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ABSTRACT

As the intense academic interest in video streaming over peer-to-peer(P2P) network, more and more streaming
protocols have been proposed to address different problems on this field, such as QoS, load balancing, transmission
reliability, bandwidth efficiency, etc. However, to the best of our knowledge, an important component of any
practical P2P streaming system, the streaming service discovery, is rarely granted particular considerations,
which is to discover potential peers from which a newcomer could receive the requested stream. In this paper,
we are inspired from a special data structure, named Segment Tree(ST), and propose a protocol to address this
problem specifically. Furthermore, we fully decouple the control plane and data plane on video streaming, and
hence provide more flexibilities in designing protocols on both of them.
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1. INTRODUCTION

As the kinds of multimedia streaming applications become more and more popular, the research community pay
more attention to this topic, and a deluge of streaming protocols is proposed.1–4 In most of the P2P streaming
protocols, a streaming session is logically composed of two planes: data plane and control plane. The data plane
is responsible for transmitting actual payload packets while the control plane is responsible for the coordination
among peers.

On the data plane, peers typically not only receive packets but also relay some of the received data to their
downstream users. Due to the memory limitation, they usually cache only a portion of the latest received data
and forward it to others continuously. The cached content on a peer is updated all the time along with the
progress of the streaming session. Effectively, the cached content is from a sliding window on the original stream.
The oldest received data is replaced by the newly coming one. This process of caching and relaying the content
continuously was shown to scale well in terms of server as well as network loads.1 On the other hand, the work of
control plane usually consists of connection setup, teardown, topology maintenance and recovery, rate allocation
and optimization.4, 5 Nevertheless, the first task on it is to discover potential peers from which a newcomer
could receive the requested stream, which we called streaming service discovery(SSD) problem. In this paper,
we mainly focus on the SSD problem and propose a protocol to address it.

The rest of the paper is organized as follows. Section 2 reviews the traditional aggregation and pub-
lish/subscrible service used in file sharing and presents the motivation and challenges for the streaming protocols.
Section 3 introduces the basic organization and overlay topology in our protocol. We present the control plane
protocol in details in section 4. In section 5, we present the evaluation results for our protocol, and compare the
performance under different configurations. Finally, in section 6, we conclude the whole paper.
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Figure 1. Macroscopical structure of our protocol

2. MOTIVATION AND CHALLENGES

For better user experience, the initial delay for the SSD should be shortened as much as possible while the
resulting candidate senders be as accurate as possible. With little initial knowledge of others, a newcomer has
to query somewhere, say aggregation points, to discover potential senders, and publish its state information.
Essentially, this is a traditional aggregation and publish/subscribe service, for which the research community has
proposed DHT-based approach6 and hierarchical tree-based approach.7 However, as observed in Mercury,8 the
traditional DHT-based approach is difficult for range query that is the most crucial demand need to be satisfied
here, and from the perspective of video streaming, some particular barriers distinguish the SSD problem from
the traditional ones for the sake of the following new challenges:

• Peer Status: Some of the status information, especially the content cached in the buffer, keeps on changing
continuously. What’s more, different data plane protocols may require a variety of peer status information,
but we cannot make any assumptions for that(to ensure the flexibility in the data plane protocol design).
Therefore an appropriate yet flexible way to represent the peer status is highly desired.

• Efficiency of Updating Peer Status: This is the critical point which hinders the feasibility of the traditional
aggregation protocols in the streaming context. As peer status changes over time, it has to periodically
update its status to aggregation points with whatever means. If a peer takes a long time to update the
aggregation point about its new status, the updated status may become inaccurate since it is highly possible
that the peers’s status is changed again during the updating process.

• Performance trade off: Different from the traditional file sharing discovery(FSD), the peers always depart
from the streaming session after finishing the playing back. According to the Little’s formula in queuing
theory, the average number of peers in the session is equal to the product of the average arrival rate and
the average time spent in the system:

E[N ] = λE[T ] (1)

That means, in contrast with the most importance of scalability in FSD, the updating efficiency is more
important here in the trade off between efficiency and scalability, since the population in the session is
usually less than the case of file sharing.

