
Accelerators and
Coherence: An SoC
Perspective

The complexity of System-on-Chip (SoC) designs

continues to grow as each SoC features an increasing

variety of loosely coupled accelerators together with

multiple processor cores. Specialized-hardware

accelerators are typically designed in isolation,

optimized for the algorithm they are implementing, and with limited consideration of the

implications of their integration into a given SoC. However, the interaction between these

accelerators and the memory hierarchy is critically important for their performance and

the performance of the overall SoC. By leveraging our platform for rapid SoC

prototyping, we analyze three models of coherence for loosely coupled accelerators from

a system-level perspective.

Originated in the world of embedded systems, the SoC has emerged as the main computation
engine across a variety of computing-system classes. Examples of major SoC product families
include the Apple A Series, the NVIDIA Tegra, the Qualcomm Snapdragon, and the recently
announced Xilinx Everest. A state-of-the-art SoC combines many general-purpose processor
cores with a growing number of accelerators, each offering a high-performance specialized-
hardware implementation of an algorithm (or a small class of algorithms). These accelerators are
loosely coupled because they are located outside the cores and execute coarse-grain tasks on
large datasets independently from them.1

Considering also that it is desirable to reuse a loosely coupled accelerator across different SoCs,
it is not surprising that its design is typically performed and evaluated in isolation. However, the
system-level integration of an accelerator and its run-time interaction with the other SoC
components has a critical influence on the performance it can deliver. For example, while an
accelerator is often designed with the ideal assumption of a perfect balance between its memory-
bandwidth requirements and the bandwidth it can access in a system, the SoC reality involves
memory contention and interconnect congestion.

Davide Giri,
Paolo Mantovani, and
Luca P. Carloni
Columbia University

THEME ARTICLE: Hardware Acceleration

IEEE Micro
November/December 2018 36

Published by the IEEE Computer Society
0272-1732/18/$33.00 �2018 IEEE

Arguably, the system-level feature with the biggest impact on the behavior of an accelerator is its
interaction with the memory hierarchy. Prior studies of cache-coherence models for accelerators,
however, have been limited to consider the presence of a single accelerator in a bus-based system and
running experiments that do not account for all system-level effects.

We present a system-level analysis of three cache-coherence models for loosely coupled accelerators
by investigating the effects of the following:

� different memory-access patterns;
� varying memory footprints;
� the number of simultaneously active accelerators;
� interference with the processor execution.

Implicitly, our experiments show how performing a system-level analysis with an FPGA-based
full-system prototyping platform is critical for the evaluation of the actual performance of accelerators
in SoC.

EMBEDDED SCALABLE PLATFORMS
The diminishing regularity of heterogeneous SoCs increases the complexity of integrating
components, interfacing hardware and software, and managing shared resources. Embedded Scalable
Platforms (ESP) is a new approach to SoC design and programming that addresses these challenges by
combining a flexible tile-based socketed architecture with a companion system-level design (SLD)
methodology.2 Each tile of an ESP instance can host a processor, I/O peripherals, system utilities, or
accelerators, which are typically configurable but not programmable. The selection of the mix of tiles
for a target application domain is the result of a design-space exploration guided by the SLD
methodology. Figure 1 shows a 16-tiles ESP instance.

Figure 1. ESP instance with 16 tiles. The four types of tiles interact via a multiplane NoC that they
access through their sockets. The diagram highlights the three possible communication flows between
an accelerator and a memory tile, corresponding to three cache-coherence models for accelerators.

HARDWARE ACCELERATION

November/December 2018 37 www.computer.org/micro

Decoupling Communication and Computation
The ESP tiles are interconnected via a scalable communication and control infrastructure (SCCI). The
SCCI is synthesized from a set of library components and its complexity depends on the scale of the
ESP instance. For complex designs, it consists of a network-on-chip (NoC) with multiple physical
planes: some planes are devoted to cache-coherence messages, others to DMA transactions, and one to
handle interrupts and accesses to I/O and memory-mapped registers.

The integration of heterogeneous components into an ESP design is simplified, because each
component is encapsulated into a configurable socket. The socket, which is synthesized from a
parameterized template, interfaces the particular component with the SCCI. Together, the SCCI and
the sockets implement a set of ESP services, which include communication mechanisms and tile-
specific operations.2 For example, an accelerator-tile socket may implement a DMA engine and
interrupt-request logic along with the NoC protocols. These implementation details are transparent to
the accelerator. Similarly, a core-tile socket allows its processor to execute legacy software as if it was
sitting on the bus of a homogeneous system. The modularity of this organization is key to the
scalability of the ESP architecture because the components within the tiles can be designed
independently from each other and from the SCCI. It is also key to the scalability of the ESP
methodology because the addition of more computation tiles to a given SoC is seamlessly supported
with the addition of more memory tiles and NoC planes.

