
Interactive Localized Liquid Motion Editing

Zherong Pan1 Jin Huang1 Yiying Tong2 Changxi Zheng3 Hujun Bao1∗

1State Key Lab of CAD&CG, Zhejiang University 2Michigan State University 3Columbia University

Abstract

Animation techniques for controlling liquid simulation are chal-
lenging: they commonly require carefully setting initial and bound-
ary conditions or performing a costly numerical optimization
scheme against user-provided keyframes or animation sequences.
Either way, the whole process is laborious and computationally ex-
pensive.

We introduce a novel method to provide intuitive and interactive
control of liquid simulation. Our method enables a user to locally
edit selected keyframes and automatically propagates the editing
in a nearby temporal region using geometric deformation. We for-
mulate our local editing techniques as a small-scale nonlinear opti-
mization problem which can be solved interactively. With this uni-
formed formulation, we propose three editing metaphors, including
(i) sketching local fluid features using a few user strokes, (ii) drag-
ging a local fluid region, and (iii) controlling a local shape with
a small mesh patch. Finally, we use the edited liquid animation
to guide an offline high-resolution simulation to recover more sur-
face details. We demonstrate the intuitiveness and efficacy of our
method in various practical scenarios.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation;

Keywords: fluid simulation, sketch, deformation

1 Introduction

While fluid simulation has long been used to create realistic fluid
animations, generating fluid animations with desired effects re-
mains difficult and time-consuming. Liquid motion simulated with
set initial and boundary conditions are intrinsically chaotic, making
it hard to produce desired later frames by tuning parameters [Fos-
ter and Metaxas 1997a]. In computer graphics applications such as
film production, controlling a liquid animation often requires mul-
tiple attempts even for experienced animators to obtain the desired
results.

As a viable alternative to explicitly tuning parameters and bound-
ary conditions, some previous methods [Treuille et al. 2003; McNa-
mara et al. 2004; Wojtan et al. 2006] proposed to specify a priori a
set of global fluid shape keyframes and rely on an offline numerical
optimization scheme to find the desired fluid animation. However,
unlike solid objects, authoring even a single fluid keyframe is labo-
rious, and the manually designed frames tend to be non-volume-
preserving and overly smooth, suppressing rich visual details in

Figure 1: The user can guide the fluid simulation by sketching (red
curves) for the desired motion with fast feedback, crucial to anima-
tion prototyping. From the left to the right: a lighthouse at shore
in tidal waves; a wave raised to engulf the lighthouse; a washing
machine in action; water made to splash into anther chamber at a
chosen instant.

natural fluid motion. Moreover, the nonlinear optimization process
over the dynamics with provided keyframes is computationally ex-
pensive. It is very hard, if not impossible, to provide a user fast
feedback of resulting effects of the supplied keyframes.

Instead of globally keyframing the entire fluid shape, we propose
a method to edit fluid animation in a local spatial and temporal
region. Limiting user editing in a local region enables an intu-
itive control process. Indeed, the general philosophy of local con-
trol has proven useful in many areas of computer graphics, such
as spline curves [Barsky and Beatty 1983], shape editing [Botsch
and Kobbelt 2005], and animation design [Cohen 1992]. For fluid
control, this means that the user can progressively edit fluid ani-
mation toward the desired effects as the fluid simulation advances.
Meanwhile, we can limit the size of the formulated optimal control
problem, making an interactive feedback possible and hence accel-
erating the animation design cycles.

In our pipeline, the user starts from either a low-resolution or a
downsampled high-resolution fluid simulation. While the simula-
tion advances, one can select any resulting frame for editing. We
provide three local editing metaphors: (i) the user can sketch a few
strokes to guide the fluid local shapes or silhouettes projected on a
view-dependent plane; (ii) for more detailed control, one can select
a small fluid region and drag it locally around; and (iii) one can
provide a small mesh patch to control local fluid features. All three
metaphors boil down to a uniform optimization problem of geomet-
ric deformation, which deforms the fluid shape at the selected frame
in an interactive and volume-preserving fashion. Once the selected
frame is edited, its changes are then propagated over its previous
frames to ensure temporally coherent results. Through guided sim-
ulation over a short local sequence, the newly edited frame also
serves as updated initial conditions at the original resolution to af-
fect subsequent fluid simulation. As the simulation progresses, the
user incrementally edits the whole animation sequence. Alterna-
tively, the entire sequence can be edited with low-resolution sim-
ulation, followed by an offline guided high-resolution simulation
(e.g., [Nielsen and Bridson 2011; Yuan et al. 2011]) recovering fine
details while still preserving desired motion effects.

Contributions Our approach features the following novel com-
ponents:

• Editing Metaphors: we propose a versatile partial fluid
keyframe editing interface allowing intuitive liquid surface

modification through sketching, localized fluid dragging, and
mesh-constrained local feature control.

• Optimization Formulation: we formulate all three editing
metaphors using a highly efficient and unified optimization
procedure (see §4).

• Fast Preview: we provide an interactive preview of edited
animation by seamlessly blending the keyframe editing into a
local temporal subsequence (see §5.1).

• Guided Simulation: to generate a final local subsequence,
we propose a guided simulation method that produces physics
and meanwhile respects edited effects (see §5.2).

2 Related Work

There have been numerous works on fluid simulation and anima-
tion control. Those most closely related to our work span cross
three main areas: fluid control, shape deformation and sketch-based
modeling.

Animating fluid flows goes back to the early procedural
method [Kajiya and Von Herzen 1984] and the simple linear wa-
ter flow model [Kass and Miller 1990]. Navier-Stokes fluid model
has been popular in computer graphics since the early work [Foster
and Metaxas 1996; Foster and Metaxas 1997b; Stam 1999; Enright
et al. 2002]. In this paper, our fluid simulator is based on FLIP
method [Zhu and Bridson 2005], since its concept of fluid particles
eases the formulation of our control problems.

