
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. VV, NO. N, MONTH YYYY 1

Example-Based Subspace Stress Analysis for
Interactive Shape Design

Xiang Chen, Changxi Zheng, and Kun Zhou, Fellow, IEEE

Abstract—Stress analysis is a crucial tool for designing structurally sound shapes. However, the expensive computational cost has
hampered its use in interactive shape editing tasks. We augment the existing example-based shape editing tools, and propose a fast
subspace stress analysis method to enable stress-aware shape editing. In particular, we construct a reduced stress basis from a small
set of shape exemplars and possible external forces. This stress basis is automatically adapted to the current user edited shape on the
fly, and thereby offers reliable stress estimation. We then introduce a new finite element discretization scheme to use the reduced basis
for fast stress analysis. Our method runs up to two orders of magnitude faster than the full-space finite element analysis, with average
L2 estimation errors less than 2% and maximum L2 errors less than 6%. Furthermore, we build an interactive stress-aware shape
editing tool to demonstrate its performance in practice.

Index Terms—Shape editing, elastostatic stress analysis, reduced stress basis, finite element method, shape deformation.

F

1 INTRODUCTION

AN old yet important tool in engineering design, struc-
tural stress analysis predicts stress responses of struc-

tures subjected to external forces. The use of stress analysis
has also been popularized recently in computer graphics,
owing to the rapid advances in 3D fabrication techniques. To
ease novice users to create and fabricate structurally sound
shapes, many tools have integrated structural analysis in the
shape design process (e.g., see [1], [2], [3], [4], [5]).

However, structural stress analysis remains computa-
tionally expensive. When designing a shape for physi-
cal fabrication, one needs to prioritize the computational
accuracy over its performance. The classic finite element
method (FEM), when used for predictive stress analysis, of-
ten requires a high-resolution mesh or high-order elements,
resulting in a large linear system generally expensive to
solve. Given a typical 3D model for fabrication, hundreds
of thousands of mesh vertices are commonly needed for a
reasonably accurate analysis, which can take up to minutes.
As an example, the linear stress analysis of the classic
Armadillo model (Figure 1) with two million tetrahedra
takes eight minutes on our desktop—even with the state-
of-the-art industrial FEM software COMSOL [6].

The high computational cost places a hurdle for using
stress analysis in interactive shape editing. While there exist
many well-developed tools for interactive shape deforma-
tion, whenever a shape is changed, previous stress analysis
results become invalid, and the user needs a complete
recomputation of stress analysis to assess the structural
soundness of the newly updated shape.

In this paper, we propose a fast stress analysis method.
Combined with existing shape deformation tools, our

• X. Chen and K. Zhou are with the State Key Lab of CAD&CG, Zhejiang
University, Mengminwei Building, Zijingang Campus, Hangzhou, Zhe-
jiang, China 310058. E-mail: xchen.cs@gmail.com, kunzhou@acm.org.

• C. Zheng is with the Department of Computer Science, Columbi-
a University, 616 Schapiro (CEPSR), New York, NY 10027. Email:
cxz@cs.columbia.edu.

method enables stress-aware shape editing, providing the
user immediate stress analysis feedback in a shape design
loop.

Our approach is motivated by the recent success of
example-based shape editing methods (e.g. [7], [8], [9],
[10], [11], [12]). These methods build a subspace of shapes
using a number of example deformations. The resulting
subspace model of shape deformation allows the user to
explore at runtime a range of shapes interactively. Because
the linear elastostatic stress depends on the geometry of
an object (as well as the material and external forces), we
hypothesize that the stresses of the subspace shape variants
in those shape editing tools also lie in a low-dimensional
stress space. Therefore, we reuse the same example shapes
provided for those shape editing tools and build a reduced
stress model.

Our method integrates naturally with existing example-
based shape editing methods, and enables fast stress anal-
ysis with sufficient accuracy. At the precomputation step,
when the existing tools build a subspace of deformations,
our method computes a stress basis in parallel. During a
runtime editing session, after the user changes the shape,
our method updates the resulting shape’s stress field under
external forces immediately. It also allows the user to adjust
forces (such as gravitational magnitude and direction) and
update the stress instantly. To demonstrate the application of
our fast stress analysis, we augment the existing shape edit-
ing tools to provide new stress-aware functionalities, includ-
ing interactive feedback of the shape’s structural soundness
as well as automatic shape adjustment for satisfying their
stress requirement (§6.4).

This work has two major technical contributions. First,
we introduce a method to construct a reduced stress ba-
sis from a small set of shape deformation examples and
possible external forces. Our stress subspace is not repre-
sented by merely a fixed stress basis. Through pull-back
and push-forward operations, our stress basis adapts to
the current user edited shape on the fly, and thus offers

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. VV, NO. N, MONTH YYYY 2

Fixed

Force

Handle

Fig. 1. Armadillo under Stress. Given an initial rest shape (591k tetrahedra) and its boundary condition setting (left), our subspace method enables
interactive linear elastostatic stress analysis (0.4sec) when the user deforms the rest shape and modifies external forces (right). Our method in this
example is 67× faster than a full-space FEM analysis (28secs), while retaining comparable computation accuracy.

reliable stress estimation. Next, we introduce a new finite
element discretization to use the reduced basis for fast stress
analysis. We formulate a quadratic minimization problem
directly on the stress field, in contrast to the formulation
on displacement field as used in standard finite element
practice. Minimizing the quadratic energy function amounts
to solving a small linear system, thus facilitating interactive
stress analysis at runtime.

Our method differs from the traditional engineering
stress analysis in terms of its target applications. We do not
aim for general design tasks. Instead, we focus our method
in the context of shape editing applications, and aim for
a fast and reliable stress analysis tool. Experiments show
that our method runs up to two orders of magnitude faster
than the standard finite element analysis, with average L2

estimation errors less than 2% and maximum L2 estimation
errors less than 6%.

