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Figure 1: Twisty Armadillo. (left) A twisty puzzle in the shape of an ARMADILLO whose rotation axes are placed along a triangular prism.
(right) The output of our algorithm was fabricated, assembled, and scrambled into contorted poses. The different parts of the model, such as
the arms and legs, were deformed so that they do not collide with one other regardless of the configuration of the puzzle.

Abstract

We present the first computational method that allows ordinary
users to create complex twisty joints and puzzles inspired by
the Rubik’s Cube mechanism. Given a user-supplied 3D model
and a small subset of rotation axes, our method automatically
adjusts those rotation axes and adds others to construct a “non-
blocking” twisty joint in the shape of the 3D model. Our method
outputs the shapes of pieces which can be directly 3D printed
and assembled into an interlocking puzzle. We develop a group-
theoretic approach to representing a wide class of twisty puzzles
by establishing a connection between non-blocking twisty joints
and the finite subgroups of the rotation group SO(3). The the-
oretical foundation enables us to build an efficient system for
automatically completing the set of rotation axes and fast colli-
sion detection between pieces. We also generalize the Rubik’s
Cube mechanism to a large family of twisty puzzles.

CR Categories: 1.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—Geometric algorithms, languages,
and systems

Keywords: Computational design, 3D fabrication, twisty puz-
zles, Rubik’s Cube, group theory, interlocking

1 Introduction

Perhaps the most familiar example of a twisty joint is Rubik’s
Cube (Figure 2(a)), a 3D puzzle composed of 26 separate pieces
attached to a core with six rotation axes, each of which can
be rotated independently. Rubik’s Cube and its variants, which
are known as twisty puzzles, are enormously popular around the
world: there are hundreds of “speedcubing” competitions for solv-
ing these puzzles every year, and new puzzle designs are being
mass-produced for those seeking new challenges (Figure 2(b)).
Beyond their recreational popularity, twisty joints that share simi-
lar mechanics with Rubik’s Cube have found applications in many
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areas, including mechanical joints for robotics [Ding et al. 2011]
and omnidirectional security cameras [Khoudary 2000].

The elegant and ingenious design of Rubik’s Cube addresses two
seemingly conflicting mechanical requirements. On one hand,
it needs to be rotatable around different axes. Every rotation
permutes the puzzle’s pieces, which need to be aligned so that
they can be rotated around other axes. On the other hand, all
the pieces are interlocked such that they never fall apart in any
configuration. Both goals are realized through precisely aligned
rotation axes (Figure 3(a)) and the special shapes of the pieces,
each with a hidden internal structure that interlocks with other
pieces (Figure 3(b)). Designing new puzzles and joints is a so-
phisticated task, requiring expert knowledge in twisty puzzle
design and often many iterations of trial and error. For exam-
ple, even with CAD software, a user needs to manually check
the internal mechanism for tiny undesired parts that result from
misaligned cutting surfaces.

In this paper, we propose a computational approach that enables
a non-expert user to easily design new and customized twisty
joints and puzzles. We model the structure of a twisty puzzle
from an algebraic point of view. The cornerstone of our foun-
dation is a connection between the rotation axis assignment for
twisty puzzles and the finite subgroups of the 3D rotation group
SO(3). Using this relationship, our method can take an arbitrary
set of candidate rotation axes and automatically generate a simi-
lar set of axes that yields a workable twisty joint. Our interactive
and semi-automatic generation process in essence amounts to
aligning finite symmetry groups to any set of axes (§5). The user
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Figure 2: Twisty puzzles. Rubik’s Cube (a) and its variants (b).
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only has to specify a small set of rotation axes and the algorithm
automatically adds other cuts and produces fabricable 3D models
of the resulting puzzle.

We allow the twisty puzzle to have complex and user-customized
shapes (Figure 1), in contrast to the traditional twisty puzzles
which are mainly symmetric and convex (Figure 2). To incorpo-
rate irregular shapes, an additional challenge arises: different
pieces may collide with one another while rotating around an
axis (see Figure 14(a)). We detect all these collisions and de-
form the shape to avoid collisions. With the help of our group-
theoretic foundation, we can enumerate all potential collisions
between pieces. We also reduce the 3D collision detection to a
2D problem, significantly improving the runtime efficiency (86).

Finally, we develop an algorithm to automatically generate the
geometry of all the pieces, which, once assembled, interlock with
one another and form a working puzzle (§7). Furthermore, we
exploit the elasticity of the printing material and design a snap-
ping mechanism to ease the assembly process, eliminating the
need for other hardware such as screws and springs (§7.3).

Contributions. Our core contribution is the first computational
approach for interactively designing customized 3D twisty joints
and puzzles, featuring two major technical contributions:

e We develop an algebraic treatment of twisty joints, and model
the design of new puzzles using subgroups of the rotation
group SO(3) (84).

e We generalize the Rubik’s Cube mechanism to many other
sets of rotation axes, and our designs can be 3D printed and
assembled into interlocking puzzles (§7).

2 Related Work

3D puzzle design. With the advent of affordable rapid proto-
typing techniques such as 3D printing, one of the most popular
hobbyist uses of rapid prototyping is puzzle design. The creation
of such puzzles has been greatly enhanced by computational
techniques. The design of polyomino puzzles on the surface of
arbitrary objects using quadrilateral meshing was introduced by
Lo et al. [2009]. Song et al. [2012] devised an algorithm for
generating a large variety of interlocking puzzles made from vox-
elizations. Our approach resembles that of Xin et al. [2011], who
used constructive solid geometry algorithms for generalizing the
six-piece burr to arbitrary shapes.

In this paper, we focus on an entirely different class of puzzles.
We might describe twisty puzzles as “dynamically interlocking”
since pieces can move around while interlocked. Compared to
the aforementioned “statically interlocking” puzzles, the require-
ment that our pieces need to be movable after being assembled
adds an extra challenge to the design process. Our puzzles rely
on twisty joints to produce a large variety of puzzle piece com-
binations. Zhou et al. [2014] also introduced a type of trans-
formable puzzle which “folds” an arbitrary object into a box us-
ing hinge joints between pieces. Rubik’s Cubes have been made
in other shapes such as character’s heads [Scherphuis 2015], but
those shapes have been mostly convex or star-shaped.