Accelerator Design
ESP accelerators are loosely coupled.1 To deliver a major speedup compared to a software execution, a
loosely coupled accelerator consists of a highly parallel datapath tailored to the specific needs of the
target algorithm, and a heavily banked private local memory (PLM). Differently from a cache, the
PLM has as many ports as required by the datapath that guarantee a one-cycle simultaneous access to
data. Furthermore, the PLM holds no information about addresses and coherence: it only provides fast
storage for inputs fetched from the memory, outputs queued for writeback, and partial results which
only reside in the PLM. While it occupies most of the accelerator area, the PLM can typically store just
a fraction of the dataset processed by the accelerator each time is invoked by software. Hence, the art
of accelerator design is to balance computation and communication to hide the memory-transfer
latency. To achieve this, ESP accelerators are synthesized from a high-level specification (e.g.,
SystemC). The load and store stages interact with the socket to transfer data between PLM and
memory, while the highly pipelined computation stage processes the data in the PLM. The
configurable socket allows the designer to decide the number and size of data chunks that are
transferred while the computation is progressing. This template supports many different
microarchitecture implementations, each generated automatically with high-level synthesis and
offering a different area-performance tradeoff.

Accelerator Tile
The socket can host any accelerator that complies with its latency-insensitive interface: load port, store
port, configure-register port, and done signal (see Figure 1). It has also a set of I/O-mapped
configuration registers and a small private TLB. Since the accelerator works in its own virtual-address
space, the TLB translates the load/store requests to physical-memory addresses. Depending on the
selected cache-coherence model, the request goes through either DMA controller or cache.

The socket employs a scatter-gather list,3 allowing the division of the accelerator addressable space in
large pages so that the page table can be contiguous in main memory. The DMA controller and TLB
fetch the page-table entries from memory without the need for OS support or copying data across
memory regions, thus avoiding idle times for the accelerator.

Accelerator Invocation From Software
In ESP, a user-space application invokes an accelerator by calling its device driver through an ioctl()
system call, after having prepared the dataset that it must process. Depending on the selected cache-
coherence model, the driver might flush the caches. The driver writes the configuration registers with

IEEE MICRO

November/December 2018 38 www.computer.org/micro

the address information for the TLB and other accelerator-specific configurations, before setting a
register that makes the accelerator start. While the driver is suspended by the OS, the processor can
execute other applications until the accelerator notifies via interrupt that its execution is completed.
When an accelerator executes a coarse-grain task on a large dataset, the driver-invocation and interrupt
overheads are negligible.

ACCELERATOR CACHE-COHERENCE MODELS
We studied the literature on fixed-function loosely coupled accelerators executing coarse-grain tasks
and identified three cache-coherence models: non-coherent,1,4,5 coherent with the last-level cache
(LLC-coherent),1 and fully-coherent.4,6–8 We extended the ESP architecture from supporting only
non-coherent accelerators to support the three models, as shown in Figure 1. ARM’s ACE-lite
interface implements a fourth type of cache-coherence, which is able to keep uncached accelerators
coherent. We did not include this approach, which relies on bus snooping, which is not suitable
for NoCs.

Non-coherent Accelerators
Non-coherent accelerators access DRAM via two DMA-dedicated planes of the NoC, bypassing the
cache hierarchy. The accelerator data region must be flushed from the cache hierarchy before its
execution can start. Since larger DMA bursts have higher throughput, this model is, especially efficient
for those accelerators that can leverage this property.

LLC-Coherent Accelerators
LLC-coherent accelerators send DMA requests to the LLC. Hence, the accelerator data region must be
flushed only from the processors’ private caches. This model is efficient if the DMA requests present a
high hit rate in the LLC. Its implementation is similar to the one for non-coherent accelerators, but the
LLC-coherent DMA requests/responses are routed on the cache-coherence planes instead of the DMA-
dedicated planes. We chose DMA over load/store requests to reduce traffic on the NoC, given that
most accelerators operate with long data transfers.

