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ABSTRACT
We present our work at Columbia University teaching the design

and programming of heterogeneous computing architectures with

SLD methods. Over the past eight years, we have developed a new

course, System-on-Chip Platforms, with the main goal of preparing

students to contribute to the new economy of heterogeneous com-

puting and open-source hardware. The course was one of the first

nationwide to introduce the use of commercial high-level synthesis

tools for the design of application-specific hardware accelerators.

We also introduced the idea of structuring the final project as a

design-space exploration contest that combines aspects of collabo-

rative engineering and design for reusability.

KEYWORDS
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1 INTRODUCTION
Heterogeneity is the best answer to the challenges that computer

architecture has faced over the past fifteen years. First the end of

Dennard’s ideal CMOS scaling [14] and then the accelerating slow-

down of Moore’s Law [22, 24] have forced computer architects to

design processors by combining growing numbers of components

of different natures. General-purpose processors, special-purpose

processors, application-specific hardware accelerators, reconfig-

urable hardware blocks, and even analog/mixed-signal components

are increasingly combined into what used to be a microprocessor

chip and is now a system-on-chip (SoC).
This evolution has happened across different computer classes

and different application domains. The design of high-performance

microprocessors for both personal computers and servers has seen

themigration ofmore andmore components from the board into the

chip as well as the transfer of critical functionality from software to

specialized hardware [15, 36]. For example, in 2012 Intel presented

Ivy Bridge as a “22nm IAmulti-CPU andGPU System-on-Chip” [27],

which integrates up to four high-performance Intel Architecture

(IA) cores, a power/performance-optimized GPU, as well as memory,
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PCIe, and display controllers in the same die. An SoC lies at the

core of each smartphone and the heterogeneity of these SoCs has

been rising with each new product generation. For example, the

analysis of die photos of three generations of Apple SoCs, which

empower the iPhone product line, shows that more than half of the

chip area is dedicated to specialized intellectual property (IP) blocks

that are neither CPUs nor GPUs [63]. Traditionally, SoCs have been

the dominant processor architectures in most embedded system

domains, from automotive electronics [65] and avionics [40, 62] to

the Internet-of-Things [57, 59]. Recently, however, heterogeneous

computing and SoC architectures are expanding from the edge to

the cloud [21, 39]. For example, the importance of having SoCs that

are optimized for the proprietary workloads in the data center has

brought many top players in the Information Technology industry—

companies that were originally focused on software development—

to start new initiatives for designing their own chips [13, 38, 48].

In this context, opportunities for computer engineers, system

architects, and integrated circuit designers are expected to con-

tinue to grow. In their 2018 Turing Award’s lecture “A New Golden

Age for Computer Architecture,” Hennessy and Patterson identified

some opportunities for innovation in the development of domain-

specific hardware and programming languages, open instruction

set architectures, enhanced security, and agile chip-design method-

ologies [35]. They remarked “The good news for architects is that
modern electronic computer aided design (ECAD) tools raise the level
of abstraction, enabling agile development, and this higher level of
abstraction increases reuse across designs.”

Raising the level of abstraction in the design process has been the

main motivation of our CAD research in the System-Level Design

Group at Columbia University for the past decade [16, 17]. In turn,

it has informed our teaching activities, particularly through the

development of a new course called “System-on-Chip Platforms”.
First offered in 2011 as a graduate-level seminar, the course has been

regularly taught every year since. It evolved into an undergraduate

upper-level course and, in 2016, became part of the curriculum for

the Computer Engineering Program, which is jointly supported by

the Departments of Computer Science and Electrical Engineering.

SoC Platforms is a course on the programming, design, and

validation of SoCs with the methods of system-level design (SLD) [16,
60]. It is the first course to introduce state-of-the-art commercial

SLD tools to Columbia students, in particular tools for high-level
synthesis (HLS) [47]. The students use HLS to optimize the design of

accelerators from specifications that they have made in high-level

languages like SystemC [37, 52].

A platform is a combination of a flexible architecture and a com-

panion design methodology [17]. In teaching SoC Platforms, we put

particular emphasis on SoCs for high-performance embedded ap-

plications. We believe, however, that the course provides a broader

https://doi.org/10.1145/3338698.3338893
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foundation on the principles and practices of reasoning about any

heterogeneous computing platform in a compositional way and

with a system perspective.