Stemmed from these considerations, we place all peer status information in a structure, named Segment Tree,
which is essentially a binary search tree with the facility to represent segments that are just the representation
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of peers caching contents here. We will present this presentation in next section. All of the peers are divided
into several groups according to their buffer range, and are organized as a 2-height tree as shown in Fig 1. The
segment tree is divided into several subtrees, each of them are maintained by a group of peers cooperatively.

Furthermore, we noticed that in most of the streaming protocols, the delivery paths of control packets are
tightly bundled with those for data packets. We argue that they should be decoupled as much as possible,
so as observed in Zigzag.2 Doing like this allows more flexibility and extensibility in designing protocols on
both control plane and data plane. In our control plane protocol, it is flexible enough to provide any necessary
information for data plane, so that it allows different protocols and optimization strategies on data plane.

3. SYSTEM ORGANIZATION

3.1. Cache Dependency Model

As described above, peers typically cache only a portion of the latest received data, and the contents of peers’
buffer keep on updating continuously. Each peer need a structure to represent its buffer content and publish it
for other peers’ queries. Here we use the cache dependency model similar with the one introduced in oStream.1

Consider a media streaming have a time length of L seconds, a peer, say Ri, who starts to playback this
media at time si from the offset oi. It has a buffer with the length of li also represented by the time units. Then
for another peer Rj , it starts at time sj from the offset oj . Rj can receive streaming from Ri if the following
condition is satisfied.

{

sj − si + oi < L

max{sj − si + oi + li, si} < sj < sj − si + oi
(2)

where the first inequality represents that Rj should start to playback before Ri finish its playing, and the second
inequality represents the starting position of Rj should be cached into the buffer of Ri. Here we assume all the
peers playback the media with the same rate, so Rj can always receive stream from Ri as long as it can receive
data from Ri at the starting position. Specially, We bring in two new terms here that would be referred in the
following sections:

Definition 1. Absolutely Starting Time |s|: The value |s| that is got from subtracting the starting offset

from the starting time of a peer, |s| = s− o, is called the Absolutely Starting Time, which represents the starting

time if the peer starts to play it from the beginning of the media stream.

Definition 2. Caching Segment c: The caching segment of a peer is an time interval whose lower bound is

the absolutely starting time, and whose length is the buffer length of that peer, say c = [|s|, |s| + l].

Based on the inequality (2) and definition (1) and (2), we notice the necessary condition for Rj receiving
from Ri:

{

si < sj

|si| < |sj | < |si| + li
(3)

That means the cached content of the peer Ri could be represented by its caching segment. A peer Rj who can
receive stream from it should satisfy that the absolutely starting time of Rj is covered by the caching segment of
Ri. In the following, we will present how to publish/query the caching segments and related status information
on P2P network.

3.2. Segment Tree

As mentioned above, the caching content of each peer could be represented by the caching segment. Segment
Tree(ST) is a data structure comes from the computational geometry, which is essentially a binary searching tree
and is used to represent the segments with high efficiency as shown in Figure 2. Even through we do not use it
as the overlay topology structure for the sake of the considerations mentioned in section 2, it is worthwhile to
introduce it here to clarify our design philosophy.

As shown in Figure 2, the peer status information is maintained on the segment tree according to its caching
segment. As an example in Figure 2, a peer with the caching segment of [1, 3] is maintained at node [1, 2] and
[2, 3]. The maintained information consists of any information necessary for data plane protocol, which can be
configured according to the specific data plane protocol. Furthermore, we notice that the high-level nodes on
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Figure 2. The Segment Tree
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the segment tree, such as node [0, 5] and [0, 10] in Figure 2, rarely maintain peer information since the intervals
represented by them are larger than the upper bound of the peers’ caching segments. That means, as illustrated
in Figure 3, the segment tree could be divided into several subtrees whose top interval–the interval represented
by the root node of the subtree–is a bit larger than the upper bound of the peers’ caching segments. And then,
all the subtrees are distributed on the network, each of them is maintained cooperatively by a group of peers.

