
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS 1

Parallel and Serial Computation in Nanomagnet
Logic: An Overview

Davide Giri, Giovanni Causapruno, and Fabrizio Riente , Member, IEEE

Abstract— Nanomagnet logic (NML) is a promising technology
beyond CMOS technology because it can guarantee an extremely
low-power consumption. This technology is extremely different
from CMOS in some peculiar aspects: 1) logic gates and wires
have the same delay and 2) the layout of a circuit influences
its timing characteristics. With these characteristics, it is clear
that a simple mapping of CMOS register-transfer level circuits
in NML would be inefficient. Circuit logic design must be
adapted to this new technology. One interesting aspect is the
opportunity to design bit-serial circuits instead of parallel ones
and achieve comparable performance with less area occupation.
In this paper, we explore the parallel and serial design in NML
with magnetoelastic clock through a common case study: the
multiply and accumulate algorithm. This is designed in three
different versions (fully parallel, fully serial, and parallel–serial)
and analyzed in terms of latency, throughput, area occupation,
and circuit dissipation.

Index Terms— Magnetoelastic (ME) clock, nanomagnet
logic (NML), parallel architectures.

I. INTRODUCTION

NANOMAGNET logic (NML) is one of the most appeal-
ing technologies to replace CMOS in the next decades,

when the successful era of Moore’s law will finally come to
an end [1]. NML represents the magnetic implementation of
the quantum-dot cellular automata (QCA) principle. In NML,
the polarization of nanomagnets represents logic values “0”
and “1” [Fig. 1(a)]. This technology is particularly attractive
for its low-power consumption [2].

The peculiar characteristics of NML, described in Section II,
define a number of constraints that are unusual for CMOS
logic circuits design. The most important is the so-called
“timing–layout” problem, i.e., different layouts of a given
circuit may lead to different time delays [3]–[5]. The reason
is that wire delays of NML technology are even more critical
than those of CMOS. Only a very short and fixed-length
portion of a wire can be crossed in a clock cycle. Furthermore,
wires and logic gates are the same in terms of delays as
they are both composed in the same way by a series of
adjacent magnets. This raises a fundamental requirement for
NML logic circuits: long interconnections should be avoided

Manuscript received November 9, 2017; revised February 1, 2018; accepted
March 18, 2018. (Corresponding author: Fabrizio Riente.)

D. Giri is with the Computer Science Department, Columbia University,
New York, NY 10027 USA.

G. Causapruno and F. Riente are with the Department of Electronics
and Telecommunications, Politecnico di Torino, I-10129 Turin, Italy (e-mail:
fabrizio.riente@polito.it).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TVLSI.2018.2821107

Fig. 1. (a) NML principle: polarization of nanomagnets represents logic
values. (b) Pipeline interleaving technique: three operations are interleaved to
fill the pipeline cue and maximize the throughput. (c) MAC architecture.

and regular structures with local interconnections should be
preferred [6], [7]. For this reason, solutions like systolic
arrays [8], composed of arrays of identical cells and locally
interconnected (i.e., one cell is connected only to the near
ones), seem to be an ideal architectural choice and have been
widely explored for NML implementation [5], [9], [10].

Taking into account these constraints, it is then clear that
all the assumptions that are valid for the design of CMOS
logic circuits must be thought again for NML technology.
This is a fundamental step in the design of NML circuits,
because starting from wrong assumptions derived from CMOS
technology; the correspondent NML circuits can be inefficient.

It is crucial to point out that the best CMOS circuits usually
maximize performances in terms of working frequency, at the
cost of a higher complexity. However, such optimization does
not necessarily have the same advantages when designed with
NML, where the maximum working frequency is dependent
on the technology itself and not on the architecture adopted.
Therefore, optimization of NML cannot improve the circuit
speed and it has to be aimed elsewhere: reduce area occupa-
tion and consequently power consumption, minimize internal
delays reducing the pipeline stages of feedback loops.

One aspect particularly interesting for NML technology,
is the choice between serial and parallel computation. Paral-
lelism has been regularly increasing in VLSI circuits, given the
performance improvement that can be achieved due to the low
cost of interconnections. This has been possible also because
of the multilayered structure of CMOS circuits. In NML, this
choice may not be so straightforward, it is still a single layer
technology at the time of writing, and its interconnections have
a high cost both in terms of area occupation and latency.

CMOS allows wires to have fairly variable length without
affecting the functionality, as long as the overall combinational
delay between registers stays lower than the clock period.

1063-8210 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0003-4147-1098
https://orcid.org/0000-0003-4147-1098
https://orcid.org/0000-0003-4147-1098

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

Instead, NML wires that connect two logic gates almost
always need to be pipelined, because the amount of wire (i.e.,
the number of magnets) that can be crossed during a clock
cycle is extremely short. A small change in wire’s length can
save up to several clock cycles, especially if in a feedback.
This means that in a simple circuit with a long feedback loop
as the one depicted in Fig. 1(b), most of the time is wasted in
the loop without performing any computation [5]. If the loop
is made as short as possible (transmitting one single bit for
serial computation instead of N bits for parallel computation),
and the same computation cell is reused several times, there
may be the opportunity to reduce area and achieve similar
performance.

In this paper, we give an overview of the serial and parallel
computation in magnetoelastic NML (ME-NML), a particular
NML implementation. A case study has shown that ME-NML
is able to compete and even outperform a 28-nm low-power
CMOS technology in terms of area and power consumption as
well as the magnetic clock NML [11], therefore motivating fur-
ther research. Here we use a multiply and accumulate (MAC)
architecture as case study [Fig. 1(c)], which is a common
structure always present in standard arithmetic logic units.

The contribution of this paper can be summarized as fol-
lows.

