
ESP for Machine Learning
Davide Giri, Kuan-Lin Chiu, Giuseppe Di Guglielmo, Paolo Mantovani, and Luca P. Carloni

Department of Computer Science · Columbia University, New York

Why ESP?

ESP Architecture

ESP Methodology ESP4ML

Heterogeneous systems are pervasive

Integrating accelerators into a SoC is hard

Doing so in a scalable way is very hard

Keeping the system simple to program is even harder

ESP makes it easy

ESP combines a scalable architecture with a flexible methodology

ESP enables several accelerator design flows and takes care of the SW/HW integration

We hope that ESP will serve the OSH community as a Platform to develop software for

RISC-V and accelerators for any application domain

•RISC-V Processors

•Many-Accelerator

•Distributed Memory

•Multi-Plane NoC

The ESP architecture implements a distributed system, which is scalable, modular
and heterogeneous, giving processors and accelerators similar weight in the SoC

ke
rn

e
l

m
o

d
e

Linux

ESP core

ESP accelerator driver

u
se

r
m

o
d

e

ESP alloc

ESP Library

Application

•Generation of device driver and unit-test application

•Seamless shared memory
// Example of existing C application

// with ESP accelerators that replace

// software kernels 2, 3 and 5

{

int *buffer = esp_alloc(size);

for (...) {

kernel_1(buffer,...); /* existing software */

esp_run(cfg_k2); /* run accelerator(s) */

esp_run(cfg_k3); /* run accelerator(s) */

kernel_4(buffer,...); /* existing software */

esp_run(cfg_k5); /* run accelerator(s) */

}

validate(buffer); /* existing checks */

esp_cleanup(); /* free memory */

}

ESP Software API

ESP Vision: Domain Experts Can Design SoCs

ESP Accelerator Flow

•Developers focus on the high-level specification, decoupled from

memory access, system communication, hardware/software interface

•A graphical user interface application comes along with the ESP platform

+

Processor Tile

•Processor off-the-shelf

oRISC-V Ariane (64 bit)

SPARC V8 Leon3 (32 bit)

oL1 private cache

•L2 private cache

• IO/IRQ channel

oAccelerator config. registers,

interrupts, flush, UART, …

Memory Tile

•External Memory Channel

•LLC and directory partition

oSupports coherent-DMA

for accelerators

•DMA channels

• IO/IRQ channel

Accelerator Tile

•Accelerator Socket
w/ Platform Services
oDirect-memory-access

oRun-time selection of
coherence model:
▪ Fully coherent

▪ LLC coherent

▪ Non coherent

oUser-defined registers

oDistributed interrupt

•hls4ml
• Automated generation of accelerators from ML models

(Keras/Pytorch/ONNX)

• Currently targets FPGA only (Xilinx Vivado HLS)

•ESP
• Automated integration of hls4ml accelerators in ESP accelerator tiles

• Seamless mapping of complex applications onto many-accelerator SoCs

• Reconfigurable accelerator-to-accelerator communication

Case Study

• Generate a generic Vivado HLS wrapper for hls4ml accelerators

• Place the hls4ml output in the accelerator wrapper folder

• Now ESP sees the wrapper as any other accelerator

• Deploy two multi-accelerator
SoCs on FPGA (Xilinx VCU118)

• Night-vision (Stratus HLS)

• Image classifier (hls4ml) for the
Street View House Numbers
(SVHN) dataset from Google

• Denoiser (hls4ml) implemented
as an autoencoder

Automated Integration Steps

ESP: https://esp.cs.columbia.edu/

hls4ml: https://github.com/hls-fpga-machine-learning/hls4ml