Fully-Coherent Accelerators
MESI or MOESI are the common choices for fixed-function accelerators that own a cache.4,6–8 Our
fully-coherent accelerator has its own private cache, which implements the MESI protocol just like the
processors’ caches. Since the cache hierarchy handles the coherent accesses, this model does not
require any cache flushing prior to the accelerator execution.

Extending ESP to Support Cache-Coherent Accelerators
To enable accelerator cache-coherence in ESP, we added two levels of caches to the write-through L1
caches of the processors. We placed a write-back L2 cache in each core tile and a write-back LLC
cache with directory on each memory tile. The latter can be split across multiple tiles, each managing
the same address range as their respective memory controllers. The new cache system allows us to
synthesize multicore SoCs hosting fully-coherent accelerators.

The socket of the accelerator tile handles the coherence protocol. The cache-coherence model can be
decided for each accelerator at either design or run time. In the first case, designers can instantiate in the
socket only the resources needed by the chosen model. Alternatively, if a socket presents both the DMA
controller and the private cache, then the accelerator can use any model at each invocation. Furthermore,
ESP systems support different accelerators that operate simultaneously with different models.

The cache hierarchy implements a directory-based MESI protocol customized for NoC operations. The
only coherence requirement for the NoC design is the point-to-point ordering of messages. To avoid
protocol deadlock, we use a different NoC plane for each coherence-message class: request, forward,
and response.

HARDWARE ACCELERATION

November/December 2018 39 www.computer.org/micro

Accelerator tiles without private caches (i.e., LLC-coherent) send request messages that map to a
subset of the MESI protocol. Specifically, they cannot be owners or sharers of cache lines but they can
still access them through the LLC, thus causing hits and misses. Whenever an LLC-coherent request
causes an eviction, recalls might be sent to owner or sharers. However, since most evictions involve
cache lines that are neither owned nor shared, few recalls are needed.

ACCELERATOR COMMUNICATION PROPERTIES
Since the ESP approach decouples the accelerator design from the design of the rest of the SoC, from a
system-level perspective each accelerator is characterized by its behavior at the socket interface. There
are four main communication properties, which are as follows.

� Compute-to-memory ratio: Intuitively, algorithms that require performing many complex
operations on small portions of their dataset are most suitable to acceleration. For these
algorithms, the ratio of the computation work performed by an accelerator over the amount
of data it transfers with memory is very large. Hence, such accelerator requires less memory
bandwidth and tolerates better NoC congestion.

� Workload memory footprint: The implications of designing an accelerator for an algorithm
that accesses a large size of memory are often neglected. For example, an accelerator that
processes a large input array could evict repeatedly all data in the caches, thus causing
thrashing.

� Data reuse: An accelerator for an algorithm that does an extensive reuse of data should be
designed so that it exploits this locality to reduce memory roundtrips.

� Streaming versus irregular memory access pattern: Accelerators that access data in
streaming benefit from long DMA bursts on mostly contiguous data, which yield high
communication efficiency. In contrast, accelerators making irregular accesses that are mostly
small sized, noncontiguous, and data-dependent pose challenges for DMA.

Obviously, these communication properties are critical when performing a system-level analysis of an
SoC that integrates many different components, which may interfere as they access common resources
such as NoC and DRAM.

Leveraging our experience with the design of accelerators for embedded applications,2,3,9 we
identified four algorithms whose communication properties are representative of four main
classes of accelerators. Specifically, we designed accelerators for Debayer, Change-Detection and
Sort, three applications from the PERFECT Benchmark Suite.10 We also designed an accelerator
for sparse matrix-vector multiplication (SPMV) from the MachSuite.11 Table 1 summarizes the
key features of these accelerators. Data reuse refers to the memory access pattern at the
accelerator interface.

Table 1. Characterization of the four accelerators.

Name
Access

pattern

Compute-

to-memory

ratio

Data reuse
PLM size

(KB)
FPGA resources

LUT FF

Debayer Streaming Medium Low 48 4446 1968

Change

Detection
Streaming High Medium 17 16 274 6378

Sort Streaming Medium High 24 36 868 31 300

SPMV Irregular Low Low 8 8355 4789

IEEE MICRO

November/December 2018 40 www.computer.org/micro

Debayer processes an image in Bayer format with a 5 � 5 stencil. The accelerator loads data into the
PLM by accessing memory with a streaming pattern. Since each input is fetched only once, Debayer
has a classic streaming behavior.

Change-Detection processes a sequence of frames with an initial training set and returns a sequence of
masks, while updating the training set in-place. This accelerator can work on large datasets with a
streaming pattern. The distinctively high compute-to-memory ratio implies a relatively low memory-
bandwidth requirement.