1) We implemented different versions of the MAC architec-
ture: fully serial, serial–parallel, and fully serial explor-
ing the design space of the ME-NML technology. Each
architecture has been designed, modeled, and simulated
in ME-NML.

2) We developed a register-transfer level (RTL) model that
can be used to design any kind of ME-NML architecture
by using a set of ME-NML standard cells.

3) We compared the performance of the ME-NML pro-
posed architectures in terms of area, latency, and power
consumption. Some work has been done on serial com-
putation on generic QCA [12]–[16].

4) Understand if there is the necessity for a paradigm
change from parallel to serial with the change of the
technology from CMOS to ME-NML.

We want to explore the design of the MAC architecture in
ME-NML, since there is not yet an automatic tool able to
synthesize ME-NML circuits. Only a single ME-NML circuit
has been designed so far [11], [17]. Some work has been done
on serial computation in generic QCA [12]–[16], [18], [19],
but from the best of our knowledge, a parallel versus serial
analysis of this type has never been proposed.

The rest of this paper is organized as follows. Section II
provides details about NML technology and its magnetoelastic
clock implementation. Section III describes the nanomagnet
cells that can be used to design any NML circuit, with a
standard sells approach that we have introduced for the first
time in [17]. Moreover, we introduce a VHSIC Hardware
Description Language (VHDL) model to extrapolate hierarchi-
cally information about area occupation and power dissipation
of a NML circuit. In Section IV, we describe three different
implementations of the MAC: completely serial, partially
serial and partially parallel, and completely parallel. Section V

Fig. 2. (a) NML logic gates. (b) ME-NML clock mechanism applied to a
horizontal NML wire and described in space (horizontally) and time (verti-
cally). The four clock signals on the right are applied to different clock zones
in space and they are periodic.

provides a comparison among the different solutions in terms
of throughput, latency, area occupation, and power dissipation.
Finally, conclusions are provided in Section VI.

II. NANOMAGNET LOGIC

In this section, we introduce NML technology to highlight
the main differences with respect to CMOS.

NML is based on single-domain nanomagnets with dimen-
sions between 50 and 100 nm. These magnets can have two
stable states only, which are used to represent logic “0”
and “1” [20]. Magnetic attraction between opposite poles
creates an interaction between adjacent nanomagnets, used to
propagate information in a NML circuit.

NML technology counts a small number of basic logic
blocks. They are depicted in Fig. 2(a), where IN and OUT
identify inputs and outputs. Horizontally, magnets align them-
selves antiferromagnetically, with each magnet having an
inverted polarization with respect to the neighbors. The
inverter port is, therefore, a simple horizontal wire with an
even number of magnets. An odd number of adjacent magnets
is instead a simple wire. In a vertical wire, the coupling
is ferromagnetic; as a consequence no inversion is possible.
A peculiarity of NML is the possibility of obtaining specific
logic gates by modifying the shape of a magnet. By making
magnets with a slanted edge, it is possible to give them a
preferential polarization state, creating AND and OR logic func-
tions [21]. Since NML is still a planar technology, independent
wires can be crossed through the crosswire gate depicted
in Fig. 2(a).

The electrostatic interaction between nanomagnets is not
strong enough to propagate a signal through an NML wire.
The switching of a cell requires as much energy as the barrier
between its two stable states. For this reason, there is the need
of an external mean able to control the signal propagation

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

GIRI et al.: PARALLEL AND SERIAL COMPUTATION IN NANOMAGNET LOGIC 3

acting on the energy barrier between the two stable states.
The external mean should be able to lower the barrier forcing
the cell in an unstable “null” state [Fig. 1(a)]. Once released,
the cell will stabilize either at “0” or “1,” depending on the
state of neighboring cells.

This control mean is called clock. In principle, this tech-
nique could work with an infinite number of cascaded cells,
but practically a signal cannot pass through a whole circuit at
once. The cells’ pattern would be too long causing propagation
errors mainly due to thermal noise [22]. A spatial flow control
system is mandatory.

The clock mechanism is shown in Fig. 2(b). Circuits are
partitioned in small areas, each with a limited number of
cascaded magnets; these areas are called clock zones. There
are four clock signals corresponding to four clock zones.
Clock signals have the same waveform but different phases.
The second, third, and fourth clocks will have, respectively,
90◦, 180◦, and 270◦ phase shift with respect to the first clock.

Fig. 2(b) shows the clock waveforms on the right and the
functioning of a wire divided into four clock zones on the
left. As explained, we need a clock that can force cells in their
unstable state before the switching phase. The clock waveform
has four phases, as depicted in Fig. 2(b).

1) HOLD phase: The potential barrier is kept high by a
low clock voltage. The cell cannot be influenced by
neighbors.

2) RESET phase: The potential barrier is kept low, so the
barrier between stable states is at its minimum. The cell
is in the “null” state. This is the only phase with a high
clock.

3) SWITCH phase: The clock voltage goes from high to
low and so does the potential barrier. The cell will
stabilize in one of the two states, depending on the
neighboring cells in the HOLD phase. In this way, it also
guarantees the propagation direction of the signal.

In Fig. 2(b), the signal goes from left to right through eight
magnets, two per clock zone. The same wire is shown at
four different times during the period of a single clock cycle.
At time step 4, clock 3 is the only “high” one, therefore,
the magnets in zone three switch to RESET state. The magnets
in zones 1 and 4 were already stable at time step 3, so they
keep staying stable in HOLD. The magnets in zone 2two were
in RESET state, but their clock just switched to “low” so they
immediately SWITCH to a stable state influenced by neighbor
magnets in zone 1, while magnets in zone 3 cannot influence
the switch as they are now in an intermediate state. This
methodology assures data propagation in a specific direction,
a signal traverses the clock zones in order from 1 to 4 and
then 1 again.