2 THE GOALS OF THE COURSE
In SoC Platforms, students learn the principles of:

(1) raising the level of abstraction in the SoC design process;

(2) mastering the hardware and software aspects of integrat-

ing heterogeneous components into a complete computing

system through a compositional approach;

(3) designing new components that are reusable across different

systems, product generations, and implementation technolo-

gies (e.g., FPGAs and standard cells); and

(4) evaluating designs in a multi-objective optimization space

that includes both logical and physical properties.

Raising the level of abstraction in the design process means:

• for design specification, move from hardware-description

languages like Verilog or VHDL to high-level programming

languages like C/C++ or SystemC;

• for design simulation,move from register-transfer level (RTL)

simulators to virtual platforms that enable faster simulation

times under more significant environment conditions and

early start of the software development with more detailed

hardware models, which do not need to be manually “trans-

lated” into RTL.

• for design optimization, move from logic synthesis to high-

level synthesis, which provides a rich set of knobs for a better

exploration of the design space.

Notice that with these “moves”, we do not advocate the abandon-

ing of RTL design under all possible circumstances. We believe

that there are still some important parts of any digital circuit that

are best designed with Verilog/VHDL, simulated at the RTL level,

and optimized with logic synthesis. We argue, however, that for

the design of hundreds of heterogeneous components, which are

integrated into a billion-transistor SoC, working at the proposed

higher level of abstraction is a better way of investing the bulk of

the design effort.

To simplify the integration of heterogeneous components, we

propose the use of customizable libraries of hardware/software

interfaces that provide modularity and flexibility by decoupling

computation tasks from communication tasks. This follows the

“Protocols and Shells Paradigm” of latency-insensitive design [16, 19].
We expect that future SoC will be realized by reusing a growing

number of pre-designed and pre-validated components, which may

be available in-house from prior SoC design efforts or may be licens-

able as third-party IP blocks. This trend could be further enhanced

by the emergence of open-source hardware (OSH) [33], which holds

the promise of creating unique opportunities for academia and en-

trepreneurship. Hence, when we teach the design and optimization

of a component like an application-specific accelerator, we empha-

size the importance of design for reusability by explaining how to

obtainmany alternative accelerator implementations—each offering

a unique cost/performance trade-off point—from a given specifica-

tion. A richer set of implementations maximizes the chances that

the result of the design effort is reused across different projects

CSEE 4868 System-on-Chip Platforms

Times Tuesday and Thursday: 11:40am - 12:55pm

Credits 3

Prerequisites COMS 3157 and CSEE 3827

Description Design and programming of System-on-Chip (SoC) platforms. Topics

include: overview of technology and economic trends, methodologies

and supporting CAD tools for system-level design, models of compu-

tation, the SystemC language, transaction-level modeling, software

simulation and virtual platforms, hardware-software partitioning,

high-level synthesis, system programming and device drivers, on-

chip communication, memory organization, power management

and optimization, integration of programmable processor cores and

specialized accelerators. Case studies of modern SoC platforms for

various classes of applications.

Table 1: Bulletin description for the Fall 2018 semester.

in the class, today, and across different products in the market,

tomorrow.

A fundamental idea that inspires SoC Platforms is that engi-

neers should excel in the evaluation of the competing objectives of

the design, under multiple constraints. Our approach to giving a

sound foundation to this “Art of the Compromise” in the context of

SoC design is based on the concept of Pareto-optimal frontier. This
concept provides a formal metric to guide the exploration of the

design space with the goal of balancing the traditional objectives

and constraints of hardware design with the goal of maximizing

reusability [17]. Since it can be applied both to individual compo-

nents and to the complete system, this metric takes a central role

in the semester-end project of SoC Platforms.

3 THE STRUCTURE OF THE COURSE
SoC Platforms has been designed as a course for senior under-

graduate students majoring in one among Computer Engineering,

Computer Science, and Electrical Engineering. It is also taken by

students who enrolled in the MS programs in one of these disci-

plines as well as by first-year PhD students. Table 1 reports the

bulletin description of the course for the Fall 2018 edition.