In parallel to the development of fluid simulation techniques, re-
searchers have strived to address the difficulty of editing simula-
tions, starting by the initial work for controlling pool balls [Barzel
et al. 1996] and later general rigid bodies [Gleicher 1997; Popović
et al. 2000; Chenney and Forsyth 2000]. Recent work [Huang et al.
2011; Barbič et al. 2012; Li et al. 2013] made it possible to inter-
actively edit the motion of deformable bodies as well. In addition,
Kircher and Garland [2006] also proposed a method to enhance the
details of an existing deformable surface. However, techniques for
controlling fluid animations are far less matured. Initial work by
Foster and Metaxas [1997a] proposed a high-level user control over
fluid parameters. Later, Treuille et al. [2003; 2004] applied optimal
control over an Eulerian fluid animation with user-supplied fluid
shape keyframes. To avoid expensive optimization over the entire
fluid sequence, empirical forces [Fattal and Lischinski 2004] and
filament basis [Angelidis et al. 2006] were applied to smoke simu-
lation, although it is not clear how they can be extended for liquid
simulation. In all these methods, a commonly used control inter-
face requires user-supplied keyframes to define entire fluid shapes
at certain times. However, authoring fluid-like keyframes a priori is
challenging: multiple tuning cycles coupled with offline optimiza-
tion are often needed, resulting in a time-consuming and labori-
ous process. In contrast, we take a natural combination of physical
simulation and manual crafting: the user can freely edit selected
keyframes automatically created by an underlying fluid simulation;
partial keyframe editing is realized by different control metaphors;
and our geometric deformation enables interactive feedback in a
local temporal region.

Instead of providing keyframes, a dense sequence of control meshes
can be used to guide the fluid simulation through the methods such
as [Shi and Yu 2005; Raveendran et al. 2012]. However, they pro-
vide no feedback to users until the re-simulation is finished. Recent
methods [Nielsen and Bridson 2011; Yuan et al. 2011] have also
aimed to loosely guide a high-resolution simulation with a provided
low-resolution fluid animation. Complementary to all these meth-
ods which assume a desired mesh sequence or low-resolution fluid

animation is prepared as input, we address the problem of creating
a desired low-resolution fluid animation interactively. Optionally,
the above methods can be used to guide a high-resolution liquid
simulation to recover more surface details.

Lastly, procedural methods [Kim et al. 2008; Schechter and Bridson
2008; Narain et al. 2008] have been explored to generate stochastic
motions such as turbulence flows. Bridson et al. [2007] proposed
curl noise as a tool to model divergence-free fluid without explicitly
simulating the physics. Our geometric fluid deformer is built upon
this idea to provide fast feedback on a local fluid subsequence.

In the area of deformable solids, surface deformation techniques
have proven successful to generate natural-looking surfaces satis-
fying user constraints. Most of the methods [Botsch and Sorkine
2008] focused on achieving elastic effects for solids, in which local
deformation is limited as small as possible. However, this assump-
tion breaks down for fluid deformation due to the lack of shear-
ing resistance. Von Funck et al. [2006] proposed a fluid-like de-
formation technique that interactively deforms a model through a
set of divergence free vector fields in analytical forms. A similar
idea is applied in [Angelidis and Singh 2007] for skinning anima-
tion. In contrast to our method, this work has completely different
goals: it aims to achieve mesh surface deformation that is volume-
preserving and free of self-intersections, and by no means optimize
deformation vector field to match use-specified targets.

Finally, in geometric modeling, a recent trend towards building in-
tuitive user interfaces leads to the emergence of sketch-based meth-
ods, which automatically create 3D models based on 2D freehand
drawings. We refer the reader to the paper [Olsen et al. 2009] for
a comprehensive survey. Sketch-based methods can also be used
to construct entire shapes or augment details [Igarashi et al. 1999].
The lack of precise description in sketches is often considered a
weakness, but, as demonstrated by Lee et al. [2011], it has the
ability to diversify the resulting models from sketched shape out-
lines or silhouettes. Related to our work, the idea of using sketches
to specify user editing has been explored for both shape deforma-
tion [Nealen et al. 2005; Kho and Garland 2005] and image edit-
ing [Eitz et al. 2007]. However, it is quite difficult to directly ex-
tend these sketch-based deformation methods to liquid animations.
Fluid shapes are generally more complex, and the control must pre-
serve volume and maintain temporal coherence, necessitating the
development of a new sketch-based fluid control method.

3 Overview

An overview of our algorithm pipeline is depicted in Figure 2. As
we focus on fast prototyping of fluid animation, we start from a rela-
tively low-resolution (or downsampled high-resolution) fluid simu-
lation. While our method does not critically depend on any particu-
lar fluid simulation method, we employ the FLIP/PIC method [Zhu
and Bridson 2005], a hybrid Eulerian-Lagrangian solver, since its
Eulerian and Lagrangian representations of fluids provide the flexi-
bility for processing user sketches. User editing begins when a user
pauses the simulation and selects a simulated frame. Our anima-
tion design pipeline consists of two major stages, keyframe design
and sequence generation. In the keyframe design stage, a user in-
teractively modifies the shape of selected keyframe using sketches,
dragging or providing local mesh patches, all of which are formu-
lated into a uniform optimization problem. In sequence generation
stage, the editing on the keyframe is propagated backward to a lo-
cal subsequence for a realtime preview of resulting animation. This
propagation respects the dynamics in the original sequence, and can
be optionally controlled by a temporal control curve. Finally, the lo-
cal subsequence is merged into the original sequence and the simu-
lation resumes with the deformed keyframe as the initial condition

fluid simulation

keyframe
designer

subsequence
generator

select frame

user editing

update init. cond.

Figure 2: Overview: The green arrows indicate the start and end
of our pipeline. It begins with a low-resolution fluid simulation.
The user at any point can select a simulated frame to edit using
three different control metaphors (see Section 4). The edited frame
becomes a keyframe, followed by corresponding adjustments over
a local subsequence of frames to ensure temporal coherence (see
Section 5. The newly created keyframe then serves as updated ini-
tial conditions for subsequent simulation. Finally, a high-resolution
simulation is guided by the edited low-resolution simulation to re-
cover more surface details (see Section 5). Red ellipses indicate
user interaction to the pipeline.

(a) (b) (c)

Figure 3: (a) The liquid shape at the selected frame contains tiny
splashes. (b) These splashes are discarded by extracting the main
body of liquid. (c) Three fluid particle subsets are extracted (red for
free surface particles, blue for solid boundary particles and green
for medial axis particles.

for the subsequent simulation.

Notation In the following presentation, we use bold upper-case
letters to represent vectors and functions, a calligraphic font (e.g.,
S) to denote a set, and a sans-serif font (e.g., D) to indicate a de-
formation operator. At each frame i, its fluid shape is represented
by a set, Pi, of fluid particles. In our FLIP/PIC fluid simulation,
Pi is just the fluid particles used in the current simulation, and the
corresponding user-modified fluid shape is represented by P̄i.

4 Keyframe Designer

Our underlying fluid simulation generates a liquid animation repre-
sented by a sequence of fluid particle sets, Pi. The goal of our
keyframe designer is to allow a user to interactively edit liquid
shapes at selected keyframes. For this purpose, we provide three
editing metaphors: (i) sketching a few strokes to specify desired
fluid shape, (ii) dragging a small region to locally deform the fluid,
and (iii) providing a small mesh patch to constrain the local shape.
In this section, we mainly present how we formulate sketch-based
control as a small optimization problem that can be solved inter-
actively (see Algorithm 1). The other two editing metaphors are
formulated in similar ways, and we only highlight the necessary
differences in their formulations.