At each invocation, Sort performs in-place reorder iteratively of multiple arrays of 1024 floating-point
elements through a combination of bitonic and merge sort. It has a streaming behavior, but with a good
level of data reuse because the results are written in-place in the input buffers. To exploit this temporal
locality, the accelerator has a PLM big enough to store an entire array.

SPVM multiplies a sparse matrix by a dense vector. The few nonzero elements of each row are
multiplied with a dot product by the corresponding elements in the vector. The matrix sparsity makes
the accesses to the vector irregular. Accesses to memory are unpredictable, irregular, and happen in
very small chunks, down to a word at a time. The compute-to-memory ratio is low.

We sized the PLMs to enable one-cycle access to all data needed by one step of computation, where
each step leverages as much parallelism as possible. PLM customization is specific to the given
accelerator and critical to its performance. When the memory access pattern of the accelerator is fully
known, the PLM can exploit most of the locality. For instance, this is the case of both Sort and
Debayer, for which, however, the cache is still necessary to support the fully-coherent model. In this
case, the relative size of the cache with respect to the PLM is not important given that the locality is
exploited within the PLM. Conversely, the cache is beneficial for irregular memory access patterns
(e.g., for SPMV), which however often limit the speedups achievable by accelerators compared
to processors.

FPGA AS AN EXPERIMENTAL INFRASTRUCTURE
Simulation plays a fundamental role in the design flow and architectural optimization of SoCs.
However, even an approximately timed simulation with gem5 is 1000 times slower than native
execution12 and the gap is bound to increase considerably as the system size scales up because event-
driven simulation is hardly parallelizable, whereas hardware is inherently parallel. By enabling fast
and accurate execution of larger workloads, FPGA offers unique capabilities to analyze the complex
interactions among all SoC components. FPGAs, however, remain difficult to use.

We developed the ESP architecture and methodology with the goal of simplifying rapid prototyping of
SoCs. We can obtain full-system prototypes by instancing the ESP components from predesigned
libraries. Our CAD flow, which combines commercial and in-house tools, allows us to synthesize the
complete SoC for FPGA or ASIC implementation targets. High-level synthesis, which enables the
exploration of a broad design space more effectively than RTL design, allows us to synthesize many
pareto-optimal implementations of any accelerator, thus increasing its reusability across different
SoCs.2 We program the accelerator driver from a general template, as on average only 2% of its code is
accelerator specific. After selecting the accelerators for a target SoC, all that is left to do is to specify
the ESP configuration by choosing the number of tiles and configuring their content.

For our experimental analysis, we use a Virtex-7 FPGA to implement various SoC prototypes, each
featuring multiple Leon3 cores running Linux SMP and a six-plane NoC. We leverage the ESP
services to record system statistics, including NoC congestion and cache hit/miss rates.

SYSTEM-LEVEL EXPERIMENTAL ANALYSIS
For each of the four accelerators, we evaluate the cache coherence models while executing workloads
with different memory footprints, chosen based on the cache sizes, which are as follows:

� Extra Small (XS): Smaller than the accelerator cache;

HARDWARE ACCELERATION

November/December 2018 41 www.computer.org/micro

� Small (S): Smaller than the LLC but larger than the accelerator cache;
� Medium (M): Two times the LLC size;
� Large (L): Ten times the LLC size;
� Extra Large (XL): A hundred times the LLC size.

For each core, the L1 and L2 cache sizes are 16 kB and 32 kB, respectively. The accelerator private
cache is 32 kB. The LLC size is only 256 kB to expose the relationship between cache size and
memory footprint of the workloads.

Accelerator and Memory Access
We start from a simple system with one core, one accelerator, and one memory controller. We test all
combinations of accelerator and cache-coherence models, resulting in 12 distinct SoC configurations.
For each SoC, we evaluate the accelerator performance as the memory footprint varies. Notice that
accelerators’ executions are race free in ESP.3 Figure 2 reports the accelerator speedups expressed as
the normalized execution times with respect to the corresponding software execution on the core. All
results are the average of multiple executions. The percentage values above the bars denote the LLC
hit rate for the LLC-coherent model and the accelerator cache-hit rate for the fully-coherent model,
respectively.

These results show that the time spent running a device driver is only relevant when the memory
footprint is tiny. This confirms the results of previous simulation-based studies, which concluded that
abstracting loosely coupled accelerators using device drivers is a low-complexity and efficient
approach.1 When the driver execution is not negligible, the fully-coherent model has a slight
advantage because its driver does not flush the caches.