At Columbia, each course is assigned a four-digit number, where

the first digit signifies the level of the course; e.g. advanced un-

dergraduate courses are numbered in the 3000s and 4000s. The

prerequisites for SoC Platforms, whose number is CSEE 4868, are

two courses that Columbia undergraduates typically take during

their junior year:

• COMS 3157 Advanced Programming, which is a Computer

Science course that covers thoroughly the C programming

language and Unix systems programming, together with C++

fundamentals and the basics of TCP/IP networking.

• CSEE 3827 Fundamentals of Computer Systems, which is a

Computer Engineering course on digital logic design and

computer organization, covering the material that is pre-

sented in such textbooks as those written by Hennessy and

Patterson [53] or Harris and Harris [34].

All students majoring in Computer Engineering or Computer Sci-

ence are required to take these two courses, while those majoring

in Electrical Engineering must take CSEE 3827.

During the first week of classes, the students who have regis-

tered for SoC Platforms are invited to complete two self-assessment

assignments, which are meant to provide them with the means

to discover possible gaps in their knowledge of the prerequisite
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Month Principles Track Practice Track

Sep • Technology and economic trends

• Methodologies and CAD tools for system-level design and verification

• Models of computation

• The synchronous model of computation

• Basics of SystemC, modules, methods, and signals

• Threads and clocked threads

• Channels, ports and interfaces

• Transaction-Level Modeling (TLM)

Oct • Latency-Insensitive Design (LID)

• Petri nets and marked graphs

• Performance analysis

• Power-constraint design

• SoC modeling, proprietary interfaces

• Authoring SystemC for high-level synthesis (HLS)

• HLS with fixed- vs. floating- point

Nov • SoC architecture, IP blocks

• Processors, accelerators and memory

• HW/SW Interface and device driver programming

• Virtual platforms

• IP-block integration, FPGA prototyping

• Design-space exploration with HLS

• Loop transformations

• Accelerator memory optimization

Dec • On-chip communication

• Memory hierarchy and cache coherence

• Focus on project

Table 2: Schedule of the two tracks for the Fall 2018 semester.

material. One assignment consists in a set of selected exercises on

digital logic and computer organization. The other assignment is

a simple exercise on C programming that requires each student

to set-up a personal account on the class servers and on the git

repository, which is based on the Gogs self-hosted git service. The

class servers host the software environment and all the SLD tools

that are needed to do the homework assignments and the project.

The repository is used to collect the work of each student through-

out the semester, while encouraging the class to follow the best

practice of version control during source code development.

In Fall 2016, the course requirements included five homework

assignments (accounting for 30% of the final grade), a midterm

exam (15%), a project (20%) and a final exam (35%). The project

offers substantial opportunities for extra-credit work.

As of now, there is no single textbook that covers adequately

the topics of the course. The book “SystemC: From the Ground

Up” [12] is not required, but is recommended as a companion for

the lectures on SystemC. Lecture notes are accompanied by various

reading assignments, which may include conference and journal

papers as well as tutorial materials on using SystemC to develop

hardware specification for HLS, on programming device drivers,

and for learning the commercial CAD tools used in the course.

The course is structured along two main tracks, which run in

parallel throughout the semester: the Principles Track and the Prac-
tice Track. Table 2 shows the organization of the topics across the

two tracks during the Fall 2018 semester. The next two sections

describe in more detail the topics for each track.

4 THE PRINCIPLES TRACK
In the Principles Track, the lectures cover the foundations of system-

level design, models of computation (MoC), latency-insensitive

design (LID), virtual prototyping, design-space exploration (DSE),

HW/SW co-design, and SoC architectures.

After providing an overview of technology and economic trends,

the first part of this track covers the principles of modeling, ana-

lyzing, and optimizing computing systems, and their components,

with different MoCs. We first present the synchronous MoC as

the basis of digital hardware design. Then we discuss in detail its

crisis in the design of integrated circuits due to the “Wire Problem”

and the transformation of chips into distributed systems, which

exacerbate the challenges of timing closure [20]. LID is proposed

as an attempt to resolve this crisis with a compromise: preserve the

synchronous hypothesis while relaxing the time constraints during

the early phases of the design process when correct measures of

the delay paths among the modules are not yet available [16]. We

explain the theory of LID [19] formally as an application of the

Tagged-Signal Model framework to reason about MoCs [42]. We

explain the practice of LID and its Protocols and Shell Paradigm,

with a detailed discussion of the circuits for shell interfaces and

relay stations as well as the protocols on which they are based [18].

