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ABSTRACT
In heterogeneous systems-on-chip, the optimal choice of

the cache-coherence model for a loosely-coupled accelera-

tor may vary at each invocation, depending on workload

and system status. We propose a runtime adaptive algorithm

to manage the coherence of accelerators. The algorithm’s

choices are based on the combination of static and dynamic

features of the active accelerators and their workloads. We

evaluate the algorithm by leveraging our FPGA-based plat-

form for rapid SoC prototyping. Experimental results, ob-

tained through the deployment of a multi-core and multi-

accelerator system that runs Linux SMP, show the benefits

of our approach in terms of execution time and memory

accesses.

CCS CONCEPTS
• Computer systems organization → Heterogeneous
(hybrid) systems; • Hardware → Hardware accelera-
tors; Hardware-software codesign;

KEYWORDS
heterogeneous system-on-chip, hardware accelerators, cache

coherence, FPGA prototyping

ACM Reference Format:
Davide Giri, Paolo Mantovani, and Luca P. Carloni. 2019. Runtime

Reconfigurable Memory Hierarchy in Embedded Scalable Platforms.

In Proceedings of ASPDAC ’19: 24th Asia and South Pacific Design Au-
tomation Conference (ASPDAC ’19), Jennifer B. Sartor, TheoD’Hondt,
andWolfgang DeMeuter (Eds.). ACM, New York, NY, USA, Article 4,

8 pages. https://doi.org/10.1145/3287624.3288755

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights

for components of this work owned by others than the author(s) must

be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from permissions@acm.org.

ASPDAC ’19, January 21–24, 2019, Tokyo, Japan
© 2019 Copyright held by the owner/author(s). Publication rights licensed

to ACM.

ACM ISBN 978-1-4503-6007-4/19/01. . . $15.00

https://doi.org/10.1145/3287624.3288755

1 INTRODUCTION
As the need for hardware acceleration has become imper-

ative, heterogeneous systems-on-chip (SoCs) have quickly

earned a fundamental role across all computing platforms [2,

12, 31]. Heterogeneity brings energy efficiency and high per-

formance, but it complicates the task of system integration

of components in terms of hardware-software co-design, ac-

cess to shared memory and design regularity [8]. In fact,

the integration of loosely-coupled accelerators in an SoC

presents hard design challenges, especially regarding the

interaction with the memory hierarchy. The literature shows

at least three different cache-coherence models for accel-

erators, which we refer to as fully-coherent, LLC-coherent
and non-coherent [11, 15, 26]. In the non-coherent model,

accelerators access off-chip memory directly, bypassing the

cache hierarchy. Fully-coherent accelerators are coherent

with the private caches of the processor cores. LLC-coherent

is an intermediate approach, where the accelerators are only

coherent with the last-level cache (LLC), but not with the

private caches in the system.

In a prior analysis we showed that the optimal choice of

coherence model for an accelerator varies at runtime [15].

Preliminary results suggest that the best model depends on

both static and dynamic factors: the memory access pattern

of the interested accelerator, the status of the system con-

taining it, and the software application invoking it. For this

reason, we developed a scalable architecture that relies on a

network-on-chip (NoC) to provide support for runtime selec-

tion of the cache-coherence model and for the coexistence of

heterogeneous models in an SoC [16]. In this paper we show

how to leverage such heterogeneity to improve the over-

all system performance. We propose a lightweight runtime

algorithm to adaptively select the cache-coherence model

for each accelerator’s invocation in heterogeneous SoCs. In

addition to information on SoC floorplanning and static char-

acteristics of the accelerator’s memory access pattern, the

algorithm makes decisions based on the current status of the

system and on the size of the accelerator’s memory footprint,

which can change at each invocation.

To evaluate the algorithm, we leveraged our rapid FPGA

prototyping platform for SoC design, part of the Embedded

Scalable Platforms (ESP) project [8, 21]. Our evaluation SoC is

composed of two CPUs, two memory controllers and twelve
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loosely-coupled accelerators, all connected by a multi-plane

NoC. The system boots Linux SMP and can run the synthetic

application on top of it.