Figure 4 is a practical example for dividing the segment tree, where we have a media stream with the length
of 1 hour(3600 seconds), and the upper bound of the length of peer caching segments is 5 minutes(300 seconds).
We divide the segment tree into several subtrees with the length of 600 seconds, which is twice of the upper
bound of caching segment. So for any caching segment, say [a, b], there is always at least one, and at most two,
subtrees that can fully cover the caching segment. We determine the subtrees it belongs to as follows, where

10 a←a mod 3600;

20 b←a + bufferLength;

30 lid←a / 600;

30 rid←b / 600;

40 if ( lid = rid ) then subtreeId[0]←lid * 2;

50 a←a - 300;

60 b←b - 300;

70 if ( a < 0 ) then

80 a←a + 3600;

90 b←b + 3600;

100 lid←a / 600;

110 rid←b / 600;

120 if ( lid = rid ) then subtreeId[1]←lid * 2 + 1;

Table 1. segment-subtree mapping algorithm

the subtreeId is the subtree id as shown in Figure 4. If there are two subtrees that both contain the peer’s
caching segment, one of them is selected randomly. For example, the caching segment [450, 580] is covered by
both subtree0 and subtree1, but the caching segment [540, 720] can only be covered by subtree1.

Suppose the peer arrival process is Poisson with rate λ, and the streaming length is L, the average number
of peers in the network is Lλ ∗. If the upper bound of peers’ buffer length is B, there are 2⌈ L

2B
⌉ ST subgroups.

∗We assume the peer arrival process is a Poisson precess with rate λ and the time of peer playing back is a exponential



ST Peer ST Peer

ST PeerST Peer

ST Peer ST Peer

Leaf Peer Leaf Peer

Leaf Peer

Leaf Peer

Leaf Peer

Leaf Peer

Figure 5. An example of the ST subgroup

ST Subgroup

Newcomer

Bootstrap Peer

1
. 

C
o

n
ta

c
t  

B
o

o
ts

tr
a

p
 P

e
e

r
1

. 
R

e
tu

rn
 S

T
 S

u
b

g
ro

u
p

2
. Q

u
e
ry C

an
did

ate P
ee

rs

2
. R

eturn
 C

an
d
id

ate P
ee

rs

ST Subgroup

3. Registe
r self-s

tatus Info

Figure 6. The procedure for a new peer arrival

Considering the continual peer arrival and the randomness of starting offset, all the peers is uniformly distributed
on all the subgroups. The population of each subgroup is

Lλ

2⌈ L
2B

⌉
= ⌈λB⌉ (4)

3.3. ST Subgroup

An ST subgroup is a group of peers that cooperatively maintain a subtree mentioned above. It consists of ST

peers and leaf peers. ST peers play the role as the aggregation points to collect the status information of leaf
peers and publish it on the network. On the other hand, leaf peers hold connections with the ST peers and
update the status information periodically.

All the ST peers in an ST subgroup is organized like a ring. Each ST peer on the ring maintain a table to
record its next k(k ≥ 1) successors, where k is an adjustable parameter for the system. Usually, k is more than
one in case of unforeseeable peer failures. In the next section, we will present that the circle is easy for adaption
of group population, failure tolerance and recovery.

Each ST peer has several children, called leaf peers. The leaf peers periodically update their status information
to the ST peers in order to publish to other peers. Periodical updating is important especially for a real-time
streaming system, since the peer status is changed overtime, i.e. the length of the caching segment in time
unit. Hence, here updating in time becomes more important, that is the reason why we give up a tree-based
aggregation approach like many other traditional ones.

Meanwhile, there is a bootstrap peer on the network. Usually it could be the server, since the packets
exchange on control plane wouldn’t incur much of the burden on server. The bootstrap peer maintains a table
about the t ST peers in each of the ST subgroup, where t is usually more than one in case of peer failures, so
that it can tell the newcomers where to find the ST peers for queries and publications. The ST peers recorded
by the bootstrap peer send the heartbeat message to it periodically, so that the bootstrap peer could notice the
failure of these ST peers, and recruit the new ST peers in its table once some of them are failed or departed.

4. CONTROL PLANE PROTOCOL

Our proposed protocol on the control plane mainly deals with three cases, peer arrival, failure, and status up-
dating. When a new peer arrives, the protocol is responsible for discovery of candidate peers that are potentially
able to provide stream to it. Once a peer fails or departs from the current session, the overlay topology need to
be recovered using this protocol. And periodically, each peer updates its published status information by this
protocol.

random variable with rate 1/L, where L is the streaming length. So the system is an M/M/∞ queuing system, and the

average number of peers is Lλ.