The main difference between NML implementations is the
clock system. The magnetic clock is based on a current that
flows below nanomagnets in each clock zone. The current
induces a magnetic field that forces the nanomagnets in the
RESET state [2]. The ME-NML clock [17] is instead based
on the magnetoelastic effect: the magnetization of magnetic
materials undergoing mechanical stress is bonded. Applying a
mechanical stress with proper intensity and direction, magnetic

Fig. 3. (a) No voltage applied. (b) Voltage applied to the electrodes. The
PZT substrate induces a strain on the nanomagnets forcing their magnetization
to their intermediate state. (c) Circuit example composed by a few clock
zones (cells). The blue magnet is an AND gate, the red magnet is an OR gate.
(d) Placement grid for ME-NML cells.

cells can be forced into the RESET state. The magnetic
cells (10-nm thick) are coupled with a 40-nm thick lead
zirconate titanate (PZT) layer. The magnetic material is, then,
controlled applying a voltage to the piezoelectric. When the
voltage is applied, the strain induced by the piezoelectric
material, forces the magnetization of the magnet’s layer to
the intermediate position, parallel to the short edges [see
Fig. 3(b)]. The electrodes are deposited on top of the PZT,
while the wires that drive the electrodes can be placed
in additional layers, just as for CMOS. This makes this
NML implementation compatible with the CMOS fabrication
process.

Since the clock system exploits a voltage instead of a
current, the power consumption is extremely low. The magnets
switching represents the main source of power dissipation
due to the charge and discharge of parasitic capacitances.
The amount of loss depends on the voltage applied to the
electrodes (CV 2) which is less than 1 V and a capacitance
value in the order of hundreds of femtofarad. The overall
power consumption is then around ten times lower than a
28-nm low-power transistor [23].

ME-NML circuits are composed of mechanically isolated
islands, like the ones in Fig. 3(c), where colored magnets
have a slanted edge to obtain AND and OR gates. Each island
corresponds to a clock zone and it is driven by one of the
clock signals, applied as a voltage on the platinum electrodes.
Fig. 3(c) shows how to put together the clock zones to create
a circuit. The communication among cells can take place only
through the top and bottom corners, due to the presence of the
electrodes. Cells are placed on a grid as in Fig. 3(d), where the
coefficients identify row and column of the cell’s positioning
within the circuit. We refer to cells in Fig. 3(c) as “3 × 3,”
because each can contain three nanomagnets in a row and in
a column. Another possible configuration with larger cells is
“5 × 3.”

In a N-phase clock system, signals need one clock cycle to
propagate through N clock zones. As a consequence, the delay
of a signal depends on how many clock zones it has to cross.
This is quite different from CMOS where wires with different
lengths have very similar delays. Each clock zone crossed by
a signal can be modeled as a register. As a result, it is easy
to understand that NML circuits are intrinsically pipelined.

The problem gets more complex when dealing with feed-
back signals. Note that the longer the feedback wire is,

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

the longer the delay will be. The input should be delayed to
match the length of the feedback loop reducing the throughput.
If, for instance, a circuit has a feedback of 5 cycles long,
only an input of every 5 cycles can be fed. In fact, at any
time, only 1/5 of the magnets will contain useful data.
A radical solution is the data interleaving [3], which allows
to reach the maximum throughput. With interleaving, multiple
noncorrelated set of operations are executed in parallel, so that
the delay time between an input and the next is filled with
other operations. The number of required parallel operations
is equal to the delay (in terms of clock cycles) of the longest
loop inside the circuit.

III. STANDARD CELLS AND RTL MODEL

In this section, we describe a set of standard cells developed
for the design of ME-NML circuits and the RTL VHDL model
that we implemented to simulate them.

In this paper, we used the 3 × 3 cells, which is the
smallest size feasible with the current lithographic resolution.
Compared to bigger cells, it has a shorter critical path (number
of cascaded magnets) leading to both a higher working speed
and a better signal propagation reliability. Due to the small size
of this ME-NML cell, there is a limited number of possible
magnets configurations. Therefore, it is possible to define a
finite set of standard cells: a standard cell library [17], where
each element is described in VHDL language. The result is that
any digital circuit can be designed by assembling cells from
the library. This standard cell approach confers to ME-NML,
a propensity for design automation, making this technology
very much suitable for having its own simulation and synthesis
tool. The full 3 × 3 standard cell library is tabulated in Fig. 4.

We developed a RTL model in VHDL language that makes
it possible to easily simulate any ME-NML circuit. It enables
the functional analysis and hierarchical estimation of circuit
performance in terms of area occupation and power con-
sumption. Our model for ME-NML keeps consideration of all
the relevant technology constraints, which means that all the
components dimensions and materials choice and properties
that we use have been proved and verified in the literature [2].

Logic gates must be distinguished also by layout and
orientation, not only by their logic function because the library
is thought in the perspective of a future automated tool for
circuit design. Cells lying within the same row of Fig. 4 can be
derived from each other by horizontal and/or vertical flipping.
The binary numbers in the table associated with wire and
inverter will be given as generic parameters to state the
cell orientation. A VHDL entity has been defined for each
line in Fig. 4. Each cell is modeled as a CMOS register plus,
if needed, an ideal logic port.

Double wires, double inverters, and the mix of the two,
together with crosswires, allow the propagation of two inde-
pendent signals through a single cell. The wire with a “L”
shape touches three corners and has two outputs; it is the only
cell with four possible orientations.

Nanomagnets used for ME-NML have dimensions of 50 ×
65 nm2 with an intermagnet space of 20 nm. This size choice
provides the best immunity to process variation [2], [23].

Fig. 4. Full 3 × 3 standard cell library for ME-NML.