We designed a synthetic accelerator that can be configured

to behave with a wide range of memory access patterns. We

then placed twelve differently configured instances of this

accelerator in our evaluation SoC. Additionally, we built a

synthetic multi-threaded application that invokes the twelve

accelerators. The application is divided in nine phases, where

each phase presents a different combination of workload

sizes and maximum number of concurrently active accelera-

tors.

We first executed the synthetic application with a fixed

and homogeneous choice of coherence model, one execu-

tion for each of the three coherence models to obtain three

baseline configurations. Then we run the application with

our proposed algorithm. The experimental results show that,

in each phase of the application, the runtime algorithm al-

ways performs at least as well as the best performing among

the three baselines, with up to a 35% improvement. Accord-

ingly, the algorithm leads to the best execution time over the

whole application. With respect to the number of memory ac-

cesses, our algorithm is always better than the non-coherent

baseline, while it has more accesses than LLC-coherent and

fully-coherent in some phases as a trade-off to reduce the

execution time. Our approach has no hardware cost and the

software overhead is limited to the execution of the algorithm

at each accelerator’s invocation. The algorithm accounts for

only 6% of the lines of code of device driver.

2 CACHE-COHERENCE MODELS
Loosely-coupled accelerators are known for providing major

speedups and energy savings, thanks to a highly parallel

custom datapath and an aggressively banked private local
memory (PLM) [11]. Although highly configurable, these

accelerators are not programmable, i.e. they do not execute

instructions. They do not require a fine-grained synchro-

nization with the processor cores. A device driver invokes

the accelerator and is notified back via interrupt when the

accelerator has completed its task. In fact, loosely coupled

accelerators are normally invoked to execute coarse-grained

tasks. They also require exclusive access to their data struc-

tures during execution, a common programming require-

ment easily enforced with Linux.

Let’s consider a multi-accelerator SoC, like for instance

the one shown in Figure 1. Which cache-coherence model

should be used for the accelerators? The different solutions

proposed in literature can be grouped into three main classes:

fully-coherent, LLC-coherent and non-coherent [15].

Fully-coherent. All read and write requests from the ac-

celerators are kept coherent with the whole cache hierarchy.
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Figure 1: Interaction of the three cache-coherence
models with the cache hierarchy in a multi-
accelerator SoC.

As Figure 1 depicts, the requests from fully-coherent acceler-

ators are sent to the directory and they may cause a forward

request to one or more private caches. This model can be

implemented by endowing the accelerators with a private

cache [1, 13, 20, 26, 30]. However, the cache is not strictly

necessary: for instance, the ARM ACE-lite protocol allows

the accelerators to communicate coherently directly on the

interconnect, without the need for a private cache [3]. The

fully-coherent model is the same model the processor cores

use to access memory and it comes with the full overhead of

the cache-coherence protocol.

LLC-coherent. The LLC-coherent model avoids all the

forward messages to the processor’s private caches: the ac-

celerator is only coherent with the LLC, not with the private

caches. This model works correctly only if the data requested

by the accelerator are not currently cached in a private cache.

This can be enforced with a selective flush of the processors’

private caches before invoking the accelerator. Normally,

the accelerator’s task is coarse enough to make the flush

overhead negligible. While this model, like the non-coherent

one, does not necessarily require the presence of a DMA

controller within the accelerator tile, this is a common im-

plementation choice in literature [10].

Cota et al. were among the first to propose this model [11].

Subsequently, we presented a cache-coherence protocol and

an architecture to support the LLC-coherent model [16].

The benefit of this approach is to relax the cache-coherence

protocol, by leveraging the fact that accelerators have exclu-

sive access to their data structures. At the same time, this

model still makes use of the cache hierarchy instead of by-

passing it completely, thus improving the execution time and

drastically reducing the off-chip accesses.
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Figure 2: An instance of the ESP architecture with
16 tiles. The tiles interact via a NoC that they access
through their sockets. The colored arrows highlight
the communication flow for each of the three cache-
coherence models as shown in Figure 1.

