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Linearity of expectation




Random unit vectors

» Let X = (X1, X, ..., Xy) be random vector with uniform
distribution on unit sphere S9! := {x € RY : ||x|]» = 1}.
» Are X1, Xs,..., Xy independent?

» No! But almost ...

» What is E(X7)?
> If o is the pdf, then for any u = (u1, uo, ..., uy) € S971,
o(ui,up, ... ug) = o(—uy, U, ..., Uq).
» So E(Xl) = 0.
> SimiIarIy, E(X]_X2) = E(X1X2X3) =..-=0.
» Also for any distinct iy, i, ... € [d], E(X; X, ---) = 0.

Random unit vectors

» What is E(X?)?

» By linearity of expectation,

d
E|X|3 = ) E(XP).
i=1

» But || X||3 = 1 since X is a random unit vector.
» So by symmetry,
1
E(X?) = =.
) = 2
» Nothing special about direction (1,0,...,0) € S9-1.
» For any unit vector u € S971,

E((u, X)?) = %.




Variance

» Variance is expected (squared) deviation of random variable
from its mean:

var(X) = E|(X - E(X))?].

v

Another formula: var(X) = E(X?) — (E(X))2.
Can deduce (E(X))? < E(X?) since variance is non-negative.

v

» This is special case of Jensen's inequality: for any convex
function f and any random vector X, f(E(X)) < E(f(X)).

» Applying to random variable | X — E(X)],
E|X —E(X)| < y/var(X) =: stddev(X).

» E.g., for uniform random unit vector X, and any u € S971,

El{u, X)| <1/Vd.

Covariance

» If X and Y are random variables, then for any scalars a, b € R,
var(aX 4 bY) = a®var(X) + 2abcov(X, Y) + b?var(Y)
where
cov(X,Y) = E[(X —E(X))(Y —E(Y))] .
» If X and Y are independent, cov(X, Y) =0, and hence
var(aX + bY) = a®var(X) + b%var(Y).

» Variance of the sum of independent random variables is the
sum of the variances.




Symmetric random walk on Z

» Stochastic process (S¢)tcz, -

> 50::0
» Fort > 1,
St = S+ X,

where P(X; = —1) = P(X; = 1) = 1/2. Also assume
{X: : t € N} are independent. (Called Rademacher r.v.s.)

v

Sp = >.1—1 Xt, sum of n iid Rademacher r.v.s.
var(S,) = > f—q var(X;) = n.
So expected distance from origin is

E|S,| < y/var(S,) < /n.

» Note: on some realizations, can have |S,| = w(y/n).

\ A 4

» But how many?

Tail bounds




Tail bounds

» Markov’s inequality: for any t > 0,

E|X
P(IX| > t) < %

» Proof:
t-1{X| >t} < |X|. O

» Application to symmetric random walk:

E|S,| -
cv/n —

O

P(|Sh| > cv/n) <

Tail bounds from higher-order moments

» Chebyshev’s inequality: for any t > 0,

var(X)
t2

P(IX —E(X)[>1t) <

» Proof: Apply Markov's inequality to (X — E(X))2.

» Application to symmetric random walk:

var(S,) < 1

II~])(|5n| > C\/ﬁ) <

c2n T 2

(Improvement over 1/c from Markov's.)
» Further improvements using higher-order moments.




Chernoff bounds

» Use all moments simultaneously to obtain tail bound.
» Moment generating function (mgf): Mx: R — R U {400},
defined by

e A3
Mx(3) = Eep(AX) = THAE(X)+ 7 E(X*)+ 5 E(X*)+ -

> If Mx(A) is finite for some A1 < 0 and A\» > 0, then:

» Mx () is finite for all X € [A1, A].
» [E(XP) is finite for all p € N.
» Graph of Mx on [A1, 2] determines the distribution of X.

» Often use logarithm of Mx (a.k.a. cumulant generating
function or log mgf):

be()\) = In Mx()\)

Facts about log mgf

> ax1b(A) = ¥x(aX) + bA
> If X1, Xa,..., X, are independent, and 1x,(A) is finite for each
i, then

s () = Do),
i=1

> If ¢x is finite on interval (A1, A2) for some A\; < 0 and Ay > 0,
then it is infinitely differentiable on the same (open) interval.