Figure 7. An example of expanding the ST subgroup ring

4.1. Peer Arrival

Anytime a new peer come to require the streaming, two things it need to do first of all. 1) Query the potentially
parent senders. Once it knows the peers that are able to provide streaming for itself, transmission rate is allocated
by some data plane optimization algorithm,4 then streaming is started. Then 2) the newcomer publish its status
information, including the caching content and some other necessary information, to the aggregation points in
order to sometime provide streaming to others. Please see Figure 6 as an example of a new peer arrival.

Firstly, the newcomer gets contact with the bootstrap peer and get the response from there about two
ST subgroups, called query group, that covers the absolutely starting point of the demander according to the
constraint (3) and the ST subgroup , called register group, where the newcomer should register itself according
to the algorithm in Table (1). Note that it only returns an ST peer id that belong to the corresponding ST
subgroup. The returned ST peer in each ST subgroup is selected randomly for load balancing on all the recorded
ST peers.

Then the newcomer sends the queries to the query group to ask for the candidate peers. Once an ST peer
receives the query, it returns the peers’ status information registered on itself which satisfy the constraint (2),
and furthermore, it relay the query to its next k successors on the subgroup ring, where k is the parameter
mentioned in section 3.3. So each ST peer on the subgroup ring would receive at most k same queries, each ST
peer only responses the first query it received and simply discards the later ones. Even though some ST peers
are failed abruptly, the query still propagate on the ring successfully, since the simultaneous failures of all the
k successors is almost impossible. Based on this structure, the query would propagate on the subgroup ring at
the rate of k. In other words, it needs ⌈n

k
⌉ hops to propagate a query to all the ST peers on the ring, where n is

the number of ST peers on the ring. That means the number of hops increases linearly with the number of ST
peers in the ST subgroup. We argue that, as mentioned in section 2, is because the updating efficiency is more
important here rather than the scalability upon the tradeoff between them. In fact, our experimental results in
section 5 show that the initial delay for query is still short.

At last, the newcomer register its status information on register group after it receives the response for
candidate senders from the ST peers and starts to streaming. Please note that the register group is always one
of the query group, which is easy to be deduced from the constraint (3) and algorithm in Table (1). From the
attachment of the query response of each ST peer, the newcomer knows the number of leaf peers associated with
each of the ST peers. So it selects the ST peer in the register group that has the least child leaf peers, registers
on it, and starts to periodically update its status information there.

4.2. Peer Failure/Departure

4.2.1. Leaf Peer Failure/Departure

The failure/departure of the leaf peer doesn’t influence any others. Its parent ST peer would see the failure for
the lack of periodical status updating message, then remove the failed peer from its peer status table. That is



the only thing need to do since the failure of leaf peer doesn’t destroy the overlay topology on the control plane.

4.2.2. ST Peer Failure/Departure

Each ST peer on the ST subgroup ring exchange heartbeat message with all of its children as well as its next k

successors. So the failure of an ST peer would be noticed by its children, its k predecessor on the ring. They
also send the heartbeat messages to the bootstrap peer if they are selected into the bootstrap peer’s local table,
and hence they are also noticed by bootstrap peer for their failures.

Each time the leaf peer sends its status updating message as a heartbeat message to its parent ST peer, the
ST peer responses it with the addresses of its next k successors. So once the ST peer is failed and is noticed by
its child leaf peers, they randomly choose one of its successors to register themselves there. This is quite efficient,
since there are no other queries or routings for recovery.

The ST peer on the ST subgroup ring knows the failure of any of its next k successors for the heartbeat
message exchange. Once it notices this case, it removes the failed peers from its successor table, and ask the last
living successors for its immediate living successor to replace the failed one into the successor table.

4.3. Expand and Shrink on ST Subgroup Ring

As the change of the population of the ST subgroup, the number of ST peers on the ST subgroup ring should be
also be changed to adapt the subgroup population. We set the a parameter, children upper bound, to determine
when to expand the subgroup ring. As more and more peers become the children of an ST peer, it periodically
check the number of its children. Once the children number excesses the children upper bound, the ST peer
starts to recruit one of its children to be a new ST peer.

Figure 7 shows this case as an example. Peer B selects peer 1 to be the new ST peer, adds it into its local
successor table, and remove the last successor from that table. Peer 1 knows its next k successors from peer B,
and creates connections with them.