The hierarchical structure of the VHDL model is shown
in Fig. 5(a) where the entity of each standard cell outputs its
own area occupation and power consumption [see Fig. 5(b)],
which corresponds to the energy required for charging their
parasitic capacitance. From this point of view, each cell is
the equivalent of a capacitor. These information are summed
and propagated up to the top entity, which collects the final
area and power of the whole circuit. Therefore, the RTL
model purpose is twofold: it allows functional simulation while
precisely estimating power consumption and area occupation.
The model also contains the exact physical mapping of the
circuit. Each cell is assigned a clock phase (for ME-NML the
clock phases are four) and a row and column parameters to
identify the relative position within the circuit [Fig. 5(b)].

A single standard cell has an area equal to 0.059 μm2.
The working frequency is fclk = 100 MHz, which is close

to the upper bound for NML technology. Power consumption
is derived from energy consumption: P = E · fclk. There
are two main sources of energy dissipation in NML circuits:
magnets switching and clock generation network. The former
is the intrinsic energy loss required to force magnets in the
RESET state, while the clock network dissipation is due to
Joule losses. Since PZT is an insulator, an ME-NML cell
behaves as a capacitor. Therefore, the main contribution to
clock losses (for a 100-MHz frequency) is the charge of
such capacitor. The capacitance is estimated in the following
equation [2]:

C = ε0 · εr · tPZT · Hcell_eff

Wcell_eff
. (1)

The first three constants are the absolute dielectric con-
stant (ε0), the relative dielectric constant of PZT (εr), the thick-
ness of the PZT substrate (tPZT = 40 nm [2]). The other
two values are the effective dimensions of a standard cell,
without the inclusion of the separation between cells. Hence,
Hcell_eff = 235 nm and Wcell_eff = 250 nm.

The following equation evaluates the voltage that should be
applied to a clock zone to force it into the RESET state:

V = Wcell_eff · σ
Y · d33

. (2)

In this formula, we have the applied stress (σ = 28 MPa),
Young’s modulus for Terfenol (Y = 80 GPa), and the

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

GIRI et al.: PARALLEL AND SERIAL COMPUTATION IN NANOMAGNET LOGIC 5

Fig. 5. (a) VHDL hierarchical model. The information on energy dissipation
and area occupation are propagated hierarchically toward the top entity.
(b) Generic inputs and outputs of a standard cell.

coefficient for strain and applied voltage coupling in the
PZT substrate (d33 = 150 pm/V). Normally, for these cells,
the applied voltage should be in the range of 0.7–1.3 V [2].
Finally, the energy required to charge the capacitance of one
cell is listed in the following equation:

Eclk = 1

2
· C · V 2. (3)

The clock period Tclk depends on technological constraints,
not on the logic, as the critical path for signals is fixed,
no matter which logic has been implemented.

The power contribution of the circuit for clock generation
is negligible, as the circuit counts a limited number of tran-
sistors [24]. Therefore, this component will not be taken into
account.

The half adder example in Fig. 6 helps to practically
understand how ME-NML circuits are designed and how they
work. Fig. 6(a) and (b) portrays the starting circuit scheme
and the ME-NML circuit layout. The pattern from inputs to
outputs is 5 clock zones long. The cells colors identify the
clock phase of each cell, namely, the clock signal driving such
cell (clock zone). The clock system choice for ME-NML is a
four-phases overlapped clock, the four waveforms, with their
assigned colors are listed in Fig. 6(c).

The RTL model maps each clock zone to one or two
registers, plus a logic gate, if needed. The VHDL code
for the ME-NML half adder describes the CMOS circuit
as in Fig. 6(d). Notice that the path from input to output
counts five registers (five pipeline stages), just like the five
clock zones needed to pass through the ME-NML version
in Fig. 6(b). The numbers marking registers define their clock
phase. The timing diagram in Fig. 6(d) shows, as an example,
the propagation of the inputs through the A-B-C-D pattern.
It is quite clear from the timing that a signal needs one clock
cycle Tclk to cross four clock zones (registers in the VHDL
counterpart of the ME-NML circuit). Hence, a signal has a
latency of Tclk = 4 to cross a clock zone.

IV. MAC DESIGN IN NML

The comparison between the parallel and the serial approach
in ME-NML has been conducted choosing an algorithm and
implementing it in different ways according to the way inputs
are provided and outputs are given (parallel or bit-serial).
These circuits have been designed using the standard cells
and simulated using the RTL VHDL model presented in
Section III.

A MAC unit, which implements the following equation,
has been chosen as case study for the parallel versus serial
approach in ME-NML:

R =
∑

i

Ai Bi , i = 0, 1, 2 . . . (4)

The MAC unit is generally composed of a multiplier, an adder,
and an accumulator [Fig. 1(c)]. In Sections IV-A–IV-C, three
different versions of the MAC are introduced: fully serial,
serial-parallel, and fully parallel. Each of them has been
designed, modeled, and simulated in ME-NML technology.

We adopt the following nomenclature: FA and HA are the
full adder and half adder blocks, respectively; N is the number
of bits of inputs Ai and Bi , while the output R has 2 N bits;
Tclk and fclk are the period and frequency of circuit clock,
respectively. We refer to latency as the delay between the last
input and the last output. The throughput represents instead
the number of results that can be produced in a given time.

A. Serial MAC

The first implementation analyzed in this paper is the serial
MAC, where inputs and output are all serial. The starting idea
is to build a MAC unit counting only two 1-bit forced-air-
cooled transformer (FA), one for the multiplication and one
for the addition.