Non-coherent. Finally, the non-coherent model goes a

step further in removing the cache-coherence protocol over-

head. It completely bypasses the cache hierarchy by access-

ing memory directly [9, 11, 22, 26]. Similarly to the LLC-

coherent model, the processor’s private caches have to be

flushed selectively prior to the accelerator’s invocation. Addi-

tionally, however, also the LLC itself must be flushed because

it cannot contain any accelerator’s data.

3 ARCHITECTURE
This work is based on the architecture and design method-

ology of an existing platform for rapid design of heteroge-

neous SoCs, part of the Embedded Scalable Platforms (ESP)

project [8, 21–23]. The latest version of ESP supports all

the cache-coherence models for accelerators described in

Section 2 [16]. To handle LLC-coherent requests, the cache

hierarchy implements a variation of a classic directory-based

MESI protocol [28].

ESP is a tiled architecture, where each tile is encapsulated

in a configurable socket, which handles the communication

mechanisms and some tile-specific services. The socket, for

example, takes care of the cache-coherence protocol or in

some tiles it implements a DMA engine. All these services

are transparent to the content of the tile. This decoupling

of the tile from the rest of the system greatly simplifies the

integration of heterogeneous components.

Figure 2 shows a four-by-four instance of the ESP archi-

tecture. The interconnect is a 2D mesh NoC with six physical

planes. As depicted in Figure 2, three planes are devoted to

cache-coherence messages, two to DMA transactions and

one to memory mapped I/O and interrupts.

ESP features three types of tiles: processor, memory, and

accelerator tiles. Thanks to its predisposition toward com-

positionality, the ESP methodology allows the designer to

combine arbitrarily multiple instances of these tiles to com-

pose multi-processor and multi-accelerator SoCs.

Processor tile. The processor tile contains an off-the-shelf
processor core, the Leon3 [14], with its write-through L1

caches. An L2 private cache handles the cache-coherence

protocol, decoupling the processor core from it. Both the

requests to memory mapped I/O and the interrupts are not

cached. Instantiating multiple processor tiles yields a multi-

core SoC capable of running a full-fledged Linux SMP oper-

ating system.

Memory tile. The memory tile grants access to off-chip

memory. Each memory tile contains a memory controller,

a portion of LLC, and the corresponding part of the MESI

protocol directory.

Accelerator tile. The accelerator tile can host any accel-

erator that complies with a simple latency-insensitive pro-

tocol interface [7], which consists of read and write ports,

configure-register port, and a completion done signal.
To invoke the accelerator, a processor core writes the

configuration to the I/O mapped registers of the accelera-

tor’s socket. Upon completion of its coarse-grained task, the

accelerator emits the done signal and the socket sends an

interrupt back to the processor. The socket contains a very

lightweight translation lookaside buffer (TLB) to map the

accelerator’s own virtual addresses to physical memory. For

this, the socket employs a scatter-gather list, which allows

the division of the accelerator’s addressable space into large

pages in order to have a page table continuous in memory

and that fits in the TLB [22]. As a result, the TLB fetches

page table entries from memory without the need for operat-

ing system support or the need to copy data across memory

regions.

The socket of the accelerator tile contains also a simple

DMA engine and, optionally, a private cache. This tile sup-

ports all the cache-coherence models introduced in Section 2,

including both options for the fully-coherent model: cached

and uncached. At each accelerator’s invocation, one of the

configuration registers set by the processor specifies the

cache-coherence model of choice. Figure 2 shows the com-

munication flow for each of the models, by matching the

colors of Figure 1. Regardless of whether or not the fully-

coherent model makes use of the private cache, its messages

are routed through the coherence planes of the NoC. The re-

maining two models communicate with the rest of the cache
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hierarchy through DMA transactions. More precisely, the

LLC-coherent model sends its DMA requests to the directory,

whereas the non-coherentmodel communicates directlywith

the memory controller.