2 RELATED WORK

Interactive shape deformation is a subject of substantial
interest in computer graphics. There has been a large body
of work on this topic that we can not exhaustively list
here. Typical examples include free-form deformation [13],
[14], multi-resolution deformation [15], [16], and differential
domain methods [17], [18], [19] (also see [20] for a survey),
just to name a few. All these methods focus on the geomet-
ric aspects of a shape, whereas our method is concerned
with the shape’s physical properties, the stress distribution,
during an editing process. Our approach is independent of
any particular shape editing tool and thus complementary
to these methods.

One common strategy of interactive shape deformation
is motivated by the observation that a user-edited shape is
often in a subspace of all possible deformations. In many
methods, building such a deformation subspace exploits
user provided exemplars [7], [8], [9], [10]. For instance,
Sumner et al. [8] extracted feature vectors of deformation
gradients from example deformations and used them to
interpolate new shapes at runtime.

In a larger context, shape exemplars have also been used
to add dynamic effects [11], build a subspace of elastic
strain [21], [22], synthesize animations [23], [24], and so
forth. In physics-based simulation such as contact simula-
tion, while there exist efficient full-space methods (e.g., [25]),
example-based subspace construction has been studied to
provide better performance, often at interactive rates. This

line of research includes fast simulation of deformable bod-
ies [26], [27], fluids [28], hair [29], animation control [30],
[31], sound synthesis [32], interactive material design [33]
and many others.

In this work, we exploit example-based model reduc-
tion for linear elastostatic stress analysis, particularly for
fabrication-oriented shape editing tasks. This goal gives rise
to unique challenges for subspace construction. The core
question is what a proper basis of a stress tensor field across
different shapes should be.

In parallel to the increasing popularity of additive manu-
facturing technology (i.e., “3D printing”), fabrication-aware
design is of growing research interest. Under this umbrella,
plenty of prior work has incorporated a physical simula-
tion into the design of fabricated geometries. For example,
Umetani et al. [34] proposed an interactive system for fur-
niture design, in which the structural stability is simulated
and corrected using sensitivity analysis. Skouras et al. [35]
employed an optimization process to design actuation forces
and locations as well as material distributions to match
input shapes. Chen et al. [36] solved a nonlinear elastostatic
equation to design the shape of a soft object to match a
desired shape subject to external forces.

Stress analysis has been serving as an important tool
for many fabrication-aware design tasks. To design cost-
effective printing shapes, stress analysis can help to ensure
the structural soundness while reducing the material con-
sumption using skin-frame structures [3] or honeycomb-like
porous carving [4]. Stava et al. [1] introduced a systematic
approach to evaluate the structural weakness of a shape
and proposed a set of operations to strengthen the weak
parts. More widely, in engineering design, there has been
a long history of optimizing the shapes minimizing stress
concentration [37], [38], [39]. These methods typically use
elastostatic stress analysis in their system, but the stress
analysis itself is performed using the standard finite element
method. In contrast, our goal in this work is to expedite the
stress analysis process while retaining sufficient accuracy.

More recently, Zhou et al. [2] proposed a novel con-
strained optimization method to analyze linear elastostatic
stresses. It computes a weakness map to estimate how the
object behaves in the worst case among various possibilities
of external forces. Umetani and Schmidt [40] introduced a
technique to analyze the cross-sections of printed objects
and optimize the printing orientation for the purpose of
increasing mechanical strength. While the methods are ef-

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. VV, NO. N, MONTH YYYY 3

fective for identifying fragile parts and unwanted forces
loaded on a design shape, the designed shape itself is re-
quired to be unchanged during the analysis. In contrast, we
focus on the fast stress analysis technique during a typical
design session, in which the design shape and forces are
both interactively varying. Additionally, our approach is an
example-based reduced model, which we exploit to achieve
fast computational performance.

Sharing a similar goal, a recent work by Xie et al. [5]
presented a shape editing system while providing the user
structural analysis feedback. Their method decomposes the
shape into domains and reuses the computation of stiffness
matrix for unedited domains. Thereby, it reduces the matrix
assembling time, but their stress computation still needs to
solve the full-space linear FEM system, which is often the
most expensive step. Instead, we exploit a stress subspace
and thereby gain orders of magnitude speedups.

There have been many works on reduced simulation
of elasticity in computer graphics, e.g., using vibrational
modes and modal derivatives for simulating deformable
objects [41], [42]. Another strategy is to use numerical coars-
ening to preserve large-scale deformable behaviors while
using a low-resolution mesh for finite element analysis [43],
[44], [45]. These methods mainly focus on elastic animations.
Instead, we focus on fast and accurate elastostatic stress
analysis for fabrication-oriented shape editing.

In summary, compared with all these methods, our work
provides a unique feature for many engineering and graph-
ics applications that require frequent and accurate stress
analysis in an interactive shape editing process.

3 BACKGROUND

We start by introducing notations used throughout this pa-
per, and then briefly review the standard linear elastostatic
stress analysis.

3.1 Notation
We build our method on the theory of continuum mechan-
ics, and thus follow the notations widely used therein. We
use a bold letter (e.g., x) to denote a vector, a Greek letter
(e.g., σ) to denote a 2nd-order tensor, and a sans-serif upper
letter (e.g., C) to denote a matrix or higher-order tensor.
We index elements in vectors and tensors using subscripts.
For instance, Cijmn is an element in a 4th-order tensor C.
When dealing with vector-valued functions f : Rn → Rm,
fj refers to the j-th component of f(x). Further, we write
the derivatives of a vector variable function as

fi,j =
∂fi
∂xj

and fi,jk =
∂2fi

∂xj∂xk
.

Here the comma on the left-hand side is used to separate
component indices from differentiation indices.

We use Einstein summation convention to avoid the
summation signs which occur frequently when manipulat-
ing indexed quantities in our derivation. When we write
a product of indexed quantities, a subscript is a free index
when it occurs only once in the product, and a summation
index otherwise. For instance, a matrix-vector multiplica-
tion, ci =

∑n
j=1 Aijbj can be written as ci = Aijbj , where i

is a free index and j is the summation index.

3.2 Linear elastostatic analysis
Many materials used in 3D fabrication, including strong
plastic, metal, ceramic and porcelain, are stiff, undergoing
little deformation before reaching yield conditions. There-
fore, we use the linear elasticity model for stress analysis,
because of its computational efficiency and its successful
use in many 3D fabrication design work [1], [2], [3], [4], [5].