Fig. 7(a) shows the serial implementation of a 4-bit
MAC (N = 4). It consists of a serial multiplier, a serial
adder, and an accumulator, which is the adder feedback
loop. Registers with the ×3, ×4, and ×32 labels represent
multiple cascaded registers. The multiplier accurately imitates
the handmade multiplication algorithm: to generate the partial
products properly, each bit of input B must be multiplied with
all the input A bits. Therefore, the elapsed time to generate
all the Ai × Bi products is N2 × Tclk. The multiplier produces
one significant bit of the result every N clock cycles, therefore,
the whole operation takes 2N 2 × Tclk. The adder sums up the
multiplication result to the value in the accumulator, starting
from the LSB and puts the result back into the accumulator.
Four control signals applied to the four feedbacks assure a
correct functioning of the MAC unit. Fig. 7(b) shows the ME-
NML implementation of the 4-bit serial MAC.

The accumulator works as a shift registers. Its length is
equal to 2N 2 (equal to the number of clock cycles to complete
the operation). Because of the circuit functioning, at any
instant only 2N registers of the accumulator will contain useful
data and only one every N additions is meaningful. A lot of
space is, therefore, wasted by registers that for most of the
time do not contain meaningful data.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

Fig. 6. Half adder example. (a) Scheme. (b) ME-NML circuit. (c) CMOS circuit described by the RTL model. (d) Timing. (e) Clocking system.

Fig. 7. Serial MAC (4 bit) and serial MAC with sharing (8 bit). (a) Serial MAC scheme. (b) Serial MAC ME-NML circuit. (c) Serial MAC with sharing
scheme. (d) Serial MAC with sharing ME-NML circuit.

To address this problem, we propose to reduce the great
impact of the accumulator letting multiple MAC units share
the same accumulator and adder. In principle, while each mul-
tiplier works on one multiplication for all the time, the adder
and the accumulator exploit the data interleaving concept.

The scheme in Fig. 7(c) and its ME-NML implementation
in Fig. 7(d) contain eight 8-bit serial MAC units with shared
accumulator and adder. Even though the eight MAC units are
connected together, they can be treated independently of each
other, with their own inputs and outputs.

The presented serial MAC, unlike the other implementa-
tions, is not modular, and it is indeed not scalable. All the
feedback loops increase in length together with the number
of bits, affecting radically the circuit layout. Changing the
parallelism, the MAC requires to be redesigned; for this
reason, we only designed and simulated the 4- and 8-bit serial

MAC with shared resources. However, we were able to identify
the main sources of area increase and make projections for the
16- and 32-bit serial MAC.

Since the multiplier processes a continuous flow of data,
for this implementation it is not necessary to use the inter-
leaving technique. Table I contains the main information
concerning timing. The throughput is 1/(2N2 · Tclk) for both
implementations of the serial MAC. However, the version with
shared accumulator and adder requires N MAC units to be
linked together; therefore, the throughput for the entire shared-
accumulator serial MAC is 1/(2N · Tclk). The latency for the
first serial MAC implementation is equal to 9Tclk. While the
MAC’s body does not change increasing the number of bits,
the feedbacks of multiplier and adder do. Therefore, inputs and
outputs need slightly more time to reach the MAC’s central
body, because they need to cross the area occupied by those

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

GIRI et al.: PARALLEL AND SERIAL COMPUTATION IN NANOMAGNET LOGIC 7

Fig. 8. Serial-parallel MAC (4 bit). (a) Scheme. (b) ME-NML circuit.

feedbacks. A simple calculation leads to the following latency
as function of the parallelism: latency = (N/4 + 8) · Tclk. The
serial MAC with shared resources has the following latency:
(2N2 + 9) · Tclk.

B. Serial–Parallel MAC

The idea for the second version of the MAC was to
create a circuit organized as a 1-D systolic array of elements.
We refer to this circuit as a serial–parallel MAC, because it
has serial inputs and parallel output. Being a 1-D systolic
array, the circuit’s body itself has excellent characteristics
but its input–output protocol is so unique that it would be
very difficult to interface it directly with other devices. For
this reason, additional interconnections are required, terribly
spoiling performance.

The scheme in Fig. 8(a) depicts the 4-bit serial-parallel
MAC. The preskew (top) and deskew (bottom) networks make
it possible to have serial inputs and parallel outputs. The circuit
counts 2N 1-bit adders. Each adder has its own feedback,
so that the array of FA can work as an accumulator. A reset
signal allows to reset the accumulator whenever necessary. The
scheme is fully pipelined to imitate ME-NML behavior.

The timing protocol follows the handmade multiplication
procedure, where the N partial products are evaluated one at
a time and summed together. Evaluating all the partial products
only requires N clock cycles. However, additional N cycles
have to be spent feeding zeros to prepare the circuit for the
next operation.

Fig. 8(b) depicts the ME-NML realization for the 4-bit
serial–parallel MAC. The main element is a full adder with
a 3 clock cycles feedback loop. Like in the earlier cases,
the feedback is the critical path that decides the delay required
between inputs. In this case, an input bit has to be fed every 3
clock cycles, hence, the maximum throughput can be reached
with a three-operations interleaving. The circuit in Fig. 8(b) is
divided into four main regions. To construct the generic MAC,

each region has been treated separately. First, we isolated a set
of recurrent blocks for each region, and then, we investigated
how to organize them so that by combining them properly,
it is possible to create a parametric MAC described by a
single VHDL entity. Inputs A and B give their bits serially
with a delay of 3 clock cycles between them. Then, the time
required to provide all the bits is 3 × N × Tclk. After that,
for another 3 × N × Tclk, the inputs are set to 0, until a
new operation starts. The throughput would be equal to one
operation every 3 × 2 × N clock cycles, but exploiting the
interleaving technique, it goes up to 1/(2N × Tclk).

C. Parallel MAC

The last implementation presented is a fully parallel version
of the MAC unit. It is basically composed by a parallel multi-
plier and an adder with feedback. The accumulator is embed-
ded in the feedback, as ME-NML is intrinsically pipelined.
The array multiplier and the ripple carry adder (RCA) have
been chosen as components of the parallel MAC, because they
both have a systolic array architecture.