Flush implementation. The LLC-coherent and non-

coherent models require the flush of part of the cache hi-

erarchy. While ideally we would flush the addresses of the

accelerator’s dataset only, the Leon3 processor is not capa-

ble of selective flushing. Hence, in this implementation of

the ESP architecture the caches are flushed in full. However,

accelerator related flushes do not evict instructions, but only

data.

In the ESP architecture, the accelerator’s cache self-flushes

at the end of each execution. In this way the flush of the

private caches, required by the LLC-coherent and the non-

coherent models, needs to be operated only on the processor

tiles. This approach leads to a lower number of players in the

system actively participating to the cache coherence, because

an accelerator’s cache is active only if the accelerator is active.

Regardless, it is unlikely for an accelerator to execute back-

to-back on the same dataset. Therefore, it is good practice to

flush out the data right away, so that it can be accessed more

easily by the processor or accelerator that needs it next.

Accelerator Communication Patterns. In an ESP archi-

tecture, each accelerator is encapsulated within a tile that

decouples it from the rest of the system. In fact, from a sys-

tem viewpoint, the accelerator is fully characterized by its

behavior at the socket interface, that is by its communica-

tion properties. Since accelerators can differ greatly in the

way they communicate, we defined a set of parameters to

describe the communication properties of accelerators.

• Access pattern: streaming, strided or irregular.

• Access fraction: Fraction of the input being accessed.

Accelerators with an irregular access pattern seldom

access their input dataset in full.

• Burst length: Burst length of the memory requests.

• Stride length: Stride length of the memory requests.

Applies to strided accelerators only.

• Compute-to-memory ratio: The ratio of the time

spent on computation and total latency of the memory

transfers. Typically, an accelerator is either compute

bound or memory bound.

• Reuse factor: Number of times the accelerator reads

or writes the input and output datasets.

• In-place: Some accelerator store the outputs in place

of the inputs.

• Input-output ratio: Size of the input dataset with

respect to the output dataset.

We designed the runtime algorithm so that is effective in-

dependently of which type of accelerators are in the system.

Listing 1: Main part of the runtime algorithm to select
the cache-coherence model of an accelerator.

1 if (new_footprint < PRIVATE_CACHE_SIZE)
2 if (active_acc_fully_cnt < MAX_ACC_FULLY_COH)
3 coherence = FULLY_COHERENT;
4 else
5 coherence = LLC_COHERENT;
6

7 else if (( active_llc_footprint + new_footprint)
8 > LLC_SIZE)
9 coherence = NON_COHERENT;
10

11 else if (active_acc_llc_cnt >= N_MEM_TILES * 3)
12 coherence = NON_COHERENT;
13

14 else
15 coherence = LLC_COHERENT;

4 RUNTIME ALGORITHM
The main motivation for this work comes from our study

of the three cache-coherence models for accelerators from a

system standpoint [15]. The results of our analysis report no

absolute winner among the models: they are each able to out-

perform the others in some cases. In particular, the optimal

model for an accelerator appears to vary at runtime, depend-

ing on the system’s status and the memory footprint of the

accelerators execution. Given these preliminary hints, the

primary goal of this work is to understand how to choose at

runtime the optimal cache-coherence model for accelerators

and to provide an algorithm for doing so.

The ESP architectures support the concurrent execution

of accelerators with different cache-coherence models, as

well as a runtime selection of the cache-coherence model at

each invocation of an accelerator. Here we propose the first

algorithm capable of exploiting successfully this feature.

Since, normally, user-space routines offload tasks to ac-

celerators by invoking the accelerator’s device driver, our

algorithm is executed by the device driver at each accelera-

tor’s invocation. The algorithm selects the cache-coherence

model that the accelerator should use for this particular invo-

cation. The algorithm takes as input the following runtime

variables:

• new_footprint: memory footprint of the accelerator to

be invoked.