In linear elastostatic analysis, the stress σ, strain ε, and
displacement u are linearly related to each other:

σij = Cijmnεmn and εmn =
1

2
(um,n + un,m), (1)

where σ and ε are both 2nd-order stress tensors (i.e.,
3 × 3 matrices), and C is a 4th-order stiffness tensor whose
coefficients depend on specific materials [46]. um,n is the
displacement gradient (i.e., um,n = ∂um

∂xn
) using the indexed

notation. Combining both expressions, we obtain the rela-
tionship between σ and u:

σij = Eijmnum,n, where Eijmn =
1

2
(Cijmn + Cijnm). (2)

The central equation in elastostatic stress analysis is

(σij),j + bi = (Eijmnum,n),j + bi = 0, (3)

where b is the external force at a position of the solid
body (i.e., b is a spatially varying function), and (σij),j is
the divergence of the stress tensor, describing the internal
strain force. Again, as an example of the index notation,
(σij),j =

∑3
j=1

∂σij

∂xj
, where the subscript j is a summation

index, and i is a free index. Eq. (3) states that the internal
strain force produced by the material deformation should
balance against the external force b.

To indicate the occurrence of material failure or yielding
(e.g., the plastic deformation), a stress-related scalar is used
to check if a yielding threshold is reached. Depending on
specific applications, commonly used quantities include the
von Mises stress [47] and the maximum principal stress [48],
both are scalar functions of the stress tensor σ. In this work,
we evaluate our method using both of these measures (§6).

The linear elasticity equation Eq. (3) is often solved
using a finite element method (FEM) [49]. Typically, one
first discretizes the displacement field u over the entire
solid body represented by a tetrahedral mesh and obtains a
linear system, in which the unknowns are u values at mesh
vertices. Lastly, u is substituted into the relationships in E-
q. (1) to evaluate stress tensors. When the mesh resolution is
high, the linear system is of a large size, resulting in a high
computational cost.

4 REDUCED STRESS ANALYSIS

We now present our runtime algorithm of reduced stress
analysis, aiming to shape editing tasks for 3D fabrication.
The edited shape at runtime is a rest shape, which may
change largely during the user editing. Our goal is to
estimate the stress of the edited shape under external forces.

Our reduced stress analysis takes the input of a 3D shape
and user-specified external forces—both are interactively
editable—and outputs the stress on the 3D shape produced
by the external forces. We assume that the shape is always
fixed at some part of its surface and the material parameters

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. VV, NO. N, MONTH YYYY 4

are given. We also note that our reduced model does not
depend on any specific shape editing model; it can work in
tandem with any shape deformation tool chosen by the user.

Linear and Higher-Order Finite Elements. Computational
design of 3D shapes for fabrication has seen the use of
both linear [2] and higher-order [1], [4] finite elements for
stress analysis. Our reduced model supports finite elements
of any order in a unified framework. For simplicity, here
we depict our method using linear elements, but highlight
the differences for using higher-order elements. We describe
the detailed numerical formulas in the supplementary docu-
ment (§1 for linear elements and §2 for quadratic elements).

4.1 Elastostatic Analysis using Stress Elements

Our subspace stress analysis is built on the standard finite
element discretization, starting from a weak form of Eq. (3),∫

V
[(σij),j + bi]u

∗
i dV = 0,

where V indicates the entire volume of the solid body, and
u∗i is the i-th component of a displacement test function
(or virtual displacement). The finite element discretization
represents the displacement field u by interpolating nodal
displacement variables with a set of nodal basis functions
Bk (see [49] for a detailed exposition). This leads to a
discretized elastostatic stress equation∑

e

∫
Ve

σijBk,j dV =
∑
e

(∫
Ve

biBk dV +

∫
∂Ve

tiBk dS

)
, (4)

where the summation iterates over every tetrahedron e,
whose volume is denoted by Ve; t is the traction applied
on the object surface. In a standard FEM, σij is substituted
using the expression (2), and the equation is expressed with
respect to the displacement u. Using different nodal basis
functions Bk, one obtains a full-rank linear system with
respect to the displacement u defined on the mesh nodes.

Our method differs from the standard finite element
discretization, since the stress tensor, rather than the dis-
placement, is of our major interest. Thus, by discretizing
Eq. (4) directly without using the displacement u, we obtain
a linear system with respect to the stress tensor

Aσ[σ] = bσ, (5)

where [σ] denotes a long vector that concatenates flattened
versions of the stress tensors (i.e., a 9 × 1 vector) of all
tetrahedra. Aσ is a sparse matrix with a size of 3NV × 9NT ,
where NV is the number of vertices and NT is the number
of tetrahedra. We defer the details of constructing Aσ and
bσ until the supplementary document (§1), but note that
because stress tensor is a differentiation of displacement,
the finite element basis functions used for discretizing σ is
one order lower than those for discretizing u. When linear
elements are used for discretizing displacement, the stress
tensor σ is piecewise constant over the tetrahedral mesh.

The same derivation can be applied with higher-order
finite elements, wherein the stress tensor is no longer piece-
wise constant, but we can still obtain a linear system (5),
in which [σ] is a concatenation of stress tensors defined
at the Gaussian quadrature points in each tetrahedron. We
describe the details in §2 of the supplementary document.

Unfortunately, Eq. (5) is not directly solvable, as Aσ is
not a square matrix and not even full-rank in most cases—
perhaps this is why Eq. (5) has not been used in stress
analysis to our knowledge 1. Nevertheless, it provides a
starting point for us to develop a reduced stress solver.

4.2 Reduced Stress Solver
During shape editing, the user explores a space of rest
shapes that are continuously varying. We expect that the
resulting stresses of those shapes also vary continuously,
and the stress fields can be well-approximated using a stress
subspace. Suppose that such a stress subspace is expanded
by a linear basis, S of size Nr (i.e., the number of columns
of S is Nr). The stress vector [σ] can be approximated as

[σ] = Sr, (6)

where r is a vector representing the reduced coordinates in
the stress subspace. We emphasize that the stress basis S is
shape-dependent. Given a user edited shape, S is a constant
matrix, but it varies across different shapes. In §5, we will
construct S on the fly during a shape editing process. For
now, we assume that S of an edited shape is given.