On the other hand, if a ST peer has no children, and its immediate predecessor on the ring has the children
less than the children upper bound, it require to become the child of its predecessor so that the ring is shrank.
The predecessor updates its successor table from the successor table of the demoted ST peer. All the predecessors
connecting with the demoted ST peer are notified to update their successor table.

5. EXPERIMENTAL RESULTS AND EVALUATION

We evaluate the performance of our scheme in this section. We generate the topologies for our simulation using
the BRITE9 topology generator based on Albert-Barabasi model. In all of our following simulations, we use the
stream with the length of an hour. The buffer length of each peer is uniformly distributed from 20 seconds to
180 seconds. The peer arrival process is Poisson with rate of 5 peers per minute, and the time length of peer
playing back is a exponential random variable with the average length of 1 hour.

5.1. Accuracy Evaluation

In this experiment, we use BRITE to generate 1000 peers based on Albert-Barabasi model. All of the peers arrive
the session following a Poisson process. Each peer requests their potential senders on this network, and then
registers itself status information. We use the Metric, Accuracy Rate, to evaluate the query accuracy, which is the
ratio of the number of returned potential senders and the number of peers that could actually provide streaming
to the newcomer. Figure 8 shows the results of the accuracy percentage. We can see that more than %85 peers
could retrieve all of its potential senders. In the worst case, the peer could know %75 potential senders.

5.2. Size of ST Subgroups

We use the same configuration with the previous experiment, but observe the change on size of the ST subgroups.
We sample the subgroup size every 30 seconds, and choose three of the ST subgroups to plot the samples on
Figure 9. It shows that there are at most 18 peers in a subgroup with the arrival rate of 5 peers per minute, and
at the steady state, there are about 12 peers in an subgroup on average, which is consistent with our theoretical
analysis in equation (4).
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5.3. Query Delay

In this experiment, we use BRITE to generate 300 nodes on the network and randomly select 100 peers of them.
We observe the query delay under different configurations. Since the peers’ queries would spend some time to
propagate on the ST subgroup ring, we plot the minimum and maximum delay from sending out the query
request to receiving the response from ST peers.

From the control plane protocol, there are two parameters that would influence the delays, the children upper

bound that is the upper bound of children number of each peer, and the number of next successors(k) of each
ST peer maintained. If the children number of a ST peer exceeds the upper bound, the ST subgroup ring would
be expanded, which would prolong the propagation time of a query on the ring. On the other hand, the number
of next successors also influence the propagation rate on the ring.

Figure 10 shows the minimum delay of a query, that is the time spent till the first ST peer response. We see
that the minimum query delay is almost the same under different configurations. But Figure 11, which is plotted
by the time spent till the last ST peer response, show that the more children and maintained successors by an
ST peer, the shorter the maximum query delay. Figure 12 shows the time difference between the maximum and
the minimum query delay is at most 3 seconds if the children upper bound and maintained next successors are
both 1, and in other cases, the difference is about 0.5 second, more or less.

5.4. Overheads on Failure Recovery

We use 100 peers randomly selected from 300 nodes generated by BRITE. In this experiment, we observe the
overheads used to recover the overlay topology after the failure of a peer. The overheads are counted by the
number of packets exchanged between any two peers to recover the topology. So the overheads for the failure
of a Leaf peer is always be zero. We also plot the overheads under 4 kinds of configurations like the above
experiment in Figures 13,14,15 and 16. The peak overheads is the most when children upper bound is 6 and
number of maintained next successors is 4, but the number of leaf peers is also the most in this case, so many of
the failure recovery overheads is zero. Contrastively, the peak overheads is the least when children upper bound
and number of maintained next successors are both 1, but overly a few overheads are zero, since the number of
leaf peers is also the least.

6. CONCLUSIONS

In this paper, we present a protocol on control plane to provide efficient yet flexible service discovery mechanism
for video streaming over P2P network. We first model the caching content of a peer into a segment, and



then publish/subscribe the segments on the network for streaming service discovery. On local we maintain the
segments in a segment tree, on network, we divide the segment tree into several subtrees, and distribute them.
Each subtree is maintained cooperatively by a group of peers. Status aggregation points in each group are
organized into a ring, and the leaf peers updates its status information there to publish to others. Our protocol
fully decouple the control plane from the data plane, and provide more flexibility for the protocol on data plane.
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