Algorithm 1: Keyframe Design by Stroke Matching
Sample each stroke to construct a set of control particles L.
Optimize the velocity field V (see §4.2).
Discretize V on the grid.
Advect PK along V to get P̄K .

Figure 4: By using two types of shape particles B and S, we allow
users to modify boundary location and free surface respectively.
For example, to get the desired shape on the right, both the the
solid boundary (blue stroke) and free surface (green stroke) should
be modified.

Fluid Shape Preprocessing Provided a user-selected frame K,
first we discard small features (e.g., thin splashes) of the liquid
shape, since those detailed features often introduce complex occlu-
sions for user sketching while contributing little for the overall fluid
shape control. Specifically, We simply apply a morphological open-
ing operation which erodes the level-set field (constructed from the
particle set PK) by 3 grid spacing and then dilates by 3 grid spac-
ing. We note that a similar approach has been used in [Nielsen and
Bridson 2011]. Next, from the resulting liquid shape, we extract
three representative sets of fluid particles: (i) the solid boundary
(solid-liquid interface), BK , (ii) the free surface (liquid-air inter-
face), SK , and (iii) the medial axis (for 2D) or medial surface (for
3D),MK . All three sets are subsets of PK , but distinguishing the
boundary particles in different types allows a user to clarify the se-
mantic ambiguity of sketches (see Figure 4). We extract BK and
SK based on the level-set values; we estimateMK following the
approach [Adams et al. 2007]. We refer the reader to Figure 3 for an
illustration of the preprocessing step. From now on, we drop the su-
perscripts of the set notations for simplicity, since the presentation
is based on the current selected frame K.

From User Sketch to Control Particles Corresponding to
the three subsets of representative particles (namely, B, S and
M), we provide a user three types of strokes to specify the
desired shape of each kind of particles. After the user sketches
strokes on the 2D screen, we transform their coordinates into
the simulation space, and then generate corresponding control
particles L. For 2D simulation, the above procedure amounts to
a simple scaling and sampling from the curves. In 3D simulation,
however, we need to (i) determine the depth of the stroke with
respect to the current viewpoint, (ii) form a patch by extruding
from it along viewing direction, and (iii) then sample the con-
trol particles from the patch. We hypothesize that the desired
depth usually aligns with the closest salient features of the fluid
shape. Without loss of generality, suppose that a user stroke is
to specify the boundary shape. We cast a set of rays R from the
camera (located at e) toward each control particle in L and find
a uniform depth ds by minimizing the total distance to B, i.e.,
ds = arg mind

∑
r∈Rminp∈B dist(e + drd,p), where dr is

the direction of the ray. Note that minp∈B dist(e + drd,p) for
any given d is found by directly accessing the distance field of
B. It is possible to use one distance per stroke, but we follow the
suggestion by Zimmermann et al. [2008], which handles a similar
problem of finding salient feature on a surface mesh. Our simple
solution results in more robust and satisfactory depth estimation
for implicit represented and commonly ambiguous fluid shapes.
Finally, we lift the 2D stroke to a 3D curve followed by extruding
it along the viewing directions both forward and backward to form
a small patch. Now our control particles L consist of sampled
points on the extruded patch. The width W of the patch is set as a

user-specified parameter to control the influence range of a stroke
(see Figure 5 and the video for an illustration).

Figure 5: Determining depth of a 3D stroke: Left: Closest liquid
feature is found through exhaustive line searching and 2D sketch is
lifted to 3D (green) curve. Right: The 3D curve is extruded in both
directions to form a (purple) patch.

4.1 Objective Function of Control Particles

After laying out the preprocessing details, we are now ready to for-
mulate user sketching control as an optimization problem. Without
loss of generality, we only detail our algorithm for editing fluid
boundary shape B. The free surface and medial axis editing are for-
mulated in exactly the same way. In this subsection, we introduce
our objective function based on boundary particles B and the con-
trol particles L defined by user sketches. Our goal is to construct a
deformation operator D that deforms the liquid shape such that the
deformed boundary particles B̄ matches as close as possible to the
shape defined by L.

Perhaps one simple objective function can be defined as

Θ0(L,B,D) =
∑
Bi∈B

φ2
L(D(Bi)), (1)

where φL is the distance field computed from L. Unfortunately,
this formulation is computationally expensive since it has to iterate
over a potentially large set of boundary particles B and apply the
deformation operator D on each particle. Moreover, this function
penalizes the distance value of all boundary particles, but in most
cases a user just wants to enforce partial constraints specified by
sketching. To resolve these shortcomings, we propose a different
objective function

Θ(L,B,D) =
∑
Li∈L

φ2
B(D−1(Li)), (2)

where D−1, the inverse operator of D, needs to be evaluated only on
L which consists of much fewer number of particles than B does.
In addition, it penalizes only a subset of B, avoiding the fictitious
global deformation guidance from φL.
Remark. When a mesh patch is used to provide partial control over
geometric details, the same formulation can be used with L created
from the samples on the mesh surface. For dragging a local region
from the start location s to a target location t, we use a similar yet
simpler objective function

Θ(t, s,D) = ‖D−1(t)− s‖2. (3)

The depth of the dragging line is determined in the same way as we
determine a stroke depth presented earlier.

4.2 Optimizing the Deformation Operator

With the defined objective function, we now find an optimal de-
formation operator D to minimize it. The challenge is to find D
in realtime while ensuring natural deformation of the liquid shape.
Although many methods have been proposed for elastic deforma-
tion [Botsch and Sorkine 2008], liquid has fundamentally different
characteristics due to the lack of shearing resistance, the property of
volume preservation, and its complex boundary conditions, render-
ing prior solid shape editing methods inapplicable for our purpose.

Reduced Model of Deformation Operator Our key idea of
constructing D is to deform the liquid shape by advecting fluid
particles P under a steady velocity field V with NA (forward Eu-
ler) steps. In other words, D is defined as D(P) = AdvNA(P,V)
for P ∈ P , where Adv(·,V) denotes advection by V for a single
forward Euler step. Then the corresponding inverse operator D−1

in the objective function (2) is

D−1(P) = AdvNA(P,−V).

