Chernoff inequality: For any t ≥ E(X ),

P(X ≥ t) ≤ exp
(−ψ∗X (t)

)
.
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Normal tail bound

I N(µ, σ2) log mgf ψX−µ(λ) = σ2λ2/2 has

ψ∗X−µ(t) = t2/(2σ2) .

I P(X ≥ µ+ t) ≤ exp(−t2/(2σ2)).
I With probability at least 1− δ,

X ≤ µ+
√
2σ2 ln(1/δ) .
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Subgaussian random variables

I Many random variables have log mgf ψX−E(X)(λ)
upper-bounded by that of N(0, v) for some v > 0, i.e.,

ψX−E(X)(λ) ≤ vλ2/2 .

I Such random variables are called v-subgaussian (or subgaussian
with variance proxy v).

I Hence,
ψ∗X−E(X)(t) ≥ t2/(2v) .

I Example: Rademacher random variable is 1-subgaussian.
I If X1,X2, . . . ,Xn are independent, and each Xi is

vi -subgaussian, then S := ∑n
i=1 Xi is subgaussian with variance

proxy v := ∑n
i=1 vi .

I Get tail bound for S as before.
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Application to symmetric random walk

I Sn is subgaussian with variance proxy n, so

P(Sn ≥ t) ≤ exp(−t2/(2n)) .

I Using a union bound,

P(|Sn| ≥ c
√
n) ≤ 2 exp(−c2/2) .

I Improvement over 1/c from Markov’s and 1/c2 from
Chebyshev’s (except when c is very small).

18



Hoeffding’s inequality

I Suppose X is [0, 1]-valued r.v. with E(X ) = µ, and Y is
{0, 1}-valued r.v. with E(Y ) = µ. Then

ψX−µ(λ) ≤ ψY−µ(λ) ≤ λ2

8 = 1
2 ·

λ2

4 .

I “Proof”: calculus . . .
I So [a, b]-valued random variables are (b−a)2

4 -subgaussian.
I E.g., [−1,+1]-valued random variables are 1-subgaussian.

I Tail bound for (sums of) such random variables also called
Hoeffding’s inequality.
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Poisson tail bound
I (Centered) Poi(µ) log mgf ψX−µ(λ) = µ(eλ − λ− 1) has

ψ∗X−µ(t) = µ · h(t/µ) ,

where h(x) := (1 + x) ln(1 + x)− x .
I Interpretable approximation of h:

h(x) ≥ x2

2(1 + x/3) ,

so

P(X ≥ µ+ t) ≤ exp
(−µ · h(t/µ)

) ≤ exp
(
− t2

2(µ+ t/3)

)
.

I With probability at least 1− δ,

X ≤ µ+
√
2µ ln(1/δ) + ln(1/δ)/3 .
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Biased random walk

I Suppose P(Xt = −1) = 1−γ
2 and P(Xt = 1) = 1+γ

2 .
I Extreme cases: γ = 1 or γ = −1. Completely deterministic!
I For γ close to 1 or −1, should also expect better concentration

around the mean.
I Similar to Bin(n, p) for p close to zero or one (i.e., tossing a

very biased coin n times).
I Variance is small compared to maximal range.
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Using variance information

I Let X satisfy X − E(X ) ≤ 1 and var(X ) ≤ v . For any λ ≥ 0,

ψX−E(X)(λ) ≤ v(eλ − λ− 1) .

I “Proof”: exploit monotonicity of x 7→ (ex − x − 1)/x2.
I ψX−E(X) ≤ ψX̃−E(X̃) on R+ for X̃ ∼ Poi(v).

I If X1,X2, . . . ,Xn are independent, and each Xi − E(Xi ) ≤ 1,
then log mgf of S := ∑n

i=1 Xi is bounded above by log mgf of
Poi(µ) on R+, where µ := ∑n

i=1 var(Xi ).
I Get tail bound for S as before; called Bennett’s inequality or

Bernstein’s inequality.
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Poisson approximation
I S = ∑n

i=1 Xi where X1,X2, . . . ,Xn are iid Bern(p).
I Using Bennett’s inequality:

P(S ≥ np + t) ≤ exp


−np(1− p) · h

(
t

np(1− p)

)
 .

I Poisson heuristic: if p = O(1/n), then Bin(n, p) ≈ Poi(np).
I Poi(np) tail bound:

P(S ≥ np + t) ≤ exp


−np · h

(
t
np

)
 .

I So for p = O(1/n), with probability at least 1− δ,

S
n − p ≤ O

(
log(1/δ)

n

)
.
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Why does this work?
I log mgf bounded by that of Gaussian for λ around zero:

X ∼ Poi(µ) : ψX−µ(λ) = µ(eλ − λ− 1) ,
X ∼ Bern(p) : ψX−p(λ) ≤ p(1− p)(eλ − λ− 1) .

I Another example:

X ∼ N(0, 1) : ψX2−1(λ) = −1
2 ln(1− 2λ)− λ .

I In above cases, there exist v , c ≥ 0 such that, for all
λ ∈ [0, 1/c),

ψX−E(X)(λ) ≤ vλ2

2 ·
1

1− cλ .

I Such random variables are called (v , c)-subgamma or
subgamma with variance proxy v and scale factor c .

I If (1− cλ)−1 factor omitted, then called (v , c)-subexponential.
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Fenchel conjugate of log mgf for subexponential
I For (v , c)-subexponential random variable X :

ψ∗X−E(X)(t) = sup
λ∈R

{
tλ− ψX−E(X)(λ)

}
≥ sup

λ∈[0,1/c)

{
tλ− vλ2/2

}
.

I If t < v/c, then can plug-in λ := t/v to obtain

ψ∗X−E(X)(t) ≥ t2/(2v) .

I If t ≥ v/c, then tλ− vλ2/2 is increasing for λ ∈ [0, 1/c), so
plug-in λ := 1/c to obtain

ψ∗X−E(X)(t) ≥ t/(2c) .

I Conclusion:

ψ∗X−E(X)(t) ≥ min
{
t2

2v ,
t
2c

}
.
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Chi-squared distribution
I If X1,X2, . . . ,Xk are iid N(0, 1), then S := ∑k

i=1 X 2
i ∼ χ2(k)

(chi-squared with k degrees-of-freedom).
I For λ ∈ [0, 1/2),

ψX2
i −1(λ) = −1

2 ln(1−2λ)−λ = 1
2

∞∑

j=2

(2λ)j

j ≤ 2λ2

2 ·
1

1− 2λ ,

so X 2
i is (2, 2)-subgamma; also (4, 4)-subexponential.

I Consequently, S is (4k, 4)-subexponential.
I Tail bound using subexponential property:

P(S − k ≥ t) ≤ exp
(
−min

{
t2/k, t

}
/8
)
.

I With probability at least 1− δ,

S ≤ k + max
{√

8k ln(1/δ), 8 ln(1/δ)
}
.

I A tighter analysis gets a bound of k + 2
√
k ln(1/δ) + 2 ln(1/δ).
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Subgaussian moments

Suppose X is v -subgaussian and E(X ) = 0.

I For any k ∈ N,

E |X |k ≤ (2v)k/2kΓ(k/2) .

I Proof: E |X |k =
∫∞

0 P(|X |k ≥ t) dt ≤
∫∞

0 2e−t2/k/(2v) dt . . .
I X 2 is (128v2, 8v)-subexponential.

I Proof: Use Taylor series to express ψX 2−E(X 2) in terms of even
moments of X .
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