• active_acc_fully_cnt: number of active accelerators

running with the fully-coherent model.

• active_acc_llc_cnt: number of active accelerators using

the LLC, i.e. running with the LLC-coherent or the

fully-coherent model.

• active_llc_footprint: current aggregate memory foot-

print of all active accelerators using the LLC, i.e. run-

ningwith the LLC-coherent or the fully-coherentmodel.

Listing 1 shows the core of the algorithm:
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Table 1: Communication properties of the 12 instances of the synthetic accelerator used in the evaluation SoC.

Accelerator ID 1 2 3 4 5 6 7 8 9 10 11 12

Access pattern stream stride stream irreg stream stride stream irreg stream stride stream irreg

Access fraction 1 1 1 1 1 1 1 1/4 1 1 1 1/16

Burst length 64 4 32 4 128 8 64 4 16 4 32 4

Stride length 0 256 0 0 0 32 0 0 0 512 0 0

Compute-mem ratio 1 1 2 4 4 2 8 2 4 4 2 1

Reuse factor 2 4 1 1 4 1 1 4 1 2 4 1

In-place no no yes yes no yes no no yes no no yes

In-out ratio 1 2 4 1 2 4 1 2 4 1 2 4

• If the accelerator’s memory footprint is smaller than its

private cache, the algorithm chooses the fully coherent

model. This is always the case unless the maximum

of active accelerators running with the fully-coherent

model has been reached. In this case the LLC-coherent

is the model of choice. We set the maximum of active

fully-coherent accelerators to make sure that the LLC

remains inclusive.

• If the aggregate memory footprint of all active accel-

erators that use the caches, plus the accelerator to

be invoked, exceeds the LLC size, then the algorithm

selects the non-coherent model. Alternatively, the al-

gorithm chooses the non-coherent model if there is

already more than three active accelerators per mem-

ory controller that make use of the caches.

• In all the other cases, the algorithm selects the LLC-

coherent model.

The rationale of the algorithm is that if the memory foot-

print of the active accelerators that make use of the cache

exceeds the LLC size, then the cache is very likely to incur

thrashing. In this case bypassing the caches is preferable, in

order to avoid the continuous evictions and loads from main

memory. The same idea applies to the accelerator’s private

cache. Whenever thrashing is not likely, it is preferable to

use a model that exploits the caches to save off-chip accesses.

Additionally, to avoid congestion, we impose a limit on the

maximum number of active accelerators insisting on the

LLC.

Remark. Notice how the algorithm uses very little infor-

mation. The number of memory tiles and the caches sizes are

known at design time. Then, a simple global structure main-

tains the number of active accelerators and their memory

footprints. The algorithm could be designed to use also some

of the communication properties of the accelerators in the

system. However, we intentionally propose an algorithm as

simple and generic as possible, so that it is easily applicable

to any multi-accelerator heterogeneous SoC.

5 EXPERIMENTAL SETUP
Evaluation SoC. By designing a synthetic accelerator

whose communication properties are configurable, we com-

posed an SoC with a wide range of accelerators in terms of

their communication properties. We designed the accelerator

in synthesizable SystemC and we applied high-level synthe-

sis (HLS) with Cadence Stratus HLS, a commercial tool, to

generate the RTL description.

Our evaluation SoC features 12 instances of this synthetic

accelerator with a mixed set of communication characteris-

tics as reported in Table 1. At each invocation, each instance

of the synthetic accelerator receives as configuration the size

of the input dataset and it operates accordingly.