Now, we need to optimize over V to minimize Θ. However, direct
representation of V has too many degrees of freedom to allow re-
altime optimization. A logical strategy is to use a reduced model of
V to shrink the problem size. Previous fluid model reduction meth-
ods [Treuille et al. 2006] extracting a reduced bases from training
examples require a large memory footprint due to the lack of ana-
lytical representations. Therefore, they are impractical to be used
in our realtime fluid deformers. In addition, the property of global
support in those basis functions loses the advantages of local con-
trol, leading to unpleasant artifacts in the region far from the con-
strained locations. Instead, we adapt the curl noise model proposed
in [Bridson et al. 2007], which nicely meets our requirements for
sketch-based local editing.

Concretely, since the curl of an arbitrary vector field H (i.e.,
V = ∇ × H) is inherently solenoidal, we first define a reduced
model of the potential field H and use it in our optimization. We
use free-slip solid boundary condition for all our examples. Thus,
the normal component of H is left unchanged, while the tangential
component of H is set to zero on the boundary, which corresponds
to the no transfer condition (i.e., vanishing normal component
of V). By smoothly reducing the tangential component of H
approaching solid boundary, we have

HR =

{
H R(φ/ε) + (1−R(φ/ε))N(H ·N) for 3D cases,
H R(φ/ε) for 2D cases.

Here φ is the level set function of solid boundary, and ε is the
boundary ramping layer thickness. Similar to [Bridson et al. 2007],
the ramp R(·) is defined as

R(ψ) =

 1 ψ ≥ 1,
15
8
ψ − 10

8
ψ3 + 3

8
ψ5 1 > ψ > −1,

−1 ψ ≤ −1.
(4)

The specific form of H encodes the body forces for driving the
keyframe shapes. In practice, we use two force bases: the curl force
(vortex-like) and the wind force (wind in one direction):

HC(X,C,A, f, f0) = AE, (5)
HW (X,C,A, f, f0) = A× (X−C)E, (6)

where E = exp(−(f2 +f0)‖X−C‖), C is the center of force,
f and f0 are the fade parameters, and A is the axis or direction of
force. The total potential field H is the summation of all the N
force fields specified by their individual parameters

H =

N∑
i

Hi
ci , ci ∈ {C,W}, (7)

where ci is the type of the force model for force field i. In summary,
with this potential field model, the velocity field V = ∇ × H is
expressed using the variables C, A, f and f0 for each basis model.
Our goal now is to solve for these variables to minimize Θ in the
objective function (2).

Regularization of Objective Function To achieve stable results
and avoid overfitting, we consider two additional regularization
terms. The first term Ereg penalizes the displacement of control

particles before and after advection:

Ereg =
∑
Li∈L

‖δLi‖2, (8)

where δL = D−1(L) − L. The second term Elap, similar to
[Sorkine et al. 2004], is the Laplace regularization applied on L.
Namely,

Elap =
∑
Li∈L

∥∥∥ ∑
Lj∈N (Li)

wij(δLj − δLi)
∥∥∥2

, (9)

where N (Li) stands for the set of neighboring control particles of
Li (those within the support of its kernel), and wij = 1

|N (Li)|
.

Remark. For mesh-based control particles, we replace N (Li) by
the one-ring neighborhood of the mesh vertex Li, and set wij to
the cotan weights used in the usual discrete Laplacian [Meyer et al.
2002].

Our final objective function is

Efinal = Θ + wrEreg + wlElap, (10)

where the two weights, wr and wl, are user-controllable parame-
ters. wr controls the amount of stablization; wl controls the match-
ing pattern of liquid body: higher weight produces smoother and
looser matching results with larger influence range, while lower
weight leads to less smooth but tighter and more accurate match-
ing. Notice that our basis is free to move in space and to scale
in size. Therefore, in practice, very few force fields are needed to
match the user sketches reasonably well (typically N = 10 in (7)).
Solving the force field parameters to minimize Efinal determines
the velocity field V for liquid shape deformation. We then advect
all the liquid particles P along V using multiple forward advection
steps. In following description, we refer this advection process as
post-warping.

Interactive Numerical Solver Although the formulated opti-
mization problem (2) is nonlinear, its complexity scales according
to the sketch size rather than the complexity of liquid body, and the
size of our reduced model is quite small (typically N = 10). In
practice, we can easily solve it using a dense Levenberg-Marquardt
(LM) solver [Press et al. 2007]. Also notice that the processed par-
ticles are limited in a small set L; all the summation terms in (10)
and their derivatives required in LM have analytical expressions,
and hence can be easily evaluated in parallel. We implement these
calculations as well as post-warping for fluid deformation all on
GPU, and the rest of the computation is carried out on CPU. Typ-
ically, the number of advection steps in post-warping can be much
larger than the number of backward advection step (namely, NA)
used in the optimization. On the other hand, the cost of the opti-
mization increases with NA rapidly, so we opt to take a small NA

with a large step size. In our experiments, the result is insensitive to
this parameter as long as it is no less than 10, and NA = 10 is used
in all our results. In Figure 6, we show the results using 7, 10 and 30
steps for NA (see §6 for more implementation details). Putting all
the pieces together eventually allows interactive performance of the
optimization solver, and provides immediate feedbacks after user
sketching.

5 Sequence Generator

In this section, we integrate the user-edited frame into the fluid se-
quence to form a temporally coherent animation.

5.1 Update of Local Subsequence

After the user edits a frame K, a local subsequence of frames prior
to frame K, SK = {PK−i|0 < i < w}, is selected, where w

NA=5 NA=10 NA=30

Figure 6: Matching result of a V-Shaped free surface sketch (blue
for the input shape and grey for the deformed shape). Comparison
of different numbers of advection steps: NA = 5, NA = 10 and
NA = 30 respectively. Higher streamline resolution leads to bet-
ter match against the user sketch but longer computation time. In
practice, we found NA ≥ 10 produces plausible results.

denotes the local window size (w = 50 by default). Next, our
algorithm automatically adjusts these frames to ensure temporally
coherent resulting sequence and provides the user with a preview in
realtime. Recall that our deformation operator D at frame K is de-
fined by the potential field H in Equation (7). Our plan is to deform
each frame in SK , such that the amount of deformation smoothly
increases to the full deformation D at frameK (see Algorithm 2 for
an outline of this step).

Algorithm 2: Generate Deformation for Frame K − i
Advect force centers of H backward along fluid velocity v
Calculate signed distance φ in Equation (4) for HR

Compute the deformation velocity field with ramping F
Advect PK−i by the deformation velocity field

One simple way is to apply a ramp function on H to smoothly in-
crease the magnitude of the force field. However, this idea com-
pletely ignores the underlying fluid dynamics and hence produces
unnatural results. Instead, to respect the fluid dynamics, we pro-
pose to advect backward in time the force centers of field H by the
input fluid velocity field vK at each frame i ∈ SK before ramp-
ing H. Intuitively, this amounts to applying an increasing amount
of deformation on approximately the same set of fluid particles as
we do at frame K. In practice, the force centers resulting from the
optimizer might locate outside of the fluid domain where the fluid
velocity field vi is undefined. For those cases, we simply extrap-
olate vi to the entire simulation domain. Lastly, we use a ramp
function F : [0, 1]→R satisfying F (0) = 0.0 and F (1) = 1.0. At
each frameK−i, 0 < i < w, we deform the particle setPK−i into
P̄K−i by post-warping with an amount of fictitious time attenuated
by F (1 − i/w). As shown in Figure 10, the user can intuitively
control the ramp curve through a cubic curve editor.