Petri nets [49] are first introduced as a MoC to reason about con-

currency and then applied to the issue of performance analysis in

LID [23]. We explain how the task of DSE can be guided by the

concept of Pareto’s optimality both at the component level and the

system level. We also show how the impact of the optimization

of a component on the performance of the overall system can be

quantified with the help of Amdahl’s Law.

During the second part of the semester, the lectures cover the

main components of SoC platforms which are illustrated with

case studies from state-of-the-art industrial products and research

projects from academia. In particular, the processor core is discussed

through the presentation of the ARM and RISC-V instruction set ar-

chitectures. Data-level parallelism and GPUs are discussed through

the example of the NVIDIA Xavier SoC. Bus-based communication

is explained with the example of the AXI protocol [8]. Cache coher-

ence is first explained in the context of bus-based implementations.

The concept of an accelerator is introduced as a consequence of

the end of Dennard’s scaling, discussed with respect to the issue

of coupling with processors [26], and illustrated with various ex-

amples, including the open-source NVDLA [51]. The integration

of accelerators into an SoC is explained from both the hardware

and the software viewpoint. In hardware, we explain why LID is

widely used for the communication among SoC components [41]

and how it is a natural fit for interfacing circuits synthesized with

HLS [44, 66]. In software, we dedicate a lecture to device driver pro-

gramming [25] and another to explaining how to handle the shared

memory address space for accelerators [46] and how to support

different cache-coherence models [32].
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5 THE PRACTICE TRACK
The lectures and the homework assignments of the Practice Track

are focused on SLDwith SystemC, hardware accelerator designwith

HLS tools, HLS-driven DSE, and accelerator HW/SW integration

with device driver programming.

The beginning of the course aims to help students build famil-

iarity with SystemC, which is an IEEE-standard programming lan-

guage built as a supportive library of C++ [37, 52]. SystemC enables

hardware design by supporting (i) hardware data types, such as

bit vectors, logic vectors, arbitrary-precision integers, fixed-point

values as well as floating-point values, (ii) hardware concepts, e.g.
modules, processes, ports, signals, and channels, and (iii) concur-
rency, by supporting a simulation environment where three types

of processes (SC_THREAD, SC_CTHREAD and SC_METHOD) can be concur-

rently executed. These are the SystemC counterpart of the concepts

of “process” and “always” statements in VHDL and Verilog, re-

spectively. Building and combining the knowledge gained in the

prerequisite courses (Section 3), students learn to design hardware

at a higher level of abstraction. With SystemC, in fact, they can

combine the concepts they have learnt for software programming

(COMS 3157) with those learnt for digital design (CSEE 3827). They

practice these concepts through a series of homework assignments

with increasing levels of difficulty, finally reaching the expertise

required to work on the semester-end project (Section 6).

SystemC comes with additional libraries such as the one for

Transaction-Level Modeling (TLM), which decouples communi-

cation and computation [10, 31]. In addition, CAD tool vendors

provide libraries of TLM primitives that offer abstracted functions

to specify the communication and synchronization mechanisms

among computation processes at the system level as well as syn-

thesizable implementations of these mechanisms, which can be

combined with the implementation of SystemC processes in a mod-

ular fashion [30, 61]. These libraries follow the Protocols and Shells

Paradigm in using point-to-point channels, which are inherently la-

tency insensitive, combined with interfaces, which can be instanced

to connect processes to channels. By applying TLM and these prim-

itives, in the Practice Track students learn the practical aspects of

LID, whose theory they have studied in the Principles Track.