Transformable objects. One area of fabrication is concerned
with creating mechanical assemblies that can move, usually those
in the shapes of characters. Ceylan et al. [2013] created me-
chanical characters whose motions approximate motion-capture
sequences. Concurrent work by Coros et al. [Coros et al. 2013;
Thomaszewski et al. 2014] used a large set of linkages to gener-
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Figure 3: Rubik’s Cube. (a) The rotation axes of Rubik’s Cube
and (b) a peek at the internal mechanism. The pieces (inset) have
little attachments and cavities that cause them to interlock.

ate a wider variety of trajectories for their mechanisms. Bacher
et al. [2012] and Cali et al. [2012] fabricated articulated meshes
by adding ball joints at key locations. Their models were printed
in one piece, and the latter introduced friction to enable static
posing. However, all this previous work on transformable ob-
jects considers mechanisms where all the pieces are connected
by joints. In our setting, we need to consider that some pieces
of twisty puzzles “float.” Pieces that are not connected to joints
are held in place by interlocking alone. The transformable ob-
jects we study have found applications in mechanical design and
robotics [Khoudary 2000; Ding et al. 2011].

Interactive design. One approach to designing fabricable ob-
jects is to make the process semi-automatic: with minimal user
interaction, the desired product is generated via an optimization
process. Mori et al. [2007] and Skouras et al. [2014] introduced
interfaces for designing plush toys and inflatable objects, respec-
tively, by specifying the seams between patches of the surface.
Interactive design has even been applied to garment [Umetani
et al. 2011] and furniture design [Umetani et al. 2012].

Mesh simplification is a common tool for fabricating an object
with as few pieces as possible. Chen et al. [2013] introduce
a mesh simplification algorithm which generates large planar
pieces suitable for fabrication, and Igarashi et al. [2012] gen-
erated beadwork by simplifying a model into a uniform hex-
dominant mesh. In the latter work, the user can interactively
edit the shape of the simplified mesh. Our work also follows the
same philosophy of requiring minimal user interaction: the user
specifies a few initial rotation axes and our algorithm generates
a fabricable puzzle.

Group theory and Rubik’s Cube. Both computer and human
solving techniques for Rubik’s Cube have benefited from treat-
ing Rubik’s Cube as an abstract group. Thistlethwaite’s algo-
rithm [1981] restricts the state of the puzzle to smaller and
smaller subgroups until the puzzle is solved. Rokicki et al. [2010]
showed that no position requires more than 20 moves by break-
ing up the problem into cosets of one of Thistlethwaite’s sub-
groups. Our application of group theory serves a different pur-
pose: generalizing Rubik’s Cube to other puzzles. While there
exist variants of Rubik’s Cube that agree with the theory pre-
sented in this paper (such as the ones in Figure 2(b)), our main
theoretical result is new to our knowledge.

3 Background and Overview

The goal of this work is to automatically generate a 3D twisty
puzzle given a 3D model and some approximate rotation axes
specified by the user. A special and simple case of the twisty puz-
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user-specifed cuts

suggested cuts
(section 5)

cutting the puzzle
(section 7.1)

avoiding collisions
(section 6)

mechanism generation
(section 7.2-7.3)

Figure 4: Pipeline. Starting from simple user input in the form of planes, our algorithm finds a nearby set of non-blocking rotation axes
(§5), slices up the puzzle according to those axes (§7.1), deforms the resulting pieces to avoid any external collisions (§6), and generates a

fabricable internal mechanism using those pieces (§7.2-7.3).

zles that our method can generate is Rubik’s Cube. Throughout
this paper, we constantly refer to it for illustration purposes, thus
we first introduce some of its terminology (§3.1) and then give
an overview of our pipeline (§3.3).

3.1 Basics of Rubik’s Cube

Rubik’s Cube has six possible “moves,” each corresponding to
a rotation axis. These axes are referred to as U(p), D(own),
F(ront), B(ack), L(eft), and R(ight) as in Figure 3(a). A move
along one rotation axis applies a 90° clockwise rotation to all the
pieces on one side of a plane perpendicular to that rotation axis.
We say that Rubik’s Cube is non-blocking because any sequence
of moves can be applied to the puzzle without the mechanism
getting stuck. An example of a puzzle with blocking is illus-
trated in Figure 10(b). Each rotation axis has a piece called the
center which rotates in place, and internally, these centers are
connected to a core. The pieces with two and three stickers are
called edges and corners, respectively. Figure 3(b) illustrates the
different kinds of pieces and the mechanism that holds all the
pieces together.

3.2 Jaap’s sphere.

While it is natural to visualize Rubik’s Cube in its cubic geometry,
in order to generalize to other twisty joints, we instead inter-
pret the intrinsic structure of a puzzle using a sphere (Figure 5).
This is sometimes called Jaap’s sphere [Scherphuis 2003]. Jaap’s
sphere is wholly contained inside the puzzle, and we call the
center of the sphere the core position of the puzzle. The sphere
intersects with some cutting planes or cuts, each of which sepa-
rates the sphere into two parts that can be independently rotated.
In other words, each cutting plane defines a rotation axis which
is perpendicular to the plane and passes through the core posi-
tion. In the context of our problem, by looking at a sphere, we
can more easily examine puzzles produced by arbitrary sets of
rotation axes, and we can produce a unified method for design-
ing the internal mechanisms of puzzles produced by those axes
(as detailed in §7).