Substituting Eq. (6) into the discretized stress Eq. (5), we
obtain a reduced linear system with respect to r,

(AσS)r = bσ. (7)

When Nr is small and AσS is a thin matrix. This system can
be solved in the least-squares sense.

Unfortunately, directly solving this least-squares prob-
lem produces a stress estimation that is very off from the
true stress. This is because an arbitrary stress field might
not be physically meaningful. In other words, there may not
exist such a displacement field u that realizes a given stress
field. In a discretized setting, this is reflected by the fact that
the mapping between a stress vector of a length 9NT and a
displacement vector of a length 3NV is not bijective.

Regularization. We, therefore, propose to regularize the
stress in the subspace so that it can be physically realized
through a displacement field. In the regime of linear elas-
ticity, the infinitesimal strain ε defined in Eq. (1) is linearly
related to the stress tensor σ. Moreover, ε is to measure the
length change of an infinitesimal segment. Specifically, the
following relationship holds [51],

‖dx‖2 − ‖dX‖2
‖dX‖2

= NT εN , (8)

dX

t1

t2

ε2

ε1

where dX is an infinitesimal di-
rectional segment in the rest pose;
under external forces, dX is de-
formed into dx; and N = dX

‖dX‖2 is
the normalized undeformed direc-
tion of dX . In a discretized setting,
when two tetrahedra share an edge dX (see the adjacent
figure), the length changes of dX measured in both tetra-
hedra ought to agree with each other. In other words, we
expect NT ε1N = NT ε2N .

1. We note that the Hu-Washizu variational principle, which mixes
different discretizations for displacement and internal pressure, has
been used to prevent locking of incompressible materials (see [50]).

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. VV, NO. N, MONTH YYYY 5

To incorporate this requirement into our reduced stress
solver, we introduce a measure of stress realizability,

Er(r) =
∑
e

∑
t∈T (e)

le(N
T
e (Et : r)Ne − Ce)2. (9)

The outer summation here iterates over all tetrahedral
edges, weighted by the edge length le. The inner summa-
tion iterates over every tetrahedron t that is adjacent to e
(denoted by the set T (e)). Ne is the normalized direction of
the edge e. (Et : r) is the strain tensor of t corresponding to
the reduced stress field Sr. Because the stress and strain
are linearly related (recall Eq. (1)), the strain of t is also
linearly related to r, and Et is a 3rd-order tensor (see §3 of
the supplementary document). Lastly, Ce is the average of
edge length changes measured from all adjacent tetrahedra,

Ce =
1

|T (e)|
∑

t∈T (e)

NT
e (Et : r)Ne.

Quadratic Minimization. We now combine the least-
squares problem (7) with the stress regularization (9), and
introduce a minimization problem of r,

min
r
‖(AσS)r − bσ‖22 + αEr(r). (10)

Both terms here are quadratic forms of r. α is a scalar to
balance their weights. This problem can be solved by a linear
system of r with a size ofNr×Nr . Because the reduced basis
size, Nr, is small, we are able to solve for r interactively
while the user is editing the shape. Afterward, we evaluate
the stress tensor (using Eq. (6)) and the equivalent stress
(e.g., von Mises or maximal principal stress).

We note that the use of the regularization term (9) as a
soft constraint in (10) may not guarantee that the resulting
stress field is realizable by a displacement field. It merely
regularizes the subspace stress representation to better ap-
proximate a physically meaningful stress field, and thereby
estimates stress much more accurately (§5.4 and §6).

Lastly, we need to choose an α value in Eq. (10) in order
to obtain an accurate stress estimation. A proper choice of
α depends on the specific shapes. Our algorithm automat-
ically chooses an α value that adapts to the specific edited
shape in the step of example-based stress basis construction.
We will describe the algorithm of choosing α in §5.4 after
presenting the construction of reduced stress basis.

Weighted Least-Squares for improving accuracy. Eq. (10)
is a least-squares system, where the first term sums up the
squared force differences at every vertex. In Eq. (10), every
three rows with indices 3i, 3i + 1, 3i + 2 in (AσS) and bσ
correspond to the force equilibrium at vertex i. We found
that the least-squares formulation with equal weights over
all vertices is not always the best choice, as the vertices
who have higher stress ought to be more important in the
stress analysis. This suggests that a weighted least-squares
formulation can perform better.

In light of this, we first solve the least-squares prob-
lem (10) and evaluate the vector v that stacks von Mises
stress (or maximal principal stress) at every vertex. We then
compute a per-vertex weight vector ω = v/‖v‖∞, and use
it to re-weight the rows in (AσS) − bσ in the least-squares
formulation (10). In this way, the vertices with higher stress

Fig. 2. Sparsification. We uniformly sample a subset of mesh ver-
tices (insets) to be included in the stress estimation problem (10). The
resulting stress estimation error changes from 0.06 to 0.16 when the
number of sampled points decreases from 107 to 6. However, when the
number of samples is larger than 26, the estimation accuracy can be
well-retained.

values now contribute more to the force equilibrium term.
We solve the re-weighted minimization problem once again
to estimate the final stress values. This approach requires
solving the least-square problem (10) twice. Fortunately,
with the sparsification introduced in §4.3, the least-squares
problem (10) is of a small size and no longer the compu-
tational bottleneck. In practice, we found that this double-
solving strategy imposes little computational overhead, but
produces higher stress estimation accuracy.

The above re-weight process can be further executed
iteratively to update least-squares weights and stress. In our
tests, the resulting stress usually converges after about 4-5
iterations. We found that the stresses after the second and
third iterations often have relative difference less than 1%,
which indicates that the two-step solution is a reasonable
performance-accuracy balance.

Material. Lastly, we note that throughout the development
of our reduced stress analysis method, we do not assume
the homogeneity of the object material. Our method is also
applicable to heterogeneous and composite materials, as
long as the structures of material composition are given.