The scheme of the 4-bit array multiplier and the 8-bit RCA
composing the parallel MAC are drawn in Fig. 9(b). The two
inputs A and B are given in parallel, just like the output Res.
Notice how the multiplier is basically a matrix of full adders,
so it is 2-D and its area grows quadratically with the circuit
parallelism. The circuit arrangement and orientation imitate
the ME-NML implementation [shown in Fig. 9(a)].

For the design of a generic N-bit parallel MAC, we defined
a set of basic blocks for multiplier, adder, and interconnections.
They can be assembled to create a MAC of any paral-
lelism (≥4 bits). The interconnection regions assure inputs
and outputs synchronization: bits of the same signal can be fed
and acquired simultaneously, guaranteeing the easiest possible
interface protocol with other devices.

The array multiplier is composed by a matrix of N ×(N −1)
base blocks. By increasing the circuit parallelism, the matrix

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

Fig. 9. 4-bit parallel MAC composed by array multiplier and RCA. (a) ME-NML circuit. (b) Scheme.

gets bigger affecting the overall circuit latency. On the other
hand, for any number of bits, the RCA is always one col-
umn thick, having a constant impact on the latency. Every
block of the multiplier requires 5 clock cycles to be crossed
horizontally (signal A) and 2 vertically (signal B). Therefore,
the inputs (bottom left) need (5(N − 1) + 2N + 5) · Tclk to
reach the result. In a MAC, each multiplication result is added
to the value in the accumulator. Since each block of the adder
has a 5 clock long feedback loop, the operations cannot be
fed to the MAC in a continuous flow. Two operations must
be fed with 5 cycles delay in order for them to be added to
each other. Therefore, to reach the maximum throughput (one
operation per clock cycle), five uncorrelated operations must
be interleaved.

V. RESULTS

This section presents the performance outcomes for the
MAC unit implementations proposed. The serial MAC
depicted in Fig. 7(b) and the one with shared adder and accu-
mulator of Fig. 7(d) are considered as two distinct circuits. The
four architectures are first examined in terms of throughput and
latency.

The computation of throughput and latency has been pre-
sented for each architecture in Section IV. Results are sum-
marized in Table I. From this comparison, it is clear that the
parallel solution has the best results, in particular, if interleav-
ing is applied. The same is true when considering the latency,
even though for small number of bits, the serial with sharing
implementation has some advantage over the others.

For a complete comparison, it is necessary to understand if
the advantages of parallel MAC in throughput and latency are

TABLE I

COMPARISON OF THE MAC IMPLEMENTATIONS IN TERMS OF MAXIMUM

THROUGHPUT, MAXIMUM INTERLEAVING, AND LATENCY

balanced by worse performance in terms of area occupation
and power dissipation.

Table II puts side by side the two serial implementations,
showing that as expected, the one with sharing improves
area occupation and power consumption, becoming the serial
implementation of choice. Fig. 10 depicts area and power
results by considering isothroughput circuits for the serial
MAC with sharing together the serial–parallel and parallel
MACs. The comparison is performed both with and without
exploiting the interleaving technique. To reach their maxi-
mum throughput, both parallel MAC and serial–parallel MAC
necessitate the interleaving technique. Moreover, for a fair
comparison, in term of area and power, each implementation
should have the same throughput, but that is not the case. The
output rate of the parallel MAC has been used as reference

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

GIRI et al.: PARALLEL AND SERIAL COMPUTATION IN NANOMAGNET LOGIC 9

TABLE II

RESULTS OF OCCUPIED AREA AND POWER CONSUMPTION FOR
THE TWO SERIAL MAC IMPLEMENTATIONS

for both the cases: with and without interleaving. Therefore,
we combined as many MAC modules as needed to reach a
throughput rate equal to 1. For example, since the serial MAC
has throughput 1/(2N2), the area and power of a single serial
MAC have been multiplied by (2N2) as if (2N2) MAC units
were working together to achieve a 1/1 throughput. Thus,
in Table II, the results of parallel MAC are simply those of
a single unit. The results of the other implementations have
been multiplied by a coefficient, which is the number of units
that should work in parallel to reach the same throughput as
the parallel MAC.

In the following, the results of each implementation are
analyzed in detail.

A. Serial MAC

Even if only the 4- and 8-bit serial MAC with sharing
have been designed and simulated, it was trivial to obtain a
projection of the number of cells for the other parallelisms.
What varies with the number of bits are all the feedback
loops, the accumulator and, only for the version with sharing,
the shift register that brings the products to the adder. In each
single MAC block, to obtain the 2N-bit circuit from the N-bit
one, the multiplier’s loops must get N clock periods longer.
The same is true for the segment of the products’ shift register
and for each of the two segments of the accumulator. From
these considerations, it was possible to predict with good
approximation the growth of the serial MAC with the number
of bits.

In Table II, the serial with sharing rows of data refer to
the whole circuit with shared adder and accumulator. Since
such circuit contains N MAC units, to get an idea of the
weight of a single MAC, the total number of cells has been
divided by the number of bits, which is also the number of
MAC blocks enclosed by the entire circuit. Area and power
are the effective values for a single MAC unit, not those
for the whole structure containing N of them. The results
show that the idea of sharing accumulator and adder has been
fruitful, with an area and power losses reduction of more than
11 times for the 32-bit circuit. However, the throughput of
the serial MAC decreases quadratically with the number of
bits. Therefore, ideally, to keep up with the parallel MAC
performance, the increase rate of a single MAC should be
equal to 1. Unfortunately, this is clearly not the case.