3.3 Pipeline

We incorporate our pipeline (Figure 4) into an interface that
takes user-supplied 3D models and rotation axes, and displays
the resulting puzzles interactively. Our pipeline generates 3D
models which can be directly fabricated and assembled (see the
supplemental video). Specifically, out pipeline consists of the
following steps:

1. Positioning Jaap’s sphere. The pipeline is initialized by a
3D model. We aim to make Jaap’s sphere as large as possible.

rotation axis vV
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Figure 5: Cuts of a Twisty Puzzle. Some cuts of a Rubik’s Cube
(left) and its Jaap’s sphere (middle), and the 2D projected view
(right). Each cut can be described by a single perpendicular vector
inside the sphere.

Since all cutting planes have to pass through Jaap’s sphere,
a larger sphere means a wider variety of cutting planes. The
algorithm computes the optimal core position ¢ by solving the
optimization problem

¢ = argmax (min llp — q||)
peint(s) q€s

where S denotes the surface of the 3D model and int(S) de-
notes its interior region. A solution to this optimization proce-
dure is illustrated in Figure 6. Our implementation performs
simulated annealing [Kirkpatrick et al. 1983] starting from
the center of mass of the model. We then set the radius of
Jaap’s sphere to be min, [|c — q].

Figure 6: Fitting Jaap’s sphere in-
side the Stanford bunny with the op-
timal core position c. We make the
sphere as large as possible inside the
object.

2. Axis auto-completion (§5). Using the graphical interface,
the user specifies cuts that pass through the 3D model and
Jaap’s sphere. These cuts define a subset of rotation axes,
but they may generate a puzzle that blocks. Our algorithm
perturbs the user-specified cuts and adds other rotation axes
to produce a non-blocking puzzle. The good sets of cuts are
derived using results on rotation groups (§4).

3. Resolving collisions (§6). The suggested cuts then separate
the provided 3D model into individual pieces. Inside Jaap’s
sphere, these pieces can freely rotate around the axes. How-
ever, for complex shapes, the resulting pieces may collide with
one another in certain positions of the puzzle. We enumer-
ate all possible configurations of pairs of pieces by defining
a group structure on the pieces. A 2D collision detection al-
gorithm is introduced for this problem. Once collisions are
detected, they are resolved using standard Laplacian mesh
deformation algorithms.
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4. Internal mechanism (§7). Finally, for every piece of the
puzzle, we create an interlocking internal mechanism which
rotates according to the rotation axes. The mechanism is a
generalization of the Rubik’s Cube mechanism; its generation
uses only constructive solid geometry operations on simple
geometric primitives.

4 Theory

In this section, we operate on Jaap’s sphere, ignoring for now the
3D model surrounding the sphere. We will consider the shapes
of 3D models in §6 and §7. Without loss of generality, we assume
that the sphere has unit radius and is centered at the origin. The
goal of this section is to develop a relationship between valid
sets of rotation axes and an algebraic result on rotations in R3
and define an algebraic group structure on the positions of a
puzzle. We refer to a Rubik’s Cube throughout for illustrating the
concepts, even though we consider a much wider class of twisty
joints and puzzles.

4.1 Abstract Puzzle Representation

A rotation axis r = (v, n) is specified by a nonzero vector v whose
norm is strictly less than 1 and an integer n. The direction of v
indicates the orientation of the rotation axis, and the length of v
indicates where the sphere is cut (Figure 7). The cutting plane
is the plane that passes through v and is perpendicular to v, i.e.
the locus of points (p —v)-v = 0. Thus, in our presentation,
we refer to v as a vector and as a plane interchangeably. The
rotation axis can be turned by angles of 27t /n. For example, the
axes of Rubik’s Cube have n = 4. Furthermore, we call the two
halfspaces

r’={p|(p-v)-v<Otandr'={p|(p—v) v>0}

the near and far sides or halfspaces of the rotation axis, respec-
tively.

far side

cutting planf/—\

near side

rotation axis vV

Figure 7: A rotation axis and its cutting plane on a Jaap’s
sphere. The cutting plane forms two halfspaces that we use to
describe pieces.

A set of rotation axes partitions the sphere into pieces. A piece
p = {r}",...,r} is specified by the halfspaces which form it,
where s;,i =1,...,k is either 0 or 1, depending on which side of
the axis r; the piece is on. For instance, a corner of a Rubik’s Cube
is specified by three far halfspaces, and an edge is composed of
two far halfspaces and two near halfspaces (Figure 8). Turning
a rotation axis r = (v, n) by its angle 27t/n rotates each of the
pieces on the far halfspace by 27t/n clockwise about the axis v.
The (unique) piece containing the origin is called the core, which
is often concealed by the other pieces. The pieces that lie on the
far side of exactly one rotation axis are called centers. Note that
every center touches the core. For the purpose of designing the
internal mechanism in §7, we need a core and a center for each
rotation axis: having the centers affixed to the core is the basis
of the interlocking design. By requiring that the length of the
rotation axis is positive (i.e., ||v]|, # 0), we ensure that no plane
cuts through the origin, guaranteeing the existence of the core
piece. To make sure that each rotation axis r; has an associated

g R
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Figure 8: Piece Types. (left) A corner piece of Rubik’s Cube is
specified by three cuts (or equivalently, three rotation axes). (right)
A 2D illustration of the core and center pieces.

center piece, for every other rotation axis r;, i # j, v; is on the
near halfspace of r;, i.e. (v; —v;)-v; < 0. On Rubik’s Cube, the
rotation axis passes through the center piece, but on the right of
Figure 9, the “center” piece of the green rotation axis is actually
on the far side of two rotation axes.

Figure 9: Because we need
core and center pieces for
the mechanism design, we
do not allow these types
of rotation axis configura-
tions.

4.2 Non-Blocking Puzzles

One crucial property of twisty joints and puzzles is that they are
non-blocking. An illustrative example of how to make a blocking
puzzle non-blocking is the “two-generator” Rubik’s Cube, where
only two adjacent faces can turn. If we only cut the cube using
the two rotation axes U and R (Figure 3(a) and Figure 10(a)), it
is clear that this puzzle will lock—after turning R clockwise (Fig-
ure 10(b)), the U axis is blocked. To remove this blocking, we can
cut along the U axis’s plane again (Figure 10(c)). Applying this
process repeatedly to our example will produce a non-blocking
puzzle.