5.2 Generation of Final Animation

Our fluid editing algorithm so far is highly efficient for realtime
interactions. The interactive performance comes with our reduced
geometric deformation operator D and fast local subsequence inter-
polation in section 5.1, but it pays a price of ignoring the underlying
physics. Therefore, we retain fine details over the edited subse-
quence by running a guided local subsequence simulation, similar
to the method in [Shi and Yu 2005]. Specifically, we run a short
offline simulation for the frames indexed by i,K − w < i ≤ K.
To guide the simulation toward the user-edited liquid shape, we in-
troduce a ghost force f = fshape + fvelocity . Here fshape drives the
source shape Pi toward the target shape P̄i. The force is treated as
a divergence free gradient field with the boundary condition

fshape(x) = −Cshape∇φ2
P̄i(x), x ∈ φ−1

Pi (0). (11)

We solve a Laplace equation for its potential field with the above
homogeneous Neumann boundary condition, and derive fshape
from the gradient of the resulting field. Here Cshape is a weighting

parameter (500 in all examples). For fvelocity , we follow Shi and
Yu [2005] and use

fvelocity = Cvelocity(vP̄i − vPi), (12)

where Cvelocity is a weighting coefficient (with a default value 20),
vPi is the velocity field of the current frame, and vPi is the target
velocity.

A naive way to approximate vP̄i is applying finite difference be-
tween P̄i−1 and P̄i for each particle. However, since our defor-
mation procedure ignores the volumetric liquid motion in the sub-
sequence, the internal fluid motion is usually incorrect, only the
boundary shape is desired by the user. Therefore, we approximate
the target velocity field vP̄i by solving another Laplace equation
with the boundary condition

vP̄i(x) = ∇φ2
P̄i−1(x)/h, x ∈ φ−1

P̄i (0), (13)

where h is the time step. This formulation computes the velocity of
boundary particles by their normal displacement between two con-
secutive frames, and interpolates the interior velocity. A final issue
is that vP̄i so computed is irrotational, but a velocity field of fluid
would not be irrotational in general. Thus the above formulation
damps out the vorticity. To address this issue, we extract the poten-
tial part of v{Pi} through the operator P∗, and use

fvelocity = Cvelocity(P∗(vPi))− vP̄i), (14)

where P∗ is applied by yet another Laplace equation with the
boundary condition

P∗(vPi)(x) = vPi(x), x ∈ φ−1
Pi (0). (15)

As this uses the same boundary condition and computational do-
main as (11), both solves can be merged by summing up the right-
hand side, introducing little overhead. In our experiments, the final
solution faithfully respects the original sequence, while still effec-
tively matching the target shape without overshooting. In summary,
we only need two more Laplace solves for each frame in the local
subsequence.

In the presence of splashes, applying ghost force on thin features
introduces large artifacts. As we only need to control the overall
shape, we extract the main fluid body as in the preprocessing stage.
We compute the fluid signed distance field and only apply forces on
particles belonging to the main fluid body.

Concatenating the sequence before K − w with the above detail-
enhanced subsequence, we resume the simulation on the rest of the
frames to complete the sequence. As a recap, Algorithm 3 outlines
our pipline for editing a user-selcected frame K.

Algorithm 3: Editing Iteration
Load a raw sequence.
Extract a subsequence SK containing frame K.
Preprocess frame K.
Edit PK using sketch [+mesh] to get P̄K .
Deform subsequence SK to get S̄K matching P̄K .
Substitute S̄K into the raw sequence and continue simulation.

6 Implementation Details

In this section, we highlight a few implementation details critical
for achieving interactive performance.

Memory Consumption One practical challenge lies in handling
millions of particles in a typical 3D fluid sequence, as this
greatly increases the cost of post-warping. We first perform an
8-to-1 downsampling when extracting selected frame and related
subsequence. We notice that a simple downsample strategy that
uses a coarse grid and chooses a random particle in each fluid grid
leads to aliasing artifacts. In practice, we first use the grid cell
centers as initial candidate particle positions, and then iteratively
move the particles to the weighted average of nearby particles in
the original particle set to remove the artifacts (we use 10 iterations
in our tests). The data transfer between online editing and offline
simulation stages is almost neglectable, since only the parameters
of the potential field H is required to compute at a keyframe, and
only a downsampled sequence is used for online editing. For better
performance, we also deploy the offline simulation on a remote
cluster, but keep the online editor residing on a commodity desktop
PC for user interaction.

Partial Derivative Calculation The most costly part of the opti-
mization is the partial derivative calculation. As mentioned earlier,
the partial derivatives of our energy term bear a closed form except
for the level set function, which is discretized in a standard Marker
And Cell (MAC) grid and evaluated numerically. However, due
to the complexity of our energy term, calculating the derivatives
analytically takes an excessive amount of computational resources.
Therefore, we use a mixed numerical-analytical formulation.
Using the chain rule, we have

∂E

∂(C,D, f)
=

∂E

∂D−1(P)

∂D−1(P)

∂V

∂(∇×H)

∂(C,D, f)
. (16)

The first two terms in the right hand side are computed trivially
in adjoint manner. The third term is costly to evaluate even by
carefully applying a symbolic algebraic tool to simplify it. To
reduce the cost, we compute the curl operator numerically using
finite differencing with a spatial interval equal to the underlying
grid spacing. This treatment keeps the same order of accuracy with
the fluid solver. The other terms are calculated analytically.

Signed Distance Function from Solid Boundary In the force
field models we used, the ramping function for the potential H de-
pends on the signed distance φ from the solid boundary. However, it
is well-known that the signed distance field involves discontinuities
and shock lines (because the viscosity solution of Eikonal equa-
tion is not C1 continuous). This can lead to discontinuous ramping
function. To remedy this issue, we replace it with a smooth approx-
imation of the signed distance function through R-functions intro-
duced in [Pasko et al. 1995]. In particular, we first construct the
solid boundary using Constructive Solid Geometry trees, through
successive union and intersection operations on primitive shapes
with no concave regions. Then we use the following R-functions to
construct a signed field from the signed field of two solid shapes A
and B,

φA∪B =
φA(x)+φB(x)−

√
φ2
A(x)+φ2

B(x)−2αφA(x)φB(x)

(1+α)
,

φA∩B =
φA(x)+φB(x) +

√
φ2
A(x)+φ2

B(x)−2αφA(x)φB(x)

(1+α)
,

where α is a smoothing factor, which leads to true distance function
when α = 1. In practice, we use α = 0.6 to get smooth estimation
near the solid boundary.