SystemC can be used to design different types of hardware com-

ponents, including general-purpose processors, memories, periph-

erals, and specialized accelerators. The students of SoC Platforms

focus particularly on loosely-coupled accelerators, which execute

coarse-grain tasks, are designed independently from processor

cores, and reside outside these cores [26]. By following the Em-
bedded Scalable Platform (ESP) approach [17], these accelerators

have modular socket interfaces that allow them to be integrated

into an communication infrastructure, which can be implemented

as a bus or a network-on-chip. The interface decouples the accel-

erator design from its integration into the SoC, thereby enabling

late-stage modifications/optimizations as part of DSE decisions and

promoting its reuse across different systems. In traditional hard-

ware design courses, the optimization and integration of a hardware

block like an accelerator is taught at the register-transfer level. In-

stead, the students of SoC Platforms start by analyzing a software

application that is provided in a language like C/C++ (the so-called

“programmer’s view”), identify the computational kernels that are

good targets for hardware acceleration, and create a preliminary

model of the accelerator in SystemC that has the same behavior of

the programmer’s view. This model is not yet synthesizable, but it

can be verified by pairing it with a test bench, which must be also

written in SystemC at the same level of abstraction. This enables

fast simulation and thus fast convergence to behavioral correctness.

Furthermore, the test bench can be reused later in the design flow

to validate the RTL implementation generated with HLS through

co-simulation. The students learn the importance of developing a

test bench that abstracts well the basic environment in which the

accelerator could operate and are typically encouraged to complete

such development before starting the design of the accelerator. The

SystemC code of the accelerator is later revised through a sequence

of refinement steps until it meets the requirements imposed by the

“SystemC Synthesizable Subset” that is supported by the given HLS

tool. For example, this refinement requires the removal of dynamic

memory allocation, pointer arithmetic, and other operations that

are not usually supported by HLS. Over the years, in SoC Platforms

we have been using two HLS tools from Cadence: C-to-Silicon and

Stratus. However, based on our experience and conversations with

alumni, we believe that the principles and practice learnt by the

students prepare them also for the use of other commercial HLS

tools such as Mentor Catapult, Xilinx Vivado HLS, and Bluespec as

well as academic tools such as Bambu, Dwarv, and LegUp. Nane et
al. completed a survey and evaluation of many of these HLS tools

with particular emphasis on FPGA implementations [50].

After the students have practiced the basics of running the HLS

tool on a synthesizable model of the accelerator, we teach them how

to perform a DSE by exploiting the configuration knobs provided
by the tool [43, 55]. The HLS knobs allow hardware designers to

explore many alternative RTL implementations. The most impor-

tant knobs operate on the loops and function calls that are present

in the SystemC specification. For example, the application of the

“loop unrolling” knob leads to RTL implementations that are more

parallelized, thereby delivering higher performance in exchange for

large costs in terms of area and power. Another example is the “loop

breaking” knob, which allows the sharing of hardware resources by

executing operations sequentially. This has the effect of decreasing

the area and power cost in exchange for lower performance. In

addition to the HLS knobs, students need to explore other DSE as-

pects, such as I/O bandwidth, the design of the accelerator private

local memory (PLM) in the context of the overall on-chip memory

organization [56], and the trade-offs between the granularity at

which data is transferred and processed by an accelerator and the

size of its PLM [54]. These are other fundamental aspects that per-

mit to increase the diversity of the set of RTL implementations that

can be obtained from a single high-level specification. All these

HLS-synthesized implementations are not strictly equivalent from

an RTL viewpoint (because they do not produce exactly, i.e. clock by

clock, the same sequence of output signals for any valid sequence of

input signals) but they are members of a latency-equivalent design

class [16, 19]. Hence, thanks to the common socket interface, they

can be seamlessly replaced with each other in the architecture of

the SoC, depending on performance and cost targets.