For M, L, and XL workloads, the non-coherent model always wins. The caches struggle to keep up
with the non-coherent model because the datasets are large enough to cause thrashing. Instead, when

Figure 2. Normalized execution times of the accelerators with respect to the software execution on the
processor core for each combination of coherence model (non-coherent, LLC-coherent, fully-coherent)
and memory footprint (XS, S, M, L, and XL).

IEEE MICRO

November/December 2018 42 www.computer.org/micro

the memory footprint is smaller than the accelerator cache, the fully-coherent model is often preferable
because it can reuse cached data. Similarly, the LLC-coherent approach is effective when the dataset
fits in the LLC but not in the L2. The only exception is the sort accelerator, which can fit the whole sort
array in its PLM and then simply repeats its computation on different arrays. This shows that if the
PLM can capture the whole available temporal locality of the task, then the accelerator cache is
not useful.

The LLC-coherent and fully-coherent models have the implicit advantage of reducing round-trips to
DRAM when the hit rate in the caches is high. Thus, the choice of accelerator model has important
implications on energy efficiency as well.

These experiments show that each cache-coherence model can be optimal for some combination of
accelerator and memory footprint. Therefore, the ability to dynamically select the optimal model when
invoking each particular accelerator depending on the memory footprint of the given workload allows
us to fully exploit the potential of all accelerators.

Accelerator–Accelerator Interference
We repeat all the experiments of the previous section while increasing the number of accelerators in
the system up to four, in order to analyze how this influences each model. We use the small workload,
which is about half the size of the LLC. Therefore, for upto two accelerators, the aggregate workload
still fits in the LLC. For brevity, Figure 3(a) reports only data for SPMV. Debayer and Sort have similar
behaviors, while Change-Detection experiences almost no performance degradation due to its high
compute-to-memory ratio.

The results of Figure 3(a) confirm the intuition that if the number of accelerators grows while the
system around them remains the same, then the accelerators are likely to experience diminishing
returns in terms of speedup. More interestingly, as long as the aggregate memory footprint of the
accelerators fits in the LLC, the fully-coherent model suffers the least deterioration of performance.
Instead, the LLC-coherent model follows the performance trend of the non-coherent one, because of
the increased utilization of the LLC. With three or four accelerators, the aggregate workload size is
larger than the LLC and, therefore, the non-coherent model is preferable.

Accelerator–Processor Interference
Finally, we analyzed whether the accelerators execution affects the processors’ performance and, if so, how
this varies with the cache-coherence model.We use a systemwith two cores and two accelerators: SPMV

Figure 3. (a) Execution times of the SPMVaccelerator in SoCs with 2, 3, and 4 accelerators
normalized to the execution with 1 accelerator only. (b) Comparison of the execution times of SPMV
on a core “disturbed” by two accelerators, across the three cache-coherent models.

HARDWARE ACCELERATION

November/December 2018 43 www.computer.org/micro

and Debayer. One core executes in a loop the SPMValgorithmwith a small workload. After nine iterations,
the other core launches, for five consecutive times, the two accelerators on their small workloads.

We measured the time of the loop execution of the SPVM
algorithm on the core working in background. Figure 3(b) shows
the average of multiple runs: the core’s task suffers a penalty of up
to 100% when the two accelerators become active. In particular, the
LLC-coherent model causes the highest performance degradation
because the LLC is polluted by the accelerator’s data. With the
fully-coherent model, the LLC still gets polluted but it has less
traffic to handle, thanks to the accelerators’ caches, and the core
private caches are not flushed. Finally, the accelerators working
with the non-coherent model cause the least amount of disturbance.

CONCLUSION
By implementing a set of full-system SoC prototypes on FPGA, we
analyzed three cache-coherence models for loosely coupled
accelerators. Our analysis shows that while making these
accelerators non-coherent is the most effective solution for large
workloads, supporting the coexistence of heterogeneous models in
an SoC is critical to take full advantage of the performance of each
accelerator for varying workloads. It also shows that the effective
speedup of an accelerator, compared to a software execution, must
be evaluated in an SoC context considering the interaction with all
system components.

ACKNOWLEDGMENTS
This work was supported in part by the National Science Foundation under Grant A#: 1546296
and in part by the Defense Advanced Research Projects Agency (DARPA) under Grant C#:
FA8650-18-2-7862. The views and conclusions contained herein are those of the authors and
should not be interpreted as necessarily representing the official policies or endorsements, either
expressed or implied, of Air Force Research Laboratory and DARPA or the U.S. Government.