However, for most sets of rotation axes, this process never ter-
minates and we will end up with an infinite number of pieces.
Therefore, a physically meaningful puzzle needs to have carefully
arranged rotation axes such that the number of resulting pieces
is finite. Our characterization of sets of rotation axes that are
non-blocking is based on finite subgroups of SO(3), the group of
rotations of the sphere. In particular, for each element of one of
these subgroups, we make a cut perpendicular to that element’s
axis of rotation. As a result, the number of resulting pieces is
guaranteed to be finite. The justification of this connection be-
tween rotation axes and finite subgroups of SO(3) is detailed in
Appendix A and is, to our knowledge, new. In fact, there is a
succinct characterization of the finite subgroups of SO(3):

Theorem. [Thurston and Levy 1997] Any finite sub-
group of SO(3) is isomorphic to a cyclic group, di-
hedral group, or a rotational symmetry group of a
Platonic solid.

We visualize these families of rotation axes using polyhedra (see
Figure 11)—when we refer to a rotation axis corresponding to a
facet of a polyhedron, we mean the rotation axis that is parallel
to its centroid. The sets of rotation axes correspond to

1. the square faces and/or the n-gonal faces of the n-prism
(cyclic, dihedral).

2. the faces, edges, and/or vertices of the Platonic solids (tetra-
hedral, octahedral, icosahedral).
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Figure 10: “Two-generator” Rubik’s Cube. Cutting a cube us-
ing only two rotation axes (a) will block after just one turn (b).
Blocking can be resolved by cutting the puzzle further (c-d).

As an example, Rubik’s Cube is an instance of the octahedral
class. Subsets of these (like the two-generator example) can be
achieved by “fusing” centers to the core to block their motions.
Because of the group-theoretic derivation of these sets of rotation
axes, we will refer to them simply as the finite rotation groups.

Py

(©

Figure 11: Examples of polyhedra which have finite symmetry
groups. These have octahedral, dihedral, and icosahedral symme-
tries, respectively, and we place rotation axes along the fixed points
of a rotational symmetry.

4.3 The Puzzle Group

A permutation T : X — X is a one-to-one correspondence of the
elements of a set X. In the context of our problem, applying
moves to Rubik’s Cube shuffles pieces around (Figure 12(a)), so
these moves can be expressed as permutations. However, the
permutation is not on the pieces, since pieces can have different
orientations. For example, a corner piece can be “twisted” in the
correct position. We therefore define the flag (p, r), which is a
pair of a piece p and one of its rotation axes r. The piece’s flags
encode the orientation. For example, each corner and edge of a
Rubik’s Cube has three and four flags, respectively (Figure 12(b)).
The flags of a core piece and one of each center’s flags (i.e. the
flag (p,r) where r! € p) stay fixed under the action of any
rotation axis, so we ignore them.

Rotating the puzzle along a rotation axis applies a permutation
on the flags. We refer the reader to Appendix B for details on
how to compute these permutations. Arbitrary compositions of
these permutations form the puzzle group of the puzzle, which
describes all the possible states of the puzzle.

Remark. The puzzle group defined here is general enough for
describing other sets of rotation axes, such as the one shown in
Figure 13. However, in our user interface and examples, we only
consider the rotation axes of the finite rotation groups (recall
Figure 11). Furthermore, we do not have a general classification
of all possible sets of rotation axes that have a well-defined puzzle

group.
5 Auto-Completion of Rotation Axes
As developed in §4.2, a non-blocking twisty puzzle is constructed

by choosing rotation axes derived from a finite rotation group.
To ease the user in specifying valid sets of rotation axes on an

oa

(a) (b)

Figure 12: Flags. (a) Each rotation axis applies a permutation
on the pieces. (b) The flags of a corner of Rubik’s Cube. Flags can
intuitivelv be thoueht of as different stickers of pieces.

4
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Figure 13: A set of axes that does not come from a finite rotation
group, but still can be described by a puzzle group. The rotation
axes are the faces of this “polyhedron” which consists of two hexag-
onal cycles of square faces. The centers do apply a permutation to
the two adjacent lune-shaped pieces.

arbitrary shape, we provide an interface to allow the user to
sketch a few planes that cut through the 3D model and the Jaap’s
sphere inside (see the supplemental video). Every user-specified
plane defines a rotation axis. OQur algorithm then automatically
adjusts these cuts and suggests other cuts to form a valid puzzle.

In general, user-specified cuts will not be perfectly aligned with
any of the Platonic solids or n-prisms. Instead, we take each
of the finite subgroups and rotate it to fit the user-specified
rotation axes as closely as possible. There is an infinite num-
ber of dihedral groups D, so in practice we set a threshold by
only considering ¢ < 5. Suppose the user specifies n rotation
axes ry,r,,...,r, and we have a subgroup with m rotation axes
$1,89,--.,8,, where m > n. For each pair of rotation axes r; and
r;, we compute the angle 6;;. Meanwhile, for all ordered sub-
sets of size n of s4,...,s,,, we similarly compute angles Gi’j and
choose the set which minimizes

D ole -6,

1<i<j<n

Here we can reduce the number of subsets by accounting for
rotational symmetries. Let s;,...,s, denote the optimal ordered
subset of rotation axes drawn from a particular subgroup with
the axes s;, 85, ...,S,. We wish to rotate these axes to align with
user-specified axes as closely as possible. To this end, we find a
rotation matrix R that minimizes

n
D lri—Rs{IP.
i=1

In graphics, this is known as shape matching [Miiller et al. 2005;
Rivers and James 2007] (and in other fields it is called the or-
thogonal Procrustes problem [Gower and Dijksterhuis 2004] and
Wahba’s problem [Wahba 1965]). The standard solution, as seen
n [Miiller et al. 2005], is to consider the following matrix and
its polar decomposition:

n
B= E ris/T =
L
i=1
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Figure 14: Collisions of Puzzle Pieces. Even though a puzzle
is non-blocking, pieces may collide with one another (a). These
collisions can occur when at least one of the pieces has overhang
(b). If there is no overhang, then each piece is confined to an
intersection of halfspaces, and these regions are all distinct from
one another.

where S is a positive-semidefinite matrix and R is the desired
rotation matrix. Both matrices can be computed using the sin-
gular value decomposition [Golub and Van Loan 2012]. Finally,
we apply R to all the rotation axes s;,s,,...,S,, to obtain the
rotation axes (i.e., Rsy,...,Rs,,) for puzzle generation. We scale
the vectors so that their lengths equal the average length of the
user-specified rotation axes.