Example of (log) mgfs

» X ~ Poi(u) (Poisson):

e Hpuk
Kkl

P(X = k) = keZ,.

» E(X) =p, var(X) = pu

> Mx(\) =372, e‘:!uk A (e 1)
> hx(A) = p(e* — 1)

> Yx—u(A) = M(e)‘ —A-1)

» For A = 0,

Ux—u(N) = pX?/2.
» X ~ N(p,02) (Normal)
» E(X) = p, var(X) = o2

| 4 MX()\) = f e>\X\/#7 exp(_ (X2_O—l;)2) dX L eﬂ>\+a2>\2/2

> wx_u()\) = 0'2)\2/2.

Cramer-Chernoff inequality

» Forany t € R,
P(X>1t) < exp ( sup{t\ — ¢X(>\)}> :
A>0

» Proof: apply Markov's inequality to exp(AX),
P(X>t) =P AX) > At)) <
(X > 1) (exp(AX) = exp(At)) < xp(\D)
and then “optimize"” the choice of A > 0.
» For any t > E(X),

P(X>t) < exp( iléﬂ%{t)\ — ¢X(A)}> :

> “Proof”: when t > E(X), the optimal A is always >0.

E exp(AX)

]




Fenchel conjugate

» Fenchel conjugate of f: R — R:

f*(t) = igg{{ﬂ\ —f(\)}.

» E.g., f(\) = A\2/2 has f*(t) = t2/2.
» If f is bounded above by a quadratic (“strongly smooth™), then
f* is bounded below by a quadratic (“strongly convex™).

» Fenchel conjugate f* is max of affine functions, hence convex.
» Cramer-Chernoff inequality: For any t > E(X),

P(X 2 t) < exp(—u(t)).

Normal tail bound

> N(u,0?) log mgf ¥x_,(N) = 02)\?/2 has

Yx_u(t) = t2/(20%).

> P(X >+ t) < exp(—t2/(202)).
» With probability at least 1 — 4,

X < p+/202In(1/6).




Subgaussian random variables

> Many random variables have log mgf ¥ x_g(x)(})
upper-bounded by that of N(0, v) for some v > 0, i.e.,

Ux_mx)(A) < vA?/2.

» Such random variables are called v-subgaussian (or subgaussian
with variance proxy v).
» Hence,

Vx_gpo(t) > t2/(2v).
» Example: Rademacher random variable is 1-subgaussian.
» If X1, X5,...,X, are independent, and each Xj is

vi-subgaussian, then S := Y"1 ; X; is subgaussian with variance
proxy v i= > 4 v;.

» Get tail bound for S as before.

Application to symmetric random walk

» S, is subgaussian with variance proxy n, so
P(S, > t) < exp(—t*/(2n)).
» Using a union bound,

P(|Sa| > cv/n) < 2exp(—c?/2).

> Improvement over 1/c from Markov's and 1/c? from
Chebyshev's (except when ¢ is very small).




Hoeffding's inequality

» Suppose X is [0, 1]-valued r.v. with E(X) = u, and Y is
{0,1}-valued r.v. with E(Y) = p. Then

2

bxu(N) < By ) € & =

)\2
8 4

N |+~

» “Proof”: calculus ...

_2)2 _
» So [a, b]-valued random variables are %—subgaussmn.
» E.g., [-1, +1]-valued random variables are 1-subgaussian.

» Tail bound for (sums of) such random variables also called
Hoeffding's inequality.

Poisson tail bound
> (Centered) Poi(u) log mgf ¥x_,(A) = p(e — A — 1) has

Ux_p(t) = p-h(t/p),

where h(x) := (1 + x)In(1 + x) — x.
> Interpretable approximation of h:

x2

) 2 Sa %3

SO

P(X>p+1t) < exp(—p-h(t/p)) < exp<m>~

» With probability at least 1 — 4,

X < p+4/2uin(1/6) +1In(1/0)/3.