After the lectures on DSE, the students are taught the basics of

writing a device driver that manages the execution of the acceler-

ator and exposes it to the software applications. They also learn
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Number Description

21 Number of student teams

661 Number of improved designs across all teams

31.5 Average number of improved designs per team

1.5 Average number of improved designs committed

each day per team

99 Total number of changes of the Pareto curve

over the project period

11 Final number of Pareto-optimal designs

26× Performance range of Pareto curve

10× Area range of Pareto curve

Figure 1: Progression of the DSE for the Fall 2015 project. The x axis reports the cost metric in terms of area
occupationmeasured as the number of equivalent FPGA look-up tables (LUT),while they axis reports the effective
latency (in ms) that each accelerator takes to execute the Gradient algorithm. The Pareto-optimal designs are
denotedwith triangles. The final plot contains a Pareto frontier with eleven designs that span a range of about 26×
in performance and 10× in area cost, thus providing a rich set of alternative implementations for this accelerator.

how to program a software application that interfaces with the

device driver to request the execution of the accelerator through

a system call. This application is programmed as a refinement of

the test bench used during the design of the accelerator. The device

driver, which runs on top of Linux, is responsible for reserving the

accelerator, setting its configuration registers, starting its execu-

tion and then suspending itself until resumed by the arrival of an

interrupt that the accelerator sends upon the completion of its task.

Thanks to the common socket interface used for the design of the

accelerator, only a small part of a generic device driver needs to be

modified for the given specific accelerator (less than 3% of the code).

Students can then combine the application, the device driver, and

the accelerator to test and evaluate their work on a virtual platform

or our FPGA infrastructure [45].

In summary, the Practice Track gives students the skills to com-

plete the entire SLD flow. Starting from a high-level specification,

they develop a hardware accelerator that can be synthesized with

HLS, integrated into the system through a hardware/software inter-

face, and invoked through a system call from a software application

running on a processor. Hence, they become proficient with both

the hardware and software aspects of heterogeneous computing.

6 THE SEMESTER-END PROJECT
During the second part of the semester, the focus of the students’

homework activity shifts to the completion of a project in team

effort. The project is centered on the design, optimization and in-

tegration of one hardware accelerator for a given application. It

typically requires combining the skills that the students acquired

with the homework assignments during the first part of the semes-

ter, including designing synthesizable hardware specifications with

SystemC, using HLS to explore the design space of an accelerator,

and programming a device driver to integrate an accelerator into

an SoC. By this time, the series of homework assignments com-

pleted by the students have allowed them to practice these skills as

well as to gain familiarity with the tools and underlying software

infrastructure.

The Project as a Design Contest. The project is structured as

a design contest among student teams. Most teams consist of two

students, while there is also the option of working individually.

For instance, in Fall 2015 twenty-one teams competed in designing

a hardware accelerator for the Gradient algorithm, a computer-

vision kernel from the Perfect Benchmark Suite [11]. Each team

specified the hardware design in SystemC, programmed a device

driver to integrate it with the application running on an embedded

processor, and validated the hardware/software co-design using

an in-house virtual platform. The teams explored the design space

with the commercial HLS tool Cadence C-to-Silicon, targeting a

Xilinx FPGA platform.

For each team, the goal is to obtain three distinct implementa-

tions of the given accelerator by the semester-end deadline. The

three implementations must correspond to three different trade-off

points in terms of two main (competing) objective functions, which,

in the case of the Fall 2015 project, were the area occupation of the

synthesized hardware of the accelerator and the effective latency

(in ms) that the accelerator takes to execute the Gradient algorithm.

Ideally, each implementation should not be Pareto-dominated by

one of the other two implementations in the context of the design
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Figure 2: The Fall 2016 Project: Introducing the concept of IP-block reuse.
space delimited by the two objective functions. For example, the

points denoted with triangles in the plot labeled “Dec 04” of Fig. 1

correspond to three Pareto-optimal implementations, while the

four points denoted with squares correspond to Pareto-dominated

implementations. The rationale of this requirement is to encourage

the students to apply SLD methods, and particularly the configura-

tion knobs provided by the HLS tool, to optimize the accelerator

design for reusability. Instead of focusing on optimizing just one

particular implementation of the accelerator, the students should

aim at returning three distinct implementations that distinguish a

(possibly segmented) line whose projections on the two axes of the

design space are as long as possible. In this way, an SoC architect

who may want to use an implementation designed by these stu-

dents may choose between alternative solutions that offer clearly

different trade-off choices in terms of performance versus cost.

The quality of each final implementation is evaluated in the

context of the work done by the entire class: at the class level,

Pareto-optimal implementations receive the highest score, while

the penalty for Pareto-dominated implementations is proportional

to the distance from the Pareto frontier. This part of the grading is

meant to drive the design-optimization efforts by sparking some

competition among the student teams.