6 Avoiding Collisions

After completing the rotation axes based on user-specified cuts,
we use the associated planes to cut the given 3D model into
individual pieces (details in §7.1). Unfortunately, since we are
cutting arbitrary geometries, pieces of the puzzle may collide
with one another after applying several turns (Figure 14(a)).
Such collisions can be considered as another type of blocking.
In this section, we first present an approach to detect all pos-
sible collisions without using any temporal collision detection
techniques such as a direct simulation of puzzle rotations (§6.1).
The 3D collision detection problems are reduced into 2D prob-
lems, drastically increasing the efficiency of our algorithm. These
two simplifications allow us to check only a finite set of config-
urations, and symmetries reduce the number even further. We
then resolve the collisions using simple Laplacian-based mesh
deformations (§6.2).

6.1 Collision Detection

A piece cut out from a 3D model is said to have overhang if part
of the piece intersects one of its rotation axes, as in Figure 14(b).
We observe that if two pieces are free of overhang, then it is im-
possible for them to ever collide, while the existence of overhang
may not necessarily lead to collisions. It suffices to check only
the pairs where at least one of the pieces has overhang. One sim-
ple approach is to deform every piece until there is no overhang
regardless of the actual collisions. While this can guarantee there
are no collisions, we often only need moderate deformations or
none at all.

For each pair of pieces, we check if there exists some configura-
tion of the puzzle, including during moves, where they collide.
One case does not need to be checked because it can always be
avoided: if two pieces collide only while applying two moves
simultaneously (for example, manipulating two parallel rotation
axes), we can simply apply the two moves sequentially. As a
result, we only need to check cases where one piece is being
rotated while the other piece stays fixed.

7"

Figure 15: Collision Detection in 2D. We reduce the collision
detection problem from 3D to 2D by projecting each mesh onto a
halfplane. The projection removes the angular component from
the meshes, which is equivalent to rotating the halfplane about the
rotation axis and finding the intersection with the two meshes (see
the supplemental video).

Orbits of flags. We need to enumerate all the possible locations
and orientations these pieces can be in. In between moves, there
are a finite number of positions and orientations a piece can be
in. Since the orientation of a piece is encoded by one of its flags,
these positions constitute the orbit of the flag. For example, the
orbit of a corner’s flag on Rubik’s Cube has 24 flags: three flags
for each orientation of the eight corners.

To compute the orbit of each flag, we create a graph where each
flag is a vertex. There is a directed edge from f to f’ if there is
a rotation axis r that brings f to f’ (this information can been
determined from the puzzle group). On the directed edge, we
store a rotation corresponding to r. The connected component
containing a flag f is its orbit, and it can be found by a depth-first
search. The transformation from f to another flag f’ in its orbit
can be computed by tracing the path of edges from f to f’ in the
depth-first search tree and composing the resulting sequence of
rotations. By abuse of notation, we write the orbit of a flag of
piece p; as O(p;), because the orbits of different flags of a single
piece are all isomorphic to one another.

Given two pieces p, and p,, we compute the orbits O(p,) and
O(p,) of one of their flags. For each pair of flags (p;,r;) € O(p;)
and (p;,r;) € O(P,) in the two orbits, we first move p; and p, to
p; and p;, respectively, using the previously computed rotations.
We then test for collisions by rotating each rotation axis that
revolves exactly one of p; and p;. We reduce the total number of
pairs of flags to check by considering rotational and reflectional
symmetries which can be determined from the finite rotation
group the axes came from.

Collision detection in 2D. Because the only motions are pieces
rotating around a single axis, we can reduce this collision de-
tection into a 2D problem. Let z denote the unit vector in the
direction of the rotation axis we are rotating (Figure 15). We
express the coordinates of the pieces’ mesh vertices in cylindrical
coordinates (2,1, 8). We are not interested in the angular compo-
nent, because we need to detect collisions in any state of rotation.
Thus, we discard it to get a two-dimensional collision detection
problem in (z,r). In practice, this method can be implemented
by first constructing a tree of bounding spheres around the origi-
nal mesh in 3D. Since projecting out the angular component in
any direction z yields a bounding circle in 2D, the hierarchy only
needs to be constructed once per piece. Finally, we note that in
this problem, we care about capturing all the collisions, but not
about the exact positions at which these collisions occur, because
a vertex may collide at any revolved state around the rotation
axis. Therefore, at the end of this collision detection step, we
only store the indices of vertices that are in collision, and the
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Algorithm 1 Internal Mechanism

Require: Mesh M, piece p = {r}',...,r;*}
1: procedure Pi1ECE-MAKER(M, p)
2: Cut M along each r; >87.1

3: Create inner sphere S.
4:  forall r]" € p such thats; = 1 do > §7.2
5: Create new halfspace (r/)! = (v/,n;)!
6: Intersect S := SN (rY.
7: end for
8: Union M :=M US.
9:  forall r] € p such thats; = 0 do
10: Create cylinder C;.
11: Subtract M := M \ C;.
12: end for
13: if f(p) =1 then > 87.3
14: Make shaft S; along r;, where r! € p.
15: Subtract M :=M \ S;.
16: end if
17: if f(p) =0 then
18: forall r' € p do
19: Create appendage A;.
20: Union M := M UA,.
21: end for
22: end if

23: end procedure

corresponding rotation axes that introduce the collisions. In the
worst case, every piece has overhang, so every possible pair of
pieces needs to be considered, and for each pair, every pair of
elements from their respective orbits must be checked.