We ran all the experiments on an SoC configured as in

Figure 2: two processor tiles, two memory tiles (i.e. two

memory controllers) and twelve instances of our synthetic

accelerator as presented in Section 5. The size of the Leon3

L1 caches is 16KB, while all the other private caches in the

system are 64KB in size. The split LLC measures 1MB per

partition, that is 2MB overall. The bandwidth to off-chip

memory is throttled by anAMBAAHB bus to one 32-bit word

access per cycle. We deployed the full SoC on a Xilinx Virtex7

FPGA. Since the FPGA operates at lower frequencies than

an ASIC, to achieve an off-chip access penalty equivalent to

an ASIC implementation, we configured the DDR3 memory

to operate at its slowest possible frequency.

Synthetic application. To evaluate our algorithm we

constructed an application which is heterogeneous in how it

invokes the accelerators. The number of concurrently active

accelerators varies considerably and there are data depen-

dencies across invocations. Additionally, the workloads on

which the accelerators operate have a wide range of sizes.

As shown in Table 2, our synthetic application goes through

a series of phases, where each phase differs from the others

in the maximum number of active accelerators and in the

size of the workloads. Small memory footprints are smaller

than the accelerator private cache, whereas large ones are
larger than the LLC. For each phase, the application spawns

as many threads as the maximum of active accelerators.
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Table 2: Phases of the synthetic application.

App
phases

Memory footprints
sizes

Max active
accelerators

App
threads

1 variable 1 2

2 large 1 2

3 small 1 2

4 variable 6 7

5 large 6 7

6 small 6 7

7 variable 12 13

8 large 12 13

9 small 12 13

Figure 3 contains an example of what a phase with three

threads looks like. Each thread invokes between two to four

accelerators that have data dependencies. As the feedback

loop indicates, the phase can be executed multiple times on

newly allocated data.

6 EXPERIMENTAL RESULTS
We want to prove that, thanks to our simple algorithm, a

system with heterogeneous cache-coherence models for ac-

celerators has better performance than an homogeneous one.

Therefore, we first run our synthetic application with three

baseline configurations, where each baseline works with a

single cache-coherence model throughout the whole appli-

cation. At a minimum, for each phase of the application we

would expect the execution with our algorithm to be as good

as the best of the three baselines in that phase. Then, when-

ever the heterogeneity of the coherence models can bring

benefits, we expect the algorithm to improve over the best

of the homogeneous baselines.

We measure performance in terms of execution time and

off-chip memory accesses. We are able to collect exact sta-

tistics on DRAM accesses, thanks to the monitor services

provided by the ESP architecture [21, 22].

Each graph in Figure 4 reports the amount of DRAM ac-

cesses on the y-axis and the logarithm of the execution time

in seconds on the x-axis. The DRAM accesses are shown as

incremental over time, thus the value of the right-most point

of the curve corresponds to the total of the off-chip accesses

as well as the execution time. First, the results confirm one

of the premises of this paper: none of the coherence models

is consistently dominated by the other ones in performance.

By looking at the per-phase results, we see that each of the

baselines wins at least in one phase.

The execution with our algorithm (AUTO) consistently
wins in terms of execution time, or in some worst cases it ties.

This is the most important result and confirms the efficiency

of the proposed algorithm. AUTO wins by 100% in best case

acc
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Figure 3: Sample of a phase of the synthetic applica-
tion. Each square is the invocation of one of eight ac-
celerators. Each forward arrow indicates a data depen-
dency labeled with the memory footprint.

(i.e. Phase 2), but in other cases simply matches the execution

time of the fastest baseline (e.g. Phase 1). This means that

AUTO matches at least the best homogeneous baseline, and

wherever there is the opportunity to exploit the benefits of

heterogeneous models it does so. For example, for Phase

1 the memory footprints are so big that the non-coherent

model is always the best choice.

Figure 5 shows in detail the execution of Phase 4. The algo-

rithm yields the lowest execution time, with an improvement

of 20% over the non-coherent baseline and of approximately

100% over the other two baselines. Here, differently from

Figure 4, the DRAM accesses are reported per time sam-

ple. So the end of DRAM accesses correspond to the end of

application execution.