B. Serial–Parallel MAC

Since the serial–parallel MAC layout is very compact,
the area calculated by the VHDL model corresponds to the

Fig. 10. Comparison among the three MAC implementations. (a) Area
for throughput = 1 exploiting interleaving. (b) Power for throughput =
1 exploiting interleaving. (c) Area for throughput = 1/5 without interleaving.
(d) Power for throughput = 1/5 without interleaving.

actual space occupied by the circuit. So increase rates of
area and power are pretty much the same as they are both
proportional to the number of cells. The body and the intercon-
nection parts grow differently as the number of bits increases.
As expected, the body and the input conditioning expand
linearly, while the interconnection regions grow quadratically.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

The ratio total area/body area goes from 1.9 for 4 bits to
16.2 for 64 bits. This result gives an idea of how much input–
output preskew/deskew networks can affect performance and
circuit area.

C. Parallel MAC

The layout of this circuit, as clear from Fig. 9, has many
empty internal regions. So the area evaluated by the model is
smaller than it should be, because it only considers the space
occupied by cells. The value actually assigned to the parallel
MAC is rounded up to the parallelogram circumscribed to the
circuit. To obtain the parallelogram area, we derived a generic
equation to evaluate height and width (in terms of cells) for
any number of bits.

When the number of bits doubles, both the area and power
grow four times. Hence, as expected the increase rate is
quadratic and regular, because is how both the multiplier and
the interconnection regions grow. The wasted space due to
the empty inner regions has a negative effect on the area
occupation, while it does not affect the power consumption.

Referring to Table II, starting from the with interleaving
part, the parallel implementation is undoubtedly the most
efficient, while the serial–parallel has the worst outcomes.

If interleaving cannot be used (e.g., if there are no unrelated
operations to be executed), the hierarchies among the four
MAC versions undergo slight changes. The performance of
the parallel and serial–parallel MAC units worsens, respec-
tively, of five and three times, according to their previous
interleaving usage. The serial MAC with sharing gains a lot in
this situation, because it cannot exploit interleaving anyway.
Therefore, referring to Fig. 10, looking at data for the circuit
that cannot exploit interleaving (C and D), we can notice that
the serial MAC with sharing is the best architecture up to a
16-bit parallelism (the value for area and power is smaller
for serial architecture—labeled with the triangle symbol—
with respect to the other two). However, the trend for area
and power are worse in serial and serial–parallel with respect
to parallel architecture. Thus, none of the implementations
can keep up with the parallel one when the number of bits
increases. The parallel MAC is again the best solution for
32 or higher number of bits.

VI. CONCLUSION

We stated in the introduction that we wanted to understand
if there was the necessity for a paradigm change from parallel
to serial with the change of technology from CMOS to NML.
Achieved results undoubtedly mark parallel architecture as the
best in all metrics also in NML technology.

Indeed, in particular for high parallelisms, the parallel MAC
results are overall better than the other two implementations,
while for smaller circuits, the performance is comparable.
The serial MAC can be a valid alternative when unable to
provide interleaved operations to the circuit. The idea of
sharing accumulator and adder boosts the performance, but it
can also be a setback, as it requires N multiple MAC modules
to be connected together. It is not possible for one of them
to function without the presence of the others. In conclusion,

the parallel MAC has by far the most promising architecture
organization.

In addition, some important advices for NML logic circuits
design have emerged from this paper.

1) Synchronization networks like preskew/deskew greatly
affect performance. Indeed, the serial–parallel MAC
greatly suffers the input–output conditioning networks.
The only way for this circuit to be very competi-
tive would be a system where it could interface itself
with other modules without the need of its additional
preskew/deskew networks.

2) Long interconnections and feedbacks are the main prob-
lem with the ME-NML technology. The systolic array
organization of the parallel MAC keeps them to the
minimum, avoiding for the long feedback required for
serial multiplication that in the serial MAC also affect
the loops of adder and accumulator.

3) Standard cells design can give an added value to the
automatic design of NML circuits. The definition of the
standard cell library, together with the high regularity
of circuit layout, can be the foundation for the cre-
ation of a design tool that could greatly improve the
future research in this field. The design and simulation
methodology proposed for this paper consists of a hier-
archical RTL model, based on the set of standard cells.
The model contains all the information concerning the
physical placement and orientation of cells. Furthermore,
the embedded capability of exact performance evaluation
makes the model an advanced stand-alone tool.

REFERENCES

[1] D. Rairigh, “Limits of CMOS Technology scaling and technologies
beyond-CMOS,” Michigan State Univ., Lansing, MI, USA, Tech. Rep.,
2005.

[2] M. Vacca et al., “Electric clock for NanoMagnet logic circuits,” in
Field-Coupled Nanocomputing (Lecture Notes in Computer Science),
N. G. Anderson and S. Bhanja, Eds. Heidelberg, Germany:
Springer-Verlag, 2014.

[3] M. Vacca et al., “NanoMagnet logic: An architectural level overview,”
in Field-Coupled Nanocomputing. Berlin, Germany: Springer, 2014,
pp. 223–256.

[4] G. Causapruno, G. Urgese, M. Vacca, M. Graziano, and M. Zamboni,
“Protein alignment systolic array throughput optimization,” IEEE Trans.
Very Large Scale Integr. (VLSI) Syst., vol. 23, no. 1, pp. 68–77, Jan. 2015.

[5] G. Causapruno, M. Vacca, M. Graziano, and M. Zamboni, “Interleaving
in systolic-arrays: A throughput breakthrough,” IEEE Trans. Comput.,
vol. 64, no. 7, pp. 1940–1953, Jul. 2015.

[6] M. Awais, M. Vacca, M. Graziano, M. R. Roch, and G. Masera,
“Quantum dot cellular automata check node implementation for LDPC
decoders,” IEEE Trans. Nanotechnol., vol. 12, no. 3, pp. 368–377,
May 2013.