6.2 Deformation

After detecting vertices in each mesh which collide with the
meshes of other pieces, we deform the mesh to resolve collisions.
For each vertex, we wish to move it in the direction of the rota-
tion axis 2z, because deforming a colliding vertex in a direction on
the plane of rotation would not help resolve the collisions—since
we revolve the piece entirely around the axis, the collision would
still occur. Our deformation algorithm is an iterative process. At
each iteration, for every vertex v in collision, our algorithm aims
to decrease the angle between v and z by a fixed small amount
6. That is, we slightly deform v toward z. In practice, we use
0 = 5° at each iteration. The collision detection and deformation
steps are repeated until all collisions are resolved.

In addition, we deform the rest of the mesh smoothly while pre-
serving the adjusted positions of the vertices in collision. Let V
and V' denote the set of all vertices of a puzzle piece’s mesh and
the subset of vertices in collision, respectively. Let v be the unde-
formed vertex position of the mesh. We minimize the following
energy to find a deformed mesh described by vertex positions v*:

EWV)=y ) lav —avP+ (- Y I =%, @

vev vev’

where A is the discrete Laplace-Beltrami operator [Meyer et al.
2003] and y is a scalar weight balancing both terms. This is a
standard Laplacian mesh editing scheme [Sorkine et al. 2004],
for which the underlying motivation is to use the Laplacian to
preserve the local “shape” of the object in the deformation. The
first term of (1) is to preserve the shape of the original mesh,
while the second term is to match the desired deformation. If
we let d be the vector stacking all the vertex displacement (i.e.,

)
(b)

Figure 16: Cutting a Puzzle. The intersection of a plane and
the surface of the 3D model (a) can be disconnected, as seen in a
side view of the intersection (b). We only cut the model along the
essential polygon, which contains the origin of the plane.

d; =v;—v, for all v; € V), then taking the gradient of the energy
and setting it to O yields the linear system

yAd = —(1—-1y)d.

Solving this equation results in a deformed mesh with the vertex
positions v} = v; +d;. We then move on to the next iteration step
until the collisions are fully resolved, or we reach a maximum
number of iterations. We do not prove convergence for this
algorithm in theory, although all our examples ended up being
collision-free. We believe checking for convergence is expensive
as it means to repeatedly check all possible permutations.

7 Design of Inner Mechanism

The last step of our pipeline is to generate the internal mecha-
nism for every piece of the puzzle. The geometry it automatically
creates can be directly 3D fabricated. After assembling the fab-
ricated pieces together, they interlock with one another while
rotating. Our mechanism generation is general for all puzzles
that we defined in §4, including those not derived from finite sub-
groups of SO(3), and involves only constructive solid geometry
(CSG) operations on the pieces and primitives such as spheres
and cylinders. The full algorithm is outlined in Algorithm 1. To
our knowledge, there has not been an automatic approach for
generating the internal mechanism.

Our method starts by cutting the provided 3D model into pieces
using cutting planes defined by rotation axes (§7.1). It then
generates the internal interlocking mechanism for each piece
(87.2) as well as the core (§7.3). As an extension, our method can
also incorporate curved cutting surfaces (§7.4), thus producing
more complex and interesting twisty puzzles.

7.1 Cutting the Puzzle

We assume that the input 3D model is a well-tessellated (e.g.
isotropically remeshed) topological sphere. Let r = (v,n) be a
rotation axis, as introduced in §4.1. When there is no ambiguity,
we also use it to refer to the cutting plane related to the rotation
axis. The origin of the cutting plane is the point closest to the
center of Jaap’s sphere. Unfortunately, we can not simply cut the
3D model using planes, since some pieces might have overhang
(Figure 14(b)). In general, the intersection of a plane and the
surface mesh results in multiple polygons. We wish to only cut
along what we call the essential polygon, the one whose interior
contains the origin of the plane because its interior intersects
Jaap’s sphere (Figure 16). To robustly cut the puzzle along the
plane, we take a ray on the plane starting at its origin and inter-
sect it with the 3D model. We find the first intersecting face and
subdivide it into two faces and continue onto the neighboring
faces that also intersect the cutting plane. We continue along
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the mesh until we return to the original face, tracing out the
essential polygon on the 3D model. The mesh is split into two
new meshes along the newly-created edges. We fill in the result-
ing holes using a standard constrained Delaunay triangulation
algorithm [Shewchuk 1996].

The situation becomes more complicated when we slice the
model with multiple planes to make individual pieces. A piece
p={r,...,r;*} is formed by applying the tracing algorithm se-
quentially on each of its halfspaces. We can interpret this process
as forming a sequence of intermediate pieces p; = ..., r;j },
for j = 0,...,k. The ray intersection step produces a random
point on the essential polygon of r;, but that point might not be
on the intermediate piece p;_;. Instead of choosing a random
point, we first find a point v; on the essential polygon of each
rotation axis that is on p;_;, as shown in Figure 17(b). Once
these points are computed, we can form each intermediate piece
p; by the tracing algorithm on p;_,, starting at the precomputed

point v;.
1
. B S
T2

Figure 17: If we wish to make a piece p = {r],r,} (left), we

first compute a point on the essential polygon of r, that is part of
the piece p’ = {r} (right). After cutting by r, using the tracing
algorithm, we can trace out what is left of the essential polygon of
r, by starting at the computed point.

7.2 Interlocking Internals

We now generate the internal interlocking mechanism for each
piece. We examine the internals of our Bunny example (Fig-
ure 18(a)). The Bunny model has four of the six rotation axes of
Rubik’s Cube, so the mechanisms are similar. The center pieces
are attached to the core so that they can only rotate in place.
Thus, by construction these piece can not come apart (see §7.3).
The remaining pieces have a spherical extension that allow them
to latch onto the center pieces.