With respect to external memory accesses, AUTO looses

in a few cases, but never by more than 10% and in those cases

it still wins in terms of execution time. The best win, by 100%

takes place in Phase 2. Among the baselines, although the

cached models tend to be the most efficient, there is no abso-

lute winner. For instance, if the caches incur thrashing for

long periods, the non-coherent model turns out to be at least

as good as the others. The savings that our algorithm obtains

in terms of number of memory accesses are the results of its

ability to chose the non-coherent model when a high degree

of cache thrashing may occur.

To assess the performance of our algorithm over the whole

application, we report the geometric means of the per-phase

speedup and memory accesses ratio of AUTO with respect

to each of the baselines. The results are listed in Figure 3.

Our algorithm achieves speedups between 1.39 and 1.81.

Moreover, the off-chip accesses of the application running

with our algorithm are between 44% and 71% with respect

to the baseline executions.

7 RELATEDWORK
The LLC-coherent model has received less attention than the

fully-coherent and non-coherent models, which are the main

models for loosely-coupled accelerators in the literature [27].
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Figure 4: Phase by phase execution time and incremental DRAM accesses of the synthetic app.

Fully-coherent accelerators appear in the industry both

as off-chip [24, 29] and on-chip [13] components, but in

bus based systems only. Instead, we focus on NoC-based

SoCs, which are expected to become the standard for systems

with a large number of components [4, 5, 25]. While most

approaches endow the accelerators of a private cache, some

have the accelerator communicate directly on the bus with a

subset of the cache-coherence protocol messages. Once again

the existing implementations are bus-based [6, 17]. A similar

approach over a NoC would require a costly multi-cast of

invalidation and recall messages to the private caches.

Non-coherent accelerators were initially reserved a sep-

arate memory space [20], but more recent works, just like

ours, apply the shared memory paradigm to avoid copying

data across address spaces [9, 18, 22].

We are aware of only a few studies that compare or pro-

pose cache-coherence models for accelerators. Kumar et al.

presented three variations of the fully-coherent model [19].

Shao et al., instead, evaluated the non-coherent and fully-

coherentmodels [26]. Finally, Cota et al. analyzed LLC-coherent

and non-coherent accelerators [11]. These works focus on

the simulation of bus-based systems with few accelerators.

Instead, we based our research on FPGA prototyping and

on a NoC-based SoC with up to 12 accelerators. This allows

us to run complex multi-threaded applications, on top of

Linux SMP, that invoke multiple accelerators operating on

large workloads. The same experimental approach that was

used in the two works that constitute the motivation of this

paper, as they show the potential benefits of a system with

heterogeneous coherence models for accelerators [15, 16].

As SoCs are ever more heterogeneous, the concept of het-

erogeneous cache-coherence protocols has gained interest.

Alsop et al. have proposed Spandex, which can directly and

coherently interface devices with different coherence prop-

erties and memory demands [1]. Although Spandex has only

been evaluated on CPU-GPU systems, it is designed to apply

to other components as well, like co-processors or accelera-

tors.

Similarly to Fusion [19], other works explored the case

of multiple accelerators sharing the same private cache or

scratchpad to optimize the memory requirements [9, 20].

Arguably, a group of accelerators sharing the same private

cache or PLM can be defined by its aggregate communication

pattern and workload size. Our algorithm is potentially bene-

ficial also in this case and it can easily be extended following
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Figure 5: Execution time and DRAM accesses per time
sample of phase 4 of the synthetic app.

the same intuition that compares the size of the aggregate

workload with that of the caches.

8 CONCLUSION
In the context of multi-accelerator SoCs, we showed how

the heterogeneity of cache-coherence models can lead to

speedups of at least 40% and how it can reduce the off-chip

accesses by a minimum of 30%. For this purpose, we pro-

posed a runtime algorithm capable of selecting the proper

cache-coherence model at each accelerator’s invocation. The

algorithm is lightweight and makes use of information that

is general enough to apply easily to any SoC, like the number

of active accelerators, the caches capacity, and the size of the

accelerators’ memory footprints.
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