Biased random walk

» Suppose P(X; = —1) = 1_77 and P(X; =1) = HTV

» Extreme cases: v =1 or v = —1. Completely deterministic!
» For v close to 1 or —1, should also expect better concentration
around the mean.

» Similar to Bin(n, p) for p close to zero or one (i.e., tossing a
very biased coin n times).

» Variance is small compared to maximal range.

Using variance information

> Let X satisfy X —E(X) <1 and var(X) < v. For any A >0,

bx_g)(A) < v(et —A—1).

> “Proof": exploit monotonicity of x — (e¥ — x —1)/x. O
> Yx-rx) < Yx_gx) on Ry for X~ Poi(v).
» If X1, Xo,..., X, are independent, and each X; — E(X;) <1,
then log mgf of S :=>"7" ; X; is bounded above by log mgf of
Poi(u) on R4, where p:= 37 ; var(X;).

» Get tail bound for S as before; called Bennett’s inequality or
Bernstein’s inequality.




Poisson approximation

v

S =>""1X; where X1, X,...,X, are iid Bern(p).
Using Bennett's inequality:

P(S>np+1t) < exp (np(l - p) h(h)) -

» Poisson heuristic: if p = O(1/n), then Bin(n, p) = Poi(np).
Poi(np) tail bound:

P(S>np+1t) < exp(np-h(%)).

So for p = O(1/n), with probability at least 1 — 9,

S_, < O<log(1/5)>_

v

v

v

n n

Why does this work?

» log mgf bounded by that of Gaussian for A around zero:

X ~Poi(p) 1 x—p(A) = p(e* =A—1),
X ~Bern(p): ¥x_p(A) < p(1—p)(e* —A—1).

» Another example:

X~ NO,1): e y(A) = —%In(l—Z)\)—A.

» In above cases, there exist v, c > 0 such that, for all
Ae [0,1/¢),
V2 1
2 1l—c)\

Vx—gx)(A) <

» Such random variables are called (v, ¢)-subgamma or
subgamma with variance proxy v and scale factor c.
> If (1 — cA\)~! factor omitted, then called (v, c)-subexponential.




Fenchel conjugate of log mgf for subexponential

» For (v, ¢)-subexponential random variable X:

X = A — Px_gx)(A A—vAZ2b,
Ux_g(x)(t) igﬂg{t Ux—E(x)( )} > Ae[sc;{f/c){t v /2}

» If t < v/c, then can plug-in A := t/v to obtain
kg0 (t) = t2/(2v).

» If t > v/c, then tA — vA?/2 is increasing for A € [0,1/c), so
plug-in A := 1/c to obtain

Vx_gx)(t) = t/(2c).

» Conclusion:

. - t2 t
Vx—_g(x)(t) = min 5y 2¢

Chi-squared distribution

> |f X17X2, . ,Xk are iid N(O, 1), then S (= Zf'(:l Xi2 ~ X2(k)
(chi-squared with k degrees-of-freedom).
» For A € [0,1/2),

—
8

J 2)\2 1
¢x,2—1()\) ——In(1 20)—A = S 1o\

l\)

so X? is (2,2)-subgamma; also (4,4)—subexponent|a|.
» Consequently, S is (4k,4)-subexponential.

» Tail bound using subexponential property:

P(S—k>t) < exp(— min{tz/k, t}/S) .
» With probability at least 1 — 4,

5 < k—i—max{ 8k|n(1/5),8|n(1/(5)}.

» A tighter analysis gets a bound of k +21/kIn(1/d) 4+ 2In(1/9).




Subgaussian moments

Suppose X is v-subgaussian and E(X) = 0.
» For any k € N,
E|X|* < (2v)K2kl(k/2).
> Proof: E|X|* = [ P(IX|k > t)dt < [*2e /) de ...

» X2 is (128v2, 8v)-subexponential.

> Proof: Use Taylor series to express 1)x2_g(x2) in terms of even
moments of X.