Consider the case of a single rotation axis r = (v, n). The previ-
ous step cuts the puzzle into two parts by slicing along the plane
r. The two pieces can be made interlocking by attaching part of
a smaller sphere to the piece lying on the far halfspace of v and
subtracting the same attachment from the other piece (Figure
18(b)). In practice, we carve out a cylinder instead of a sphere
so that the puzzle is easier to assemble. Note that we still need
to connect the two pieces together so that they do not move in
a direction perpendicular to the cut—this extra step is described
in §7.3 and justifies why we need center pieces for each rotation
axis. Repeating this process for the other rotation axes results in
the mechanism in Figure 18(a).

Caution needs to be taken when choosing the radius r’ of the
smaller sphere and the depth of the plane which cuts through it
to make the attachment. We choose the radius to be large enough
so that every piece intersects the sphere (Figure 19(a)). In fact,
we noticed that in our fabricated examples, a larger sphere radius
made for a more stable puzzle. We slice the spherical attachment
by a plane v; = v, —dv,, where ¥ is v normalized, and d is a con-
stant. An additional constraint is that the spherical attachments
from different rotation axes must not collide with one another.

¥ B
n‘f A S

L NS

(a) (b)

Figure 18: Puzzle Mechanism. A look into the BUNNY mecha-
nism (a), and isolating one rotation axis (b). The smaller piece
has a spherical attachment that fits into the cylindrical hole of the
larger piece, allowing it to rotate along the cylinder’s axis.

Therefore, for any non-intersecting rotation axes r; = (v;, n;) and
r; = (v;,n;), we select d to be small enough such that v/ and v;
do not intersect inside the Jaap’s sphere (Figure 19(b)).

| Figure 19: The inner
sphere should intersect all
the pieces, and the at-
tachments created from it
should not collide with one
another.

We examine the shape of the internals of one of the edges of
Rubik’s Cube (Figure 3(b)). When the cylinder is carved out of
the edge, the spherical attachments are carved out as well. Thus,
we first create the spherical attachment by slicing the sphere by
vi’ , for all far halfspaces ri1 (Lines 3-8 of Algorithm 1). Then, we

carve out a cylinder of radius 4/(r')? — (v/)? at a depth of v/ for

each near halfspace r? (Lines 9-12 of Algorithm 1). The radius of
the cylinder is chosen to be exactly the radius of the circle where
the sphere is sliced by v;. Because the spherical attachment and
the cylindrical hole are radially symmetric, there will not be any
internal collisions when the puzzle is being turned.

7.3 Core Design

While 3D printers are now sophisticated enough to print inter-
connected pieces, there needs to be clearance between pieces
to prevent them from fusing together. We found that printing
twisty puzzles in this manner is undesirable: the mechanism is
too loose to turn smoothly and sometimes pieces can fall out.
Since centers do not interlock with the core, we need another
mechanism to join them together. While most mass-produced
twisty puzzles use screws to fix the center pieces to the core, we
substitute in a snapping mechanism that can be 3D printed. The
rotation joint exploits the fabricated material’s flexibility and is
illustrated in Figure 20. On the core piece, we add an appendage
for each rotation axis, and on each center, we hollow out a shaft
for the appendage to fit into (Lines 13-22 of Algorithm 1). The
slits that cut through both the core and center pieces facilitate
assembly by allowing the appendages to flex inwards and the
shafts to flex outwards. As a result, the entire puzzle can be fully
3D printed and directly assembled.

When a puzzle has multiple cutting planes along the same rota-
tion axis (such as a 5 x 5 x 5 Rubik’s Cube), there are multiple
center pieces per rotation axis (some of which may be hidden
entirely). Each of these needs to rotate independently, so they
will all have the aforementioned joints. This compound design is
illustrated by the Curvy5 example in §8.
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(a) (b)
Figure 20: Center Mechanism. Centers snap into the core piece
by flexing the appendages and shafts, and once assembled they can

only rotate in place. Each piece was created using CSG operations
on cylinders, cones, and cubes.

7.4 Extension: Curved Cuts

In all of the preceding discussion, rotation axes were specified
by a plane that cuts through Jaap’s sphere. However, we can use
other surfaces for cutting up the puzzle. Instead of using a plane,
we can use radially symmetric surface, such as a cone or a sphere
(Figure 21). Concretely, when described using cylindrical coor-
dinates (2, r, ) where z coincides with the rotation axis, points
on the cutting surface must have a z-coordinate independent of
0, that is, z(r, 8) = z(r). Because of the radial symmetry, we can
rotate a piece along the rotation axis without internal collisions.
To use the same mechanism design as presented above, we fur-
ther require that the cutting surface is a plane inside of the Jaap’s
sphere, but can be curved outside of the sphere. In particular,
curved cuts only affect the aesthetics of the puzzle, and not the
combinatorics.

Although even-order Rubik’s Cubes (like the 2 x 2 x 2 Cube)
have cuts which pass through the origin, these puzzles can be
simulated using curved cuts on the next-highest odd-order cube
to hide extraneous pieces. We also note that the idea of using a
radially-symmetric curve to cut out pieces enabled Verdes [2004]
to construct higher-order Rubik’s Cubes.

»
B B

3 "‘"’
Figure 21: A spherical cut passing through a cube.

&

8 Results

We incorporated our pipeline into an interface where the user
can draw cuts through the 3D model. Some of our results were
fabricated using selective laser sintering (SLS) in a strong nylon
material. Table 1 lists our examples with some properties such
as the number of pieces and whether it uses curved cuts. The
ArmapILLO example is shown in Figure 1. The total computation
time in the pipeline was under a minute on a single-core proces-
sor for all the examples, though the step of the user drawing cuts
had to be repeated a few times to get the desired output. For
the examples with symmetric pieces (TETRA (Figure 23), CURVY5,
and RuowmsBI (Figure 26)), we generated just one of each unique
piece and duplicated them to produce the whole puzzle.

The twisty flowerpot in Figure 25 is an example of our method
generating transformable objects beyond just puzzles. In partic-
ular, these twisty joints can be used for reconfiguring or reposi-
tioning objects, such as the flowers inside the pot.