REFERENCES
1. E. G. Cota, P. Mantovani, G. D. Guglielmo, and L. P. Carloni, “An analysis of accelerator

coupling in heterogeneous architectures,” in Proc. 52nd ACM/EDAC/IEEE Des. Automat.
Conf., 2015, pp. 1–6.

2. L. P. Carloni, “Invited: The case for embedded scalable platforms,” in Proc. 53rd ACM/
EDAC/IEEE Des. Automat. Conf., 2016, pp. 1–6.

3. P. Mantovani, E. G. Cota, C. Pilato, G. D. Guglielmo, and L. P. Carloni, “Handling large
data sets for high-performance embedded applications in heterogeneous systems-on-chip,”
in Proc. Int. Conf. Compliers, Architectures, Synthesis Embedded Syst., 2016, pp. 1–10.

4. Y. Shao, S. L. Xi, V. Srinivasan, G. Wei, and D. Brooks, “Co-designing accelerators and SoC
interfaces using gem5-Aladdin,” in Proc. 49th Annu. IEEE/ACM Int. Symp.
Microarchitecture, 2016, pp. 1–12.

5. Y. Chen et al., “Accelerator-rich CMPs: From concept to real hardware,” in Proc. IEEE 31st
Int. Conf. Comput. Des., 2013, pp. 169–176.

6. H. Franke et al., “Introduction to the wire-speed processor and architecture,” IBM J. Res.
Develop., vol. 38, pp. 3:1–3:11, 2010.

7. M. J. Lyons, M. Hempstead, G.-Y. Wei, and D. Brooks, “The accelerator store: A shared
memory framework for accelerator-based systems,” ACM Trans. Architecture Code Optim.,
vol. 8, 2012, Art. no. 48.

Our analysis shows that

while making these

accelerators non-coherent is

the most effective solution for

large workloads, supporting

the coexistence of

heterogeneous models in an

SoC is critical to take full

advantage of the

performance of each

accelerator for varying

workloads.

IEEE MICRO

November/December 2018 44 www.computer.org/micro

8. J. Stuecheli, B. Blaner, C. R. Johns, and M. S. Siegel, “CAPI: A coherent accelerator
processor interface,” IBM J. Res. Develop., vol. 59, pp. 7:1–7:7, 2015.

9. P. Mantovani et al., “An FPGA-based infrastructure for fine-grained DVFS analysis in high-
performance embedded systems,” in Proc. 53rd ACM/EDAC/IEEE Des. Automat. Conf.,
2016, pp. 1–6.

10. K. Barker et al., PERFECT Benchmark Suite Manual. Pacific Northwest National Lab.,
Richland, WA, USA, 2013.

11. B. Reagen, R. Adolf, Y. S. Shao, G. Wei, and D. Brooks, “MachSuite: Benchmarks for
accelerator design and customized architectures,” in Proc. IEEE Int. Symp. Workload
Characterization, 2014, pp. 110–119.

12. A. Sandberg, S. Diestelhorst, and W. Wang, “Architectural Exploration with gem5,” ARM
Research. ASPLOS, Robinson College, Cambridge, U.K., 2017.

ABOUT THE AUTHORS

Davide Giri is a Ph.D. student of computer science at Columbia University. His
research interests include heterogeneous computing, software-defined hardware,
and domain-specific system-on-chip. He received the Master’s degree in electronic
engineering from the Politecnico di Torino and the Master’s degree in electrical and
computer engineering from the University of Illinois at Chicago. Contact him at
davide_giri@cs.columbia.edu.

Paolo Mantovani is an associate research scientist at Columbia University. His
research interests include architecture design and system level methodologies for
the integration and programming of heterogeneous computing platforms. He received
the Ph.D. degree in computer science from the Columbia University. Contact him at
paolo@cs.columbia.edu.

Luca P. Carloni is a professor of computer science at ColumbiaUniversity. His research
interests includemethodologies and tools for system-on-chip platforms, heterogeneous
computing, and design of distributed embedded systems. He received the Ph.D. degree in
electrical engineering and computer sciences from theUniversity of California, Berkeley. He
is an IEEE Fellow and senior member of the ACM. Contact him at luca@cs.columbia.edu.

HARDWARE ACCELERATION

November/December 2018 45 www.computer.org/micro

mailto:
mailto:
mailto:

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