Realtime Visualization Our online editor requires a realtime vi-
sualization of fluid volume. To this end, we employ the screen-
space curvature flow [van der Laan et al. 2009] for fluid volume vi-
sualization, avoiding the expensive surface mesh generation. Since

f0 = 1 f0 = 2 f0 = 3

Figure 7: A comparison of different locality. A higher value of f0

leads to a smaller range of influence.

this method was originally designed for SPH method but not the
FLIP solver, we need to regulate the FLIP particles into an approxi-
mate Poisson distribution to ensure good visual quality. We achieve
this using a modified FLIP solver as described in [Ando and Tsu-
runo 2011].

7 Results

In this section, we present first 2D examples to demonstrate the
effects of our sketch types (Figure 11) and control parameters, then
3D results for intelligent sketch nodes generation from 2D screen
sketch and finally a performance analysis.

wl = 0 wl = 2 wl = 4

wl = 0 wl = 2 wl = 4

wr = 0 wr = 2 wr = 4

Figure 8: A comparison of sketch matching effect under differ-
ent Laplace or position weights. In the first row, the sketch shape
is drastically different from that of the liquid body, in which case,
larger Laplace panelty weight leads to smoother but coarser fitting.
In the second row, the sketch shape matches the original local liq-
uid feature well and the Laplace weight has neglectable effect. The
third row shows the effect of position panelty, which regulates the
resemblance to the original shape.

h = 0.5 h = 1

h = 2 h = 4

Figure 9: A comparison of different number of force fields. We put
one force field every h grid edge length. More force fields lead to
more accurate matching but the difference is neglectable.

One fading parameter (f) is automatically optimized whereas the
other (f0) is user controllable for desired locality. As shown in
Figure 7, a larger value makes the sketch deform the shape more
locally. A hand-drawn sketch itself is often inaccurate, and thus
the desired smoothness and the extent of fitting should be balanced.
Two regularization parameters can be adjusted to this end. Figure 8
shows the effects of the weighting on Laplace and position penalty
terms, which try to maintain the smoothness of the shape control
and the original shape of liquid body, respectively.

A large number of force fields provide more degrees of freedom

Figure 10: We illustrate the effects of the tangent of the fading
curve F (x) at x = 1 by comparing the shape of liquid body 30
frames after the keyframe. As the tangent increases from left to
right, more energy is injected into the system.

Figure 11: The three types of 2D sketch strokes applied simultane-
ously: green for free surface sketch, red for medial axis sketch and
blue for solid boundary sketch.

in the optimization, and result in better matching accuracy, at an
increased computational cost. With the desired smoothness of the
deformation, a large number of force fields are often unnecessary,
and may even lead to overfitting. In Figure 9, we show a side-
by-side comparison of the deformation under different numbers of
force fields. For a keyframe with several strokes, we sample the
sketch at an interval of h, the grid spacing, and use one force field
for each node.

One additional user control over the dynamics is the fading function
F in local sequence generation. The slope of F at the keyframe
is of most importance in design. It controls how much energy is
introduced into the fluid system when matching the keyframe. In
Figure 10, we compare the effects of different slopes.

In 3D cases, compared with directly placing 3D control particles
to deform the shape, controlling the result by a 2D sketch is much
more covenient and efficient (Figures 12 and 13). Key to intuitive-
ness is how to properly infer a set of 3D sketch nodes from it. In
Figure 14, we show two typical cases of our sketch depth estima-
tion mentioned in Section 4. The patch width is an additional use-
specified parameter as is shown in Figure 15.

In the following, we demonstrate with several complex results how
our method can be used to create storytelling animations intuitively
and efficiently. Please refer to the accompanying video for the ani-
mation.

In the washer example (Figure 16), we wish to create the effect of
water splashing from the main chamber into the neighboring cham-
ber at a given time. Unlike previous optimal control based method,
the user can draw a sketch and adjust the results (in a low resolu-
tion version) interactively to make sure the shape and amount of the
splash is as desired. One may alternatively create a mesh to spec-
ify the global shape of the liquid surface at the keyframe, which
would be not only costly to optimize, but also difficult to blend with
the previous frames naturally. The convenience of sketch is further
demonstrated in the wave invoking example (Figure 17), where a
single sketch stroke suffices to create the effect of a Poseidon-like
character raising a high wave to engulf the lighthouse with the de-
sired violence. Finally, in the waterfall example (Figure 18), water
is pulled into lower boxes sequentially by applying two consecutive
editing passes with sketches.

Besides the sketch, more directed and detailed control can be pro-

Figure 12: The three types of strokes in 3D case. Top: the original
shape. Bottom: the deformed shape matching the sketch stroke.

Figure 13: 3D sketch results. Top: original. Bottom: deformed.

vided by placing mesh patches to shape the liquid surface in re-
gions of interest, while still allowing other regions to be decided
by the equations of motion. As shown in the dropping faces result
(Figure 19), the droplets are turned into different head shapes, and
finally a spirits summoned to show its face on the liquid surface.

While deforming the free surface by conventional mesh deforma-
tion method may ruin the volume preservation and dynamical na-
ture of the fluid, our method easily produces realistic results, ad-
justable at interactive rates, taking only several seconds per frame
in the preview stage.

The most costly step in our online editing stage (Algorithm 1) is the
optimization. While it involves only a handful of parameters, it is
non-linear and the computation for the derivatives may need a large
number of particles. Although we cannot provide a theoretical com-
plexity analysis and guarantee on its convergence, the optimization
converges to a satisfactory solution within 100 iterations with the
gradient norm less than 1e−3, taking only seconds on our complex
scenes as shown in Table 1. Even with a large number of sketch
strokes and point dragging metaphors, all our tests required less
than one minute. However, if large detailed mesh patches are used,
as in the spirits example, the optimization is not localized, and usu-

Figure 14: Locality in the depth direction. Top: the sketch affects
all the particles along the line of sight. Bottom: the sketch affects
only the closest feature of the liquid body.

input-projection input

edit-projection

α = 50 α = 100

α = 0

Figure 15: The user can control the shape of the fluid by a sketch
on the projection plane (the sub-figures of input-projection and edit-
projection). The influence range in depth is adjusted through α. As
shown in the sub-figures, a larger α leads to a smaller patch width.