[7] M. Crocker, X. S. Hu, and M. Niemier, “Design and comparison of NML
systolic architectures,” in Proc. NANOARCH, Jun. 2010, pp. 29–34.

[8] H. Kung, “Systolic algorithms for the CMU warp processor,” Dept.
Comput. Sci., Carnegie-Mellon Univ., Pittsburgh, PA, USA, Tech. Rep.,
1978.

[9] L. Lu, W. Liu, M. O’Neill, and E. Swartzlander, Jr., “QCA systolic array
design,” IEEE Trans. Comput., vol. 62, no. 3, pp. 548–560, Mar. 2013.

[10] L. Lu, W. Liu, M. O’Neill, and E. Swartzlander, “QCA systolic matrix
multiplier,” in Proc. IEEE Comput. Soc. Annu. Symp. VLSI (ISVLSI),
Oct. 2010, pp. 149–154.

[11] D. Giri, M. Vacca, G. Causapruno, M. Zamboni, and M. Graziano,
“Modeling, design, and analysis of magnetoelastic nml circuits,” IEEE
Trans. Nanotechnol., vol. 15, no. 6, pp. 977–985, Nov. 2016.

[12] D. S. Silva, L. H. B. Sardinha, M. A. M. Vieira, L. F. M. Vieira, and
O. P. V. Neto, “Robust Serial Nanocommunication With QCA,” IEEE
Trans. Nanotechnol., vol. 14, no. 3, pp. 464–472, May 2015.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

GIRI et al.: PARALLEL AND SERIAL COMPUTATION IN NANOMAGNET LOGIC 11

[13] H. Cho and E. E. J. Swartzlander, “Serial parallel multiplier design
in quantum-dot cellular automata,” in Proc. 18th IEEE Symp. Comput.
Arithmetic (ARITH), Jun. 2007, pp. 7–15.

[14] H. Cho and E. E. Swartzlander, “Adder and multiplier design in
quantum-dot cellular automata,” IEEE Trans. Comput., vol. 58, no. 6,
pp. 721–727, Jun. 2009.

[15] M. Gladshtein, “Quantum-dot cellular automata serial decimal
adder,” IEEE Trans. Nanotechnol., vol. 10, no. 6, pp. 1377–1382,
Jun. 2011.

[16] V. Pudi and K. Sridharan, “A bit-serial pipelined architecture for
high-performance DHT computation in quantum-dot cellular automata,”
IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 23, no. 10,
pp. 2352–2356, Oct. 2015.

[17] D. Giri, M. Vacca, G. Causapruno, W. Rao, M. Graziano, and
M. Zamboni, “A standard cell approach for MagnetoElastic NML
circuits,” in Proc. IEEE/ACM Int. Symp. Nanosc. Archit. (NANOARCH),
Jul. 2014, pp. 65–70.

[18] M. Vacca et al., “ToPoliNano: NanoMagnet logic circuits design and
simulation,” in Field-Coupled Nanocomputing (Lecture Notes in Com-
puter Science), N. G. Anderson and S. Bhanja, Eds. Berlin, Germany:
Springer-Verlag, 2014, pp. 274–306.

[19] F. Riente, G. Turvani, M. Vacca, M. R. Roch, M. Zamboni, and
M. Graziano, “ToPoliNano: A CAD tool for nano magnetic logic,”
IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., vol. 36, no. 7,
pp. 1061–1074, Jul. 2017.

[20] R. P. Cowburn and M. E. Welland, “Room temperature magnetic
quantum cellular automata,” Science, vol. 287, no. 5457, pp. 1466–1468,
2000.

[21] M. T. Niemier et al., “Shape engineering for controlled switching
with nanomagnet logic,” IEEE Trans. Nanotechnol., vol. 11, no. 2,
pp. 220–230, Mar. 2012.

[22] G. Csaba and W. Porod, “Behavior of nanomagnet logic in the presence
of thermal noise,” in Proc. IEEE Int. Workshop Comput. Electron., Pisa,
Italy, Oct. 2010, pp. 1–4.

[23] M. Vacca et al., “Magnetoelastic clock system for nanomagnet logic,”
IEEE Trans. Nanotechnol., vol. 13, no. 5, pp. 963–973, Sep. 2014.

[24] M. T. Niemier et al., “Nanomagnet logic: Progress toward system-
level integration,” J. Phys., Condens. Matter, vol. 23, no. 49, p. 34,
Nov. 2011.

Davide Giri received the M.S. degree in electronic
engineering from the Politecnico di Torino, Turin,
Italy, in 2014 and the M.S. degree in electrical
and computer engineering from the University of
Illinois at Chicago, Chicago, IL, USA, in 2015.
He is currently working toward the Ph.D. degree at
Columbia University, New York, NY, USA, where
he is a part of the System-Level Design Group.

His current research interests include range from
emerging technologies and circuits architectures
to heterogeneous system-on-chip and distributed
embedded systems.

Giovanni Causapruno received the D.Eng. and
Ph.D. degrees in electronics engineering from the
Politecnico di Torino, Turin, Italy, in 2012 and
2016, respectively. He is currently working toward
the M.B.A. degree at the SDA Bocconi School of
Management, Milan, Italy.

His current research interest includes parallel
processing architectures for nanotechnologies.

Fabrizio Riente (M’18) received the M.Sc. degree
(magna cum laude) in electronic engineering and the
Ph.D. degree from the Politecnico di Torino, Turin,
Italy, in 2012 and 2016, respectively.

In 2016, he was a Postdoctoral Research Associate
at the Technical University of Munich, Munich,
Germany. He is currently a Postdoctoral Research
Associate at the Politecnico di Torino. His current
research interests include device modeling, circuit
design for nanocomputing, with particular interest
on magnetic quantum-dot cellular automata, and the

development of an electronic design automation tool for beyond-CMOS
technologies, with a focus on the physical design.