Balancing Competition and Self-Improvement. A mecha-

nism of incentives encourages the students to keep improving their

work by committing new versions into the design repository: specif-

ically, each team receives extra credits for each day when it commits

at least one new implementation point that represents a clear im-

provement in at least one of the two directions of the objective

function (measured by some minimum quantum) compared to the

prior work of the same team. This part of the grading is meant to

reward the self-improvement efforts of each team, independently

from the efforts of the other teams.

Throughout the one-month duration of the project, a live Pareto-
efficiency plot reporting the current position of the three best ac-

celerator implementations of each team in the bi-objective design

space is made available on the course webpage. This allows stu-

dents to continuously (and privately) assess their performance with

respect to the rest of the class. Privacy is guaranteed because each

given design point is identifiable through a label that is known

only to the instructors and the corresponding team members. The

plot is automatically generated by a script running on the class

servers based on the designs that the students have committed on

the git repository. The script checks that the submitted design is

functionally correct before synthesizing and evaluating it.

Fig. 1 reports the snapshots of the status of the plot taken at the

end of the day for five distinct days during the Fall 2015 semester

as well as the final statistics for the class. On average, over the one-

month period of the Fall 2015 project, each team committed over 30

design improvements. The Pareto frontier changed every day and a

total of 99 times across the project duration. The final plot contains

a Pareto frontier with eleven designs that span a range of about

26× in performance and 10× in area cost, thus providing a rich

set of alternative implementations for this accelerator. These final

results can be seen as the outcome of the exploration of the design

space performed collectively by the class as if it was a single design
team: with this perspective, it can be argued that the combination

of the contest and self-improvement aspects of the project made

possible to harvest the aggregate expertise of all students to achieve

superior results within the given time constraints.

Balancing Competition and Collaboration. As the course

enrollment grows, the project can be scaled up to include the design

of multiple accelerators for a target SoC, while balancing compe-

tition and collaboration aspects. This can be done, for instance,

by assigning the design of each accelerator to a subset of the stu-

dent teams and offering incentives for collaboration across teams

working on different accelerators. Based on this idea, in Fall 2016

we partitioned the student teams in two subsets and asked them

to compete in the design of two accelerators for two distinct al-

gorithms, respectively. The algorithms were the Discrete Cosine

Transform (DCT) and the Inverse Discrete Cosine Transform (IDCT).

In addition, every team across the two subsets competed in the

realization of a system that uses the accelerator the team designed

(e.g. the DCT) and reuses one of the accelerators designed by some

other teams (e.g. an IDCT). The grading mechanism is similar to

the one for the Fall 2015 project, with the implicit addition that

teams are rewarded with credits also for delivering a component

that becomes part of one or more Pareto-optimal system implemen-

tations. This allows the students to experience immediately the

benefits of designing components that are highly reusable across

SoCs implementations. The designs of the two components are

“decoupled” from an RTL-design viewpoint because they are con-

nected through LID interfaces. Fig. 2 reports the project results at
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Figure 3: The Fall 2017 Project: Competitive and collabora-
tive system-level DSE of a CNN accelerator.

the end of the semester, i.e. the outcomes of the DSE for the two

stand-alone components and for the system featuring both.

Scaling up the Project Complexity through an SLDEcosys-
tem. As the course infrastructure continues to progress each year,

we are aiming at scaling up the complexity of the system project

without increasing the workload for the student teams. In addition

to providing students with the opportunity to design and evaluate

directly a component in the context of a larger and more interesting

system, scaling the project scope follows one of the recommenda-

tions emerged from the CCC Workshop Series on Extreme Scale

Design Automation, i.e.: “As custom design is being displaced by

more automated design styles, university courses should highlight

abstractions (e.g., system-level design) needed to manage designs

that far exceed those built at universities” [9]. In Fall 2017, we or-

ganized the project as a competitive and collaborative system-level

DSE of an accelerator for the VGG16, a very deep convolutional

neural network (CNN) for large-scale image recognition [64]. Fig. 3

shows a high-level block diagram of this CNN, which consists of 6

stages: 5 stages are bundles of convolutional layers while the last

stage is a group of fully connected layers. The layers are decoupled

from an RTL-design viewpoint because they are connected through

LID interfaces. Overall, the system can process data in a streaming

fashion because it can work as a pipeline at the granularity of a

layer: for example, while Layer 2 is working on the inference of

a dog image, Layer 1 could be working on the image of a cat and

Layer 3 on one of a monkey.