Figure 16: A single sketch can prototype a plausible splash at the
given time. Left: sketch on the input. Right: deformed key frame.

ally takes several minutes for a mesh with 1500 vertices. A com-
modity desktop computer is enough for editing a fluid scene with
approximately half a million particles in a moderate grid size. The
offline part also runs on the same machine, and it takes 2 min/frame
on average to get the final guided detail-enriched animation.

8 Conclusion

We propose an interactive liquid control method, enabling fast re-
vision and prototyping of liquid animation through intuitive sketch
strokes, direct dragging and sub-mesh constraints. Our method pro-
vides realtime preview of the edited effects by propagating the edit-
ing in a local subsequence in a way that respects the motion of the
simulated flow. Lastly, our method performs an offline guided sim-
ulation to retain physical details and respect edited motions. The

Figure 17: By sketching on the projection plane, the wave is raised
to hit the lighthouse. Efficiency of our method enables interactive
editing for desired results. Left: sketch on the input. Right: de-
formed key frame.

Scene Grid Size Input (M) Downsampled (K) Num. Iter. Time Opt. Time Warp
Washer 240x32x160 1.2 20.1 27 1500ms 120ms

Lighthouse 320x320x64 4.48 72.3 32 2300ms 450ms
Waterfall 240x160x400 0.6 7.1 50 5700ms 30ms

Spirits 200x200x300 NA NA 65 5min 3min

Table 1: Performance statistics: grid size, number of particles (per frame) in the input data and downsampled data (particle number reduces
into about 1/64, and the grid resolution reduces to 1/4 in each dimension). The timing is measured on a PC with i7 920 CPU, GTX 560Ti
GPU, 16G memory.

(a) (b) (c) (d)

Figure 18: Applying two consecutive editing passes, water is
pulled into lower boxes, changing the semantics of the animation.
(a), (c): sketch on the input. (b), (d): deformed key frame.

Figure 19: Spirits in water. Applying mesh patches, we can craft
fine details on the free surface and achieve natural fluid motion at
the same time.

interactive performance is realized by a few key components, in-
cluding the locality of our partial editing metaphors, the geometric
nature of our deformer based on the reduced windforce field, and
the efficiency of our optimization scheme enabled by the reverse
deformation of sketch sample points in our objective function. Our
proposed pipeline supports interactive prototyping of a liquid sim-
ulation, which can then be used to guide the generation of the de-
tailed high resolution liquid animation.

Limitations and Future Work The major limitation of this work
is that we have to sequentially edit the animation, because the edited
frame serves as the initial condition for the subesquent simulaiton.
An interesting future work is to develop a method to restore the an-
imation by additional control force in the frames following edited
keyframes to avoid this causality. Finally, as with all other fluid
control methods, artifacts may come from the fictitious force to
match the control. Although it may already be visually plausible
especially with only moderate modification, better control methods
are worth exploring. For efficiency, we only focus on the shape
control in this paper, leaving other feasible and useful controls such
as velocity control as future work.

Acknowledgements

We would like to thank the anonymous reviewers for their valuable
comments and suggestions. This work was partially supported by
NSFC (No. 61170139, No. 61210007), China 973 Program (No.
2009CB320801) and the Fundamental Research Funds for the Cen-

tral Universities (No. 2013FZA5015). Yiying Tong was supported
by NSF (CMMI-1250261 and IIS-0953096). Changxi Zheng was
supported by Columbia University junior faculty startup fund.

References

ADAMS, B., PAULY, M., KEISER, R., AND GUIBAS, L. 2007.
Adaptively sampled particle fluids. ACM Transactions on
Graphics 26, 3, 48:1–48:7.

ANDO, R., AND TSURUNO, R. 2011. A particle-based method
for preserving fluid sheets. In Proceedings of the ACM SIG-
GRAPH/Eurographics symposium on Computer Animation, 7–
16.

ANGELIDIS, A., AND SINGH, K. 2007. Kinodynamic skinning us-
ing volume-preserving deformations. In Proceedings of the ACM
SIGGRAPH/Eurographics symposium on Computer Animation,
129–140.

ANGELIDIS, A., NEYRET, F., SINGH, K., AND
NOWROUZEZAHRAI, D. 2006. A controllable, fast and
stable basis for vortex based smoke simulation. In Proceedings
of the ACM SIGGRAPH/Eurographics symposium on Computer
Animation, 25–32.

BARBIČ, J., SIN, F., AND GRINSPUN, E. 2012. Interactive editing
of deformable simulations. ACM Transactions on Graphics 31,
4, 70:1–70:8.

BARSKY, B. A., AND BEATTY, J. C. 1983. Local control of bias
and tension in beta-splines. SIGGRAPH Comput. Graph. 17, 3,
193–218.

BARZEL, R., HUGHES, J. F., AND WOOD, D. N. 1996. Plausible
motion simulation for computer graphics animation. In Proceed-
ings of the Eurographics workshop on Computer Animation and
simulation ’96, Springer-Verlag New York, Inc., 183–197.

BOTSCH, M., AND KOBBELT, L. 2005. Real-time shape editing
using radial basis functions. Comput. Graph. Forum 24, 3, 611–
621.

BOTSCH, M., AND SORKINE, O. 2008. On linear variational sur-
face deformation methods. IEEE Transactions on Visualization
and Computer Graphics 14, 1, 213–230.

BRIDSON, R., HOURIHAM, J., AND NORDENSTAM, M. 2007.
Curl-noise for procedural fluid flow. ACM Transactions on
Graphics 26, 3, 46.

CHENNEY, S., AND FORSYTH, D. A. 2000. Sampling plausible
solutions to multi-body constraint problems. SIGGRAPH Com-
put. Graph., 219–228.

COHEN, M. F. 1992. Interactive spacetime control for animation.
SIGGRAPH Comput. Graph. 26, 2, 293–302.

EITZ, M., SORKINE, O., AND ALEXA, M. 2007. Sketch based
image deformation. In Proceedings of Vision, Modeling and Vi-
sualization (VMV), 135–142.

ENRIGHT, D., MARSCHNER, S., AND FEDKIW, R. 2002. Anima-
tion and rendering of complex water surfaces. ACM Transactions
on Graphics 21, 3, 736–744.

FATTAL, R., AND LISCHINSKI, D. 2004. Target-driven smoke
animation. ACM Transactions on Graphics 23, 3, 441–448.

FOSTER, N., AND METAXAS, D. 1996. Realistic animation of
liquids. Graph. Models Image Process. 58, 5, 471–483.

FOSTER, N., AND METAXAS, D. 1997. Controlling fluid anima-
tion. In Proceedings of the Conference on Computer Graphics
International.