4.3 Sparsification
While we can solve Eq. (10) in real-time, constructing the
Nr × Nr linear system with respect to r is still bound to
the number of vertices, NV . This is because the deriva-
tive of (10) with respect to r involves the computation
of STATσAσS, whose complexity is proportional to NV .
For a high-resolution tetrahedral mesh, this linear system
construction becomes a performance bottleneck.

We notice that every three rows of Aσ corresponds
to a single node of the tetrahedral mesh (in x-, y- and
z- component). Computing one matrix element of ATσAσ
requires an iteration through all rows. In the continuous
setting, this is equivalent to a volume integral, which can be
approximated using summations at a small set of Gaussian
quadrature points. This observation inspires the simple idea
of sparsifying the optimization problem (10). In particular,
we select a small set of vertices Ṽ on the tetrahedral mesh
and only consider the static force equilibrium at those
vertices (similar to cubature schemes [26], [52]). That is, for

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. VV, NO. N, MONTH YYYY 6

difference: 0.0113

Fig. 3. Tetrahedra inversion. (left and middle) Our method is robust
when a relatively small number of tetrahedra are inverted. Here the
difference is measured in a L2 sense (§6.2). (right) Inverted tetrahedra
result in a low-quality finite element mesh, which can also show visual
artifacts (inset).

the first term of (10), we only count the rows of (AσAr − b)
that correspond to the vertices in Ṽ . Similarly, for the second
term of (10), instead of iterating through all edges, we only
consider the edges that are incident to vertices in Ṽ . When
|Ṽ| � NV , the construction of the linear system becomes
much faster while the accuracy is still retained.

In practice, we found that uniformly sampling the mesh
vertices suffices. In all our examples, we use |Ṽ| ≥ 0.01NV ,
which guarantees sufficient estimation fidelity. Figure 2
illustrates the change of estimation error with respect to |Ṽ|.
Here the error is computed as the L2 relative error of the
von Mises stress. We also examined other error metrics such
as the L∞ error (reported in §6.2).

We note that the method of sparsification is able to
estimate the stress field more accurately, in comparison to
the use of a coarse finite element mesh. Because the low-
resolution finite element basis can not express the stress field
accurately in the first place (see §6.3 and Figure 13).

4.4 Improving Mesh Quality

Our reduced stress analysis is designed to be independent
of any specific mesh deformation method. However, the
accuracy of a finite element stress analysis depends on the
tetrahedral mesh, which may degrade or even invert during
user edits (Figure 3-right).

Developing an interactive remeshing algorithm is out of
the scope of this paper. Instead, building on the method
of Tertois et al. [53], we adopt a lightweight adaptation
method to improve mesh quality at runtime, while retaining
the mesh topology. First, we check if a mesh vertex is too
close to its opposite face or if there are already inverted
tetrahedra. We add all those candidate vertices into a set V̂ .
Next, we adjust their positions to improve the tetrahedral
quality. Let T̂ denote the set of tetrahedra that are incident
to the vertices in V̂ . We use v∗ and v to denote two vectors
that stack the current and adjusted positions of vertices in V̂ ,
respectively. To find the adjusted positions, we formulate a
constrained minimization problem with respect to v,

min
v
‖v − v∗‖22, s.t. Vt(v) ≥ |Vt(v∗)| · (1 + δ), ∀t ∈ T̂ ,

where Vt(v) is the volume of the tetrahedron t. The (pos-
itive) threshold δ is to force the adjusted vertices to form
well-shaped tetrahedra. To ensure interactive solving, the
cubic constraints with respect to v are simply linearized
by discarding higher-order terms (see Tertois et al. [53]

L2 error = 0.02 L2 error = 0.38ground truth

Fig. 4. Comparison of stress estimation with and without stress
pull-back/push-forward. (left) ground-truth stress field; (middle) stress
estimated using our algorithm; (right) stress estimated without pull-
back/push-forward when we construct the basis.

for details). In practice, we use MOSEK [54] to solve the
resulting quadratic programming problem.

Discussion. Thanks to the least-squares formulation (10),
our method is generally robust when a small number of
tetrahedra are inverted, since the well-shaped tetrahedra
will contribute predominately to the objective function. As
shown in Figure 3-left, when the inverted tetrahedra (shown
in blue) are sparse over the mesh, the resulting stress shows
only 1.2% relative L2 error (Figure 3-middle). Nevertheless,
when more inverted tetrahedra emerge, mesh improvement
is needed to maintain the FEM accuracy.

5 CONSTRUCTION OF STRESS BASIS

We now describe the construction of efficient stress basis
for our subspace stress analysis. Taking as input a set of
example deformations, we first perform the standard finite
element stress analysis on every example shape and obtain a
set of stress fields. We then extract a stress basis by analyzing
the principal components of those stress fields.

At first glance, we can create stress basis by applying
a principal component analysis (PCA) over the example
stress fields. Unfortunately, this algorithm fails to produce
efficient basis, often resulting in unreliable stress estimation
(Figure 4). This is because the input shape exemplars can
be quite distinct from each other and the stress fields are
thus computed with respect to very different rest poses.
Consequently, these stress fields contain no clear “principal
components” to represent them. In light of this, we seek to
transform the stress fields in order to unify their rest poses
before analyzing their principal components.

5.1 Algorithm

Input. The input of our basis construction algorithm con-
sists of NS example shapes, each represented by a mesh of
NT tetrahedra. In practice, we choose the example shapes by
deforming a rest-pose mesh, so we ensure all the example
shapes have different geometry but the same topology. The
example shapes can be user-supplied to reflect the intended
subspace of shapes that will be explored; they can also be
automatically sampled in the deformation space, depending
on specific editing applications. For each shape exemplar,
the boundary conditions (such as the fixed vertices) and
external forces (such as gravity) are given. When one de-
signs shapes for fabrication, the fixed regions of the shape
are often known (e.g., red vertices in Figure 1-left). One

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. VV, NO. N, MONTH YYYY 7

Algorithm 1 Basis precomputation
Require: shape exemplars Si, i = 1...NS

ground-truth stress fields σi computed on Si

1: Select a reference shape S0

2: for i = 1 : NS do . iterate over all example shapes
3: for t = 1 : NT do . iterate over all tetrahedra
4: Evaluate deformation gradient Fit of Si w.r.t. S0

5: σ̃i
t ← pull back(σi

t,Fit) . §5.2
6: end for
7: Concatenate fattened σ̃i

t for all t into pi

8: Attach pi into a data matrix B
9: end for

10: Extract basis S using SVD(B)

might also explore different external forces (e.g., by setting
different gravity directions). In that case, each set of external
forces together with the corresponding shapes are used as
individual training examples.