In our examples with curved cuts, the cutting surfaces we used
were either spherical or conical. In general, the cutting surfaces

Figure 22: Two configurations of the BUNNY puzzle.

Figure 23: While TETRA is a traditional, stickered twisty puzzle,
the curved cut made up of two frustrums.

can be generated by revolving a curve about the rotation axis,
and the intersection of the cutting surface with the surface of the
3D model can be traced out in a manner similar to the one we
described in §7.1 for cutting planes.

9 Discussion and Future Work

We proposed a method for interactively designing twisty puz-
zles based on Rubik’s Cube, and even though our algorithm pro-
duces a wide variety of puzzles, there are still many extensions
to explore. In our pipeline, we want to make Jaap’s sphere as
large as possible, so the input 3D model needs to have a large,
round region for placing the sphere. If the puzzle is not round
enough, there will be pieces that are completely outside of Jaap’s
sphere, and our method has no way of handling that case. Fur-
thermore, not all rotation mechanisms have their rotation axes
passing through the same origin, so one future direction is inves-
tigating the design of these more general mechanisms.

The classification of finite rotation groups does not encompass
all non-blocking sets of rotation axes. For example, the group
generated by the faces of the cube (i.e. rotations of 90° along the
coordinate axes) is actually the entire octahedral group—there
exist other sets of rotation axes which have a puzzle group struc-
ture (e.g., the puzzle in Figure 13) but which generate an infinite
subgroup of SO(3). A classification of these more general sets of
axes would enlarge the space of twisty puzzles our pipeline can
produce. Furthermore, we restricted the possible sets of rotation
axes only because we wanted to ensure non-blocking, but this is
not a necessary property. Pieces that block one another can even
enhance the puzzle’s difficulty.

Figure 24: Only one kind of curved cut is used in the Rook puzzle,
but some cuts appear flat because the model is radially symmetric.
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Figure 25: Multiple arrangements of flowers in the FLOWERPOT.
The twisty joint has 14400 possible arrangements for the flower
pieces.

We wanted to produce puzzles that are handheld and entirely
3D printed. However, the limited resolution of the 3D printer
introduced errors in the models. The automatic placements of
the rotation axes does not take into account the shape of the 3D
model, so some of our models had thin and fragile parts near
the cutting planes. Zhou et al. [2014] avoided printing small
pieces by deforming the mesh, and perhaps something similar
can be applied to twisty puzzles. Additionally, the joints con-
necting the core to the centers sometimes break in the printing
process, and other times the puzzle is too loose and difficult to
turn. One improvement to our design would be a joint design ro-
bust to printing errors that is just as easy to assemble. Assembly
is sometimes a difficult task when many pieces are involved, and
perhaps our method could benefit from automatically generated
assembly instructions in the style of Xin et al. [2011] or an al-
gorithm which designs the pieces in a clever way to simplify the
assembly process.
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A Good Rotation Axes

In the “two-generator” example of Figure 10, let 1,9 € SO(3)
be 90° rotations along the U and R axes, respectively. We observe
that cutting along the U axis’s plane after turning R clockwise
is equivalent to cutting by an imaginary rotation axis defined
by rotating the U axis by w;l (Figure 10(d)). This axis is the
result of composing the two rotations to get ¢,yg. In general,
we could try to cut the puzzle after an arbitrary number of turns,
so the axes we would be cutting along would be elements of
the subgroup of SO(3) generated by v, and . In general,
this subgroup will be infinite and Jaap’s sphere will be cut by

10

Figure 26: SuzanNE, CURVY5, and RHOMBI and their internal
mechanisms.

Examples | Cuts Pieces Curved? SO(3)
Bunny 4 9 No (0]
ARMADILLO 3 7 No D,
TETRA 4 15 Yes T
Rook 6 27 Yes 0]
FLOWERPOT 7 33 No Dy
SUZANNE 4 11 No T
CURvYS 8 45 Yes D,
RHOMBI 20 99 No (@)

Table 1: A list of our examples with the number of cuts and pieces,
whether it uses curved cuts, and the subgroup of SO(3) the cuts are
derived from. D,, T, and O refer to the dihedral, tetrahedral, and
octahedral groups, respectively.

an infinite number of planes, leading to an infinite number of
pieces. Since we want the number of pieces to be finite, we
require that for a set of rotation axes rq,...,r;, the subgroup
generated by 1, ,...,1,, needs to be finite. Therefore, a set of
desired rotation axes needs to correspond to a finite subgroup of
SO(3), leading to the theorem described in §4.2.

B Flag Permutations

Two rotation axes are said to be neighbors if their planes intersect
inside Jaap’s sphere. The key property of the sets of rotation axes
we consider is that the neighbors of a rotation axis r = (v,n)
can be permuted by rotating the entire Jaap’s sphere around r.
For example, if we rotate Rubik’s Cube around the U axis by 90°,
we are effectively applying a permutation F - L —-B >R —F
to the neighbors of U. For each rotation axis r, let 7, be the
permutation. For simplicity, we use 7, to denote a permutation
on axes, pieces, and flags. The permutation on rotation axes
provides a convenient way of determining how pieces are per-
muted. Let p = {r;",...,r*} be a piece, and let r be a rotation
axis such that p is on the far side of r, i.e., r! € p. Then the
move corresponding to r; will move p to another piece’s position,
namely 7,.(p) = {7,.(r)’,...,7,.(r.)*}. That is, we apply the
permutation on rotation axes to each of the halfspaces that form
p. An example of this permutation on Rubik’s Cube is given in
Figure 27.

As stated earlier, permutations on pieces are not enough to de-
scribe the state of the puzzle because of possible orientations
of pieces. We extend the permutations on axes and pieces to
a permutation on flags. The corresponding permutation is just
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Figure 27: The UFR corner is moved to ULF after turning the U
axis clockwise by 90°. These permutations are computed by defining
a group structure on the rotation axes.

Tr(p! ri) = (Tr(p): Tr(ri))'
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