FOSTER, N., AND METAXAS, D. 1997. Modeling the motion of a
hot, turbulent gas. SIGGRAPH Comput. Graph., 181–188.

GLEICHER, M. 1997. Motion editing with spacetime constraints.
In Proceedings of the symposium on Interactive 3D graphics,
139–ff.

HUANG, J., TONG, Y., ZHOU, K., BAO, H., AND DESBRUN,
M. 2011. Interactive shape interpolation through controllable
dynamic deformation. IEEE Transactions on Visualization and
Computer Graphics 17, 7, 983–992.

IGARASHI, T., MATSUOKA, S., AND TANAKA, H. 1999. Teddy: a
sketching interface for 3d freeform design. In Proceedings of the
26th annual conference on Computer graphics and interactive
techniques, 409–416.

KAJIYA, J. T., AND VON HERZEN, B. P. 1984. Ray tracing vol-
ume densities. SIGGRAPH Comput. Graph. 18, 3, 165–174.

KASS, M., AND MILLER, G. 1990. Rapid, stable fluid dynamics
for computer graphics. SIGGRAPH Comput. Graph. 24, 4, 49–
57.

KHO, Y., AND GARLAND, M. 2005. Sketching mesh deforma-
tions. In Proceedings of the symposium on Interactive 3D graph-
ics and games, 147–154.

KIM, T., THÜREY, N., JAMES, D., AND GROSS, M. 2008.
Wavelet turbulence for fluid simulation. ACM Transactions on
Graphics 27, 3, 50.

KIRCHER, S., AND GARLAND, M. 2006. Editing arbitrarily de-
forming surface animations. ACM Transactions on Graphics 25,
3, 1098–1107.

LEE, Y., ZITNICK, C., AND COHEN, M. 2011. Shadowdraw: real-
time user guidance for freehand drawing. ACM Transactions on
Graphics 30, 4, 27.

LI, S., HUANG, J., DESBRUN, M., AND JIN, X. 2013. Interactive
elastic motion editing through spacetime position constraints.
Computer Animation and Virtual Worlds 24, 3-4, 409–417.

MCNAMARA, A., TREUILLE, A., POPOVIĆ, Z., AND STAM, J.
2004. Fluid control using the adjoint method. ACM Transactions
On Graphics 23, 3, 449–456.

MEYER, M., DESBRUN, M., SCHRÖDER, P., BARR, A. H.,
ET AL. 2002. Discrete differential-geometry operators for trian-
gulated 2-manifolds. Visualization and mathematics 3, 2, 52–58.

NARAIN, R., SEWALL, J., CARLSON, M., AND LIN, M. C. 2008.
Fast animation of turbulence using energy transport and proce-
dural synthesis. ACM Transactions on Graphics 27, 5, 166:1–
166:8.

NEALEN, A., SORKINE, O., ALEXA, M., AND COHEN-OR, D.
2005. A sketch-based interface for detail-preserving mesh edit-
ing. ACM Transactions on Graphics 24, 3, 1142–1147.

NIELSEN, M., AND BRIDSON, R. 2011. Guide shapes for high
resolution naturalistic liquid simulation. ACM Transactions on
Graphics 30, 4, 83.

OLSEN, L., SAMAVATI, F., SOUSA, M., AND JORGE, J. 2009.
Sketch-based modeling: A survey. Computers & Graphics 33,
1, 85–103.

PASKO, A., ADZHIEV, V., SOURIN, A., AND SAVCHENKO, V.
1995. Function representation in geometric modeling: concepts,
implementation and applications. The Visual Computer 11, 8,
429–446.

POPOVIĆ, J., SEITZ, S. M., ERDMANN, M., POPOVIĆ, Z., AND
WITKIN, A. 2000. Interactive manipulation of rigid body simu-
lations. SIGGRAPH Comput. Graph., 209–217.

PRESS, W. H., TEUKOLSKY, S. A., VETTERLING, W. T., AND
FLANNERY, B. P. 2007. Numerical Recipes 3rd Edition: The
Art of Scientific Computing, 3 ed. Cambridge University Press.

RAVEENDRAN, K., THUEREY, N., WOJTAN, C., AND TURK, G.
2012. Controlling liquids using meshes. In Proceedings of the
ACM SIGGRAPH/Eurographics Symposium on Computer Ani-
mation, 255–264.

SCHECHTER, H., AND BRIDSON, R. 2008. Evolving sub-grid
turbulence for smoke animation. In Proceedings of the ACM
SIGGRAPH/Eurographics symposium on Computer Animation,
1–7.

SHI, L., AND YU, Y. 2005. Taming liquids for rapidly changing
targets. In Proceedings of the ACM SIGGRAPH/Eurographics
symposium on Computer Animation, 229–236.

SORKINE, O., COHEN-OR, D., LIPMAN, Y., ALEXA, M.,
RÖSSL, C., AND SEIDEL, H. 2004. Laplacian surface edit-
ing. In Proceedings of the Eurographics/ACM SIGGRAPH sym-
posium on Geometry Processing, 175–184.

STAM, J. 1999. Stable fluids. SIGGRAPH Comput. Graph., 121–
128.

TREUILLE, A., MCNAMARA, A., POPOVIĆ, Z., AND STAM, J.
2003. Keyframe control of smoke simulations. ACM Transac-
tions on Graphics 22, 3, 716–723.

TREUILLE, A., LEWIS, A., AND POPOVIĆ, Z. 2006. Model re-
duction for real-time fluids. ACM Transactions on Graphics 25,
3, 826–834.

VAN DER LAAN, W., GREEN, S., AND SAINZ, M. 2009. Screen
space fluid rendering with curvature flow. In Proceedings of the
symposium on Interactive 3D graphics and games, 91–98.

VON FUNCK, W., THEISEL, H., AND SEIDEL, H. 2006. Vector
field based shape deformations. ACM Transactions on Graphics
25, 3, 1118–1125.

WOJTAN, C., MUCHA, P. J., AND TURK, G. 2006. Keyframe
control of complex particle systems using the adjoint method. In
Proceedings of the ACM SIGGRAPH/Eurographics symposium
on Computer Animation, 15–23.

YUAN, Z., CHEN, F., AND ZHAO, Y. 2011. Pattern-guided smoke
animation with lagrangian coherent structure. ACM Transactions
on Graphics 30, 6, 136.

ZHU, Y., AND BRIDSON, R. 2005. Animating sand as a fluid.
ACM Transactions on Graphics 24, 3, 965–972.

ZIMMERMANN, J., NEALEN, A., AND ALEXA, M. 2008. Sketch-
ing contours. Computers & Graphics 32, 5, 486–499.