Computation. As outlined in Algorithm 1, we first com-
pute the stress field for every example shape. When linear
finite elements are used, the stress is piecewise constant. Let
σit denote the stress tensor of the t-th tetrahedron in the i-th
training example (t ∈ {1...NT } and i ∈ {1...NS}). Instead
of using σit directly for basis construction, we first “pull
back” all the stress tensors to express them with respect to a
single fixed rest pose (line 5 of Algorithm 1). We denote the
pull-back of σit as σ̃it, a 3× 3 matrix. We then reshape every
(unsymmetric) σ̃it into a 9 × 1 vector for all the tetrahedra,
and concatenate them into a single vector pi (line 7 of
Algorithm 1). We then perform PCA over these vectors to
obtain a set of stress basis. In practice, we choose to run the
singular value decomposition (SVD) over the matrix that
stacks all pi as column vectors.

When higher-order finite elements are used, the stress
is not constant in every tetrahedra anymore. Thus, when
assembling a stress vector pi in Algorithm 1, we sample
quadrature points in each tetrahedron. As mentioned earlier,
the finite element basis functions of stress tensor are one or-
der lower than the displacement basis functions. Therefore,
for quadratic elements, we sample 4 points. We pull back
the stress tensors defined at those quadrature points using
the deformation gradients of the tetrahedron in which the
points are located. The rest of the computation remains the
same as for the case of linear finite element meshes.

5.2 Stress Tensor Pull-Back

With the example stress fields computed from the linear
elastostatic analysis on different rest poses (i.e., shape ex-
emplars), we now describe the stress pull-back, in order to
reconcile those stress fields such that they are all expressed
with respect to a common rest pose. We first choose an arbi-
trary shape S0 from the NS example shapes as the reference
shape. Consider one example shape Si, i ∈ {1...NS}. The
stress tensor σit of a tetrahedron t describes the force acting
on an infinitesimal area da in Si. If we treat the shape
Si as a deformation from S0, then S0 has an infinitesimal
area dA corresponding to da; and they have a relationship,
da = JitF

−T
it dA, where Fit is the piecewise constant de-

formation gradient of Si with respect to S0 in a tetrahedron

0 50 100 150 200 250
test data

0.000

0.005

0.010

0.015

L2
 e

rr
o
r

(p
ro

je
ct

io
n
)

without pullback

with pullback

0 50 100 150 200 250
test data

0.0

0.2

0.4

0.6

0.8

1.0

L2
 e

rr
o
r

without pullback

with pullback

with corotation

with PK2

Fig. 5. Efficacy of pull-back/push-forward. (left) With the pull-
back/push-forward operations, the difference between a stress vector
and its subspace projection decreases about 60%. (right) The estimation
error with the pull-back/push-forward operations is significantly lower
than that without the operations, and is also much lower than that with
corotational and with second Piola-Kirchhoff stress tensors. Both plots
are tested with a bar model. See more explanation in §6.2.

t, and Jit = detFit is its determinant (see [50]). This allows
to express the stress field of Si with respect to S0,

σ̃it = Jitσ
i
tF
−T
it , (11)

which is precisely our pull-back operator. We note that
while this operator looks almost identical to the first Piola-
Kirchhoff stress tensor [50] in continuum mechanics, they
have different physical interpretations: in (11), σit is comput-
ed by solving the linear elasticity problem using Si as the
rest pose, while Fit is computed based on the tetrahedrons
of S0 and Si, describing the local geometric deformation
from S0 to Si. In contrast, for the first Piola-Kirchhoff stress
tensor, F describes the physical deformation that leads to
the internal stress σ.

5.3 Stress Basis Push-Forward
We construct the stress basis following Algorithm 1 as a
preprocessing. The output of the preprocessing is a set of
stress basis, denoted by a set of vectors p̂i, i = 1...Nr , where
Nr is the size of the basis (Nr ≤ Ns). Every p̂i stacks the
basis stresses on all the tetrahedron, but they are constructed
with respect to a fixed rest pose, namely the shape S0 in §5.2.
At runtime, when the user updates a shape Ŝ, it becomes
the rest pose for estimating the stress. We, therefore, need to
“push forward” the stress basis to express it with respect to
Ŝ rather than S0.

Our runtime push-forward operator is an inverse of the
pull-back operator. Concretely, for every precomputed stress
basis p̂i, i = 1...Nr and every tetrahedron t, we compute

sit = Ĵ−1t σ̂itF̂
T
t , (12)

where σ̂it is the i-th basis stress tensor for tetrahedron
t, unstacked from p̂i. F̂t is the deformation gradient of
tetrahedron t that deforms the shape S0 into the current
shape Ŝ, and Ĵt is its determinant. The resulting stress
tensor sit is the i-th basis stress for the tetrahedra t of the
current shape Ŝ. We stack them into a vector and further
put the basis vectors into the matrix S as used in §4.2.

We note that the pull-back and push-forward operators
are of great importance in our algorithm. As shown in Fig-
ure 5-right, they improve the stress estimation accuracy
tremendously. We present detailed validation in §6.2.

5.4 Precomputation of Regularization Weight α
With the set of training poses and their ground-truth stresses
computed, we need to choose a weight α to balance the

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. VV, NO. N, MONTH YYYY 8

Fig. 6. Stress error affected by parameters. (left) Estimation error
changes with the size of stress basis, tested with the dinosaur model.
(right) Estimation error changes with different α values used in Eq. (10),
tested with the bar model. In both plots, the errors are evaluated using
all test poses; both the averaged and maximum L2 error are shown (see
§6.2 for error computation).

terms in the objective function (10). A common practice of
balancing the energy terms in Eq. (10) is through normal-
izing both terms. However, the normalization requires an
estimation of the varying ranges of both terms, and for an
arbitrary shape, this is nontrivial.

Instead, we automatically choose the best weight α us-
ing cross-validation. In particular, we define 25 different α
values, 10−12, 10−11, ..., 1011, 1012. For every training pose
Si, we remove it from the training data set and use the rest
of training poses to construct the stress basis. We then re-
peatedly use the basis to estimate the stress of Si, each time
with different α values. For every estimation, we compare it
with the ground-truth stress of Si and compute an L2 error
(§6.2), which measures the quality of using that particular
α. For a single α value, we repeat this error measurement
for every training pose Si, i = 1...Ns, and average the error
values across all poses. Lastly, we choose the α value with
the lowest average error to use at runtime.

As shown in Figure 6-right, the value of α indeed affects
the estimation accuracy. Our algorithm automatically adapts
α to specific shapes (Table 2). We observed that the α values
vary significantly across different shapes, because the scales
of the two energy terms in Eq. (10) can differ substantially.

Discussion. Our reduced model is directly built on the
stress field without the use of displacements. Thereby, the
force equilibrium in Eq. (10) is computationally more effi-
cient. Using displacement to construct the subspace can be
another choice, with a potential advantage that the resulting
stress is guaranteed to be realizable. However, it is unclear
how to define the pull-back/push-forward operations for
displacement. As described in §5.3, these operations have
proven essential to the expressiveness of the subspace repre-
sentation, for which we leave as an interesting future work.

6 VALIDATION AND RESULTS

Hardware and software. We run our experiments on a
desktop PC equipped with an Intel i7-3770K CPU. Our
program runs in 8 threads using OpenMP [55]. We built
a prototyping shape deformation tool using the libigl li-
brary [56]. In addition, we use COMSOL [6], a widely used
commercial finite element analysis software, to compute the
stresses of our training shapes as well as the ground-truth
stress values for evaluating stress estimation error.

6.1 Preparing training and test data
In our experiments, we implement shape deformation using
linear blend skinning (LBS) with the bounded biharmonic

TABLE 1
Statistics of experimental models.

Model #Vertices #Elements #Order #DoFs #Train #Test

bar 3,452 15,602 linear 10,356 39 254
horse 8,253 34,019 quadratic 167,034 21 399
bird 10,876 43,299 quadratic 216,072 27 525
dinosaur 14,029 57,830 linear 42,087 33 359
fertility 17,492 82,271 quadratic 377,667 18 136
lamp 20,428 94,184 linear 61,284 42 448
gargoyle 30,455 145,076 linear 91,365 33 457
armadillo 118,595 591,547 linear 355,785 33 387

From left to right: number of vertices, number of elements, order
of finite elements, degrees of freedom in full-space finite element
computation, number of training examples, and number of test data.

weights [57]. For every shape in the training examples,
body forces such as gravity are also assigned by sampling
different body force directions to add in the training data
set. Because of the linear relationship between external force
and deformation displacement, there is no need to sample
multiple force magnitudes in the training data. Lastly, with
the LBS model, we automatically generate a set of test poses
by interpolating the configurations of handles (or bones)
presented in the training examples. The test poses are used
to validate the accuracy of our reduced stress estimation.
They are uniformly sampled in the space of handle posi-
tions. We ensure that all the poses vary in a reasonably large
range. For example, the range of peak von Mise stresses
(indicating where a model is weakest) for the lamp dataset
is [5.5 MPa, 19.1 MPa].

We use all the training and test shapes together with the
sampled force settings to compute stresses using COMSOL,
which performs the stress analysis using a standard FEM.
In all stress computation, we use the physical parameters
of a typical fabrication material (i.e., hard plastic) used in
3D printing: we set Young’s modulus E = 1.0e9 N/m2,
Poisson’s ratio ν = 0.45, and density ρ = 958.1 kg/m3.

Table 1 lists the statistics of our experimental data. We
choose test geometries representing different types of object-
s, such as creatures (dinosaur), artistic designs (fertility) and
man-made models (lamp). Their numbers of DoFs range
from tens of thousands to hundreds of thousands, as used
in typical personal fabrications [2]. Among these models,
we use quadratic finite elements in bird, horse and fertility
examples; other examples use linear finite elements. When
computing training and ground-truth stresses in COMSOL,
we choose either type of finite elements correspondingly.
We note that in Table 1 when quadratic elements are used,
mesh vertices are just part of the finite element nodes, which
also include the edge nodes. Thus, the numbers of DoFs
are larger than the number of vertices. In the supplemental
video, we also report the reduced model precomputation
time for specific examples.

6.2 Accuracy

Metrics. For every test shape Ti, we compute its stresses
using our reduced method with no more than 50 stress
basis vectors. We also compute the ground-truth stresses
using the standard FEM in COMSOL, and then compute
the equivalent stress (both von Mises stress and the maximal
principal stress as summarized in Table 2) in all tetrahedron.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. VV, NO. N, MONTH YYYY 9

bar1

bar2

shape 1 shape 2

Fig. 7. Validation of bending and thickening. (top left) Estimation
error changes w.r.t. the bending angle of the bar. (top right) Estimation
error changes w.r.t. the number of in-between bending shapes used for
subspace construction. (bottom left) Estimation error changes w.r.t. the
thickness of the dumbbell. (bottom right) Estimation error changes w.r.t.
the number of in-between thickening shapes used for training.

Stacking them together we get an estimated equivalent
stress vector vi for the shape Ti and the corresponding
ground-truth stress vector v∗i . In our validation, we examine
two types of errors, the L2 error (ei2) and L∞ error (ei∞)
defined respectively as

ei2 =
‖vi − v∗i ‖2
‖v∗i ‖2

and ei∞ =
abs(‖vi‖∞ − ‖v∗i ‖∞)

‖v∗i ‖∞
.

The L2 error reflects the stress error averaged over an entire
solid body, while the L∞ error indicates the error of peak
stress value on the object. Given a test shape, the errors are
computed per test pose.

Validation on simple examples. We perform two simple
experiments to validate the key idea of our reduced method.
The first one is through bending a bar. We construct the
stress basis with a training set consisting of only two bars;
one is straight and the other is bent (Figure 7). To measure
the accuracy, we generate 30 testing bars by uniformly inter-
polating the two training bars, compute their stresses, and
evaluate the maximumL2 error emax over all test bars. Next,
we repeat the above test incrementally: each time we bend
the second training bar slightly more and regenerate the
testing bars. Figure 7 (top left) shows the emax curve for 20
increment steps. As the training bars become more distinct
from each other, their stresses have a larger variance, and
thus our stress subspace becomes less representative. In an
extreme case (e.g., a C-shape bar), the error goes up to about
20%. We can reduce the estimation error by including more
training shapes whose shapes are between the two training
bars. Figure 7 (top right) shows that the error decreases
as a few in-between shapes are added in the training set.
With only two additional shapes, the error drops from 20%
to 1.7%. The second experiment is through thickening a
dumbbell. Figure 7 (bottom left) shows the emax curve when
the slim stem is thickened. Similarly, the error drops from
14% to 4.5% by adding only one in-between shape (Figure 7
(bottom right)) for training.

We observed that the stress fields of the blended shapes
change smoothly as we vary the blending weights. For
instance, as we progressively bend a straight bar, the es-

Fig. 8. Gargoyle. the von Mises stresses estimated by our method (top
row), and the ground truth stresses computed by FEM (bottom row).

timated weight of the stress basis corresponding to the
straight bar’s stress decreases and the weight corresponding
to the bent bar’s stress increases. This confirms that the
space of stress fields can be effectively reduced to enable
fast stress estimation.

Validation on complex examples. We also validate over
the data set described in §6.1. Figure 10 plots ei2 (blue
curves) of individual test shapes indexed by the abscissa of
the plots. Those plots also indicate the averaged (yellow)
and maximum (red) L2 error over all test poses. In all
tests, the L2 errors are no more than 6%. While Figure 10
provides the plots of numerical errors, we also show some
visual comparisons in Figure 8, 9 and 11. For example, the
estimated stress field and the ground-truth stress on the
Gargoyle are visually almost indistinguishable (Figure 8).

Table 2 reports the averaged (eavg) and maximum (emax)
L2 errors over all test shapes of individual examples. Fur-
ther, we compute the worst-case L∞ error and report in
Table 2 as e∗max (i.e., e∗max = maxi e

i
∞). In addition, Table 2

also lists the maximum L2 error (ẽmax) and L∞ error (ẽ∗max)
for the maximal principal stress. In general the errors of
estimated maximal principal stress are similar to the errors
of von Mises stress. All the error values are less than 6.8%,
indicating that our reduced stress analysis is able to achieve
reasonably accurate stress estimation. We also examined the
error of stress tensor, measured in a Frobenius-norm sense.
The error of stress tensor is slightly larger than that of the
equivalent stress. For all our tests, the largest error of stress

Fig. 9. Bird. The von Mises stresses estimated by our method (top row),
and the ground truth stresses computed by FEM (bottom row). The black
arrow (similarly for other figures) indicates the fixed part.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. VV, NO. N, MONTH YYYY 10

0 50 100 150 200 250
0.00

0.01

0.02

0.03

0.04

0.05

0.06 bar

0 50 100 150 200 250 300 350
0.00

0.01

0.02

0.03

0.04

0.05

0.06 horse

0 100 200 300 400 500
0.00

0.01

0.02

0.03

0.04

0.05

0.06 bird

0 50 100 150 200 250 300 350
0.00

0.01

0.02

0.03

0.04

0.05

0.06 dinosaur

0 20 40 60 80 100 120
0.00

0.01

0.02

0.03

0.04

0.05

0.06 fertility

0 50 100 150 200 250 300 350 400
0.00

0.01

0.02

0.03

0.04

0.05

0.06 lamp

0 100 200 300 400
0.00

0.01

0.02

0.03

0.04

0.05

0.06 gargoyle

0 50 100 150 200 250 300 350
0.00

0.01

0.02

0.03

0.04

0.05

0.06 armadillo

Fig. 10. Errors of all test poses. The abscissa represents the indices of test data, and the ordinate represents the relative errors between the
estimated stresses and the ground truth stresses.

Fig. 11. Error map. Given the von Mises stresses (top row) estimated by our method, we compute maps of the relative errors (bottom row) by
comparing with the ground-truth. In all the examples, the errors in the regions with large stress are always lower. In other words, the red regions in
the top row always have relatively small estimation errors (black colors in the bottom row). This is advantageous in practice, as high-stress regions
are more important in many structural design tasks.

TABLE 2
Statistics of stress estimations

Model Estimation Parameters Estimation Errors Estimation Timings (sec)
Reg(α) #Bases(r) #Points(|V̄|) emax eavg e∗max ẽmax ẽ∗max Full Est (SU) SpEst (SU)

bar 10 30 53 0.056 0.018 0.035 0.046 0.029 1.9 0.36 (5×) 0.026 (73×)
horse 1e-12 20 100 0.059 0.016 0.059 0.059 0.059 12.4 0.89 (14×) 0.071 (175×)
bird 1e-12 20 100 0.047 0.009 0.026 0.048 0.026 16.6 1.17 (14×) 0.083 (200×)
dinosaur 10 18 100 0.044 0.014 0.041 0.046 0.041 3.8 0.65 (6×) 0.042 (90×)
fertility 1e7 16 200 0.050 0.018 0.063 0.048 0.068 22.6 1.73 (13×) 0.165 (137×)
lamp 1e-8 41 200 0.050 0.012 0.050 0.050 0.036 3.9 2.34 (2×) 0.158 (25×)
gargoyle 1 28 300 0.041 0.012 0.062 0.047 0.056 6.7 2.23 (3×) 0.153 (44×)
armadillo 1e-5 32 1000 0.052 0.013 0.052 0.053 0.055 27.9 11.04 (3×) 0.419 (67×)

From left to right: regularization parameter (Reg), number of reduced bases (#Bases), number of sampled points for sparse estimation (#Points),
maximum L2 estimation error for von Mises stress on test data (emax), average L2 estimation error for von Mises stress on