Each subset of student teams was asked to compete on the

reusable design of a given stage of this CNN. As shown in Fig. 3, the

result of this part of the contest is a component-level DSE for each

stage, where the design space is defined by two objective functions:

area occupation and effective latency. A grading mechanism that

combined fixed deadlines and extra-credit incentives encouraged

the students to make available their implementations as frequently

as possible. In addition, every team across the team subsets was

asked to realize and deliver three combinations of its stage designs

with the designs for the other stages, which were made available

by the other teams so that that they could be “licensed” in order to

assemble a complete implementation of the overall CNN (i.e. the

system). As shown in Fig. 3, the result of this part of the contest is a

system-level DSE for the whole CNN, where the design space is de-

fined by three objective functions: area occupation, data-processing

throughput, and accuracy of image recognition. In this way, a team

working on one stage is competing with the other teams of the same

stage in order to provide the best solutions for the teams working on

the other stages, thereby enabling collaborative engineering across

stages. The rationale is to create, in the class settings, a small-scale

copy of an SLD ecosystem based on IP-block reuse [17].

7 RELATEDWORK
Most of the existing courses on SoC design are based on the RTL ab-

straction. Examples include “Advanced VLSI Design” (ELEC 522) [2]
taught by J. Cavallaro and “Introduction to VLSI System Design” (ECE
425) [1] taught by C. Coats and V. Kindratenko. These courses have

some lectures on HLS, but overall SLDmethods play a marginal role

in them. Other courses on hardware design focus on specific applica-

tion domains. For example, “Hardware/Software Co-Optimization for
Machine Learning” (CSE599S) [5], taught by L. Ceze and T. Moreau,

is a course on designing systems optimized for machine learning by

using GPUs and FPGAs. “Reconfigurable Logic - Technology, Archi-
tecture and Applications” (ECE 18-643) [7], taught by J. Hoe, covers

the fundamental concepts of hardware design at RTL, with an em-

phasis on FPGA prototyping and the use of domain-specific tools

and languages like Spiral [58].

Some courses are closer in concept to SoC Platforms, as they fo-

cus more on SLD methods. In “Complex Digital Systems” (6.375) [6],
Arvind teaches digital design with BlueSpec [28], which can be

seen as an alternative approach to HLS. For the project, students

are grouped in teams and each team designs a different digital sys-

tem. “High-Level Digital Design Automation” (ECE5775) [4], taught
by Z. Zhang, involves the design of hardware accelerators with

HLS. The course teaches also the principles of CAD, HW/SW co-

design, and SoC design. Students design their own accelerator and

compete to obtain extra credits. “System-on-a-Chip Architecture”
(ESE532) [3], taught by A. DeHon, covers the design, program-

ming and optimization of SoC architectures. It includes a project

where students start from a given application, which needs to be

accelerated, and develop an SoC targeting an FPGA platform that

combines soft-core processors and accelerators. “System-on-Chip
Design” (EE382M.20) [29], taught by A. Gerstlauer, targets the de-

sign of highly-integrated SoCs. Similarly to our course, the main

project requires the development of an accelerator starting from a

high-level specification (C++) and targeting an FPGA platform. It

involves also HW/SW co-design and DSE. With respect to all these

courses, a distinguished difference of “SoC Platforms” is the major

emphasis that we put on combining aspects of team competition,

design reuse, and collaborative engineering in the course project.

8 CONCLUSIONS
We presented the System-on-Chip Platform course that we have

developed at Columbia over the past eight years to teach students

the design and programming of heterogeneous components with

system-level design methods. While we put particular emphasis

on system-on-chip architectures for high-performance embedded

applications, we believe that the course provides a broad foundation

on the principles and practices of heterogeneous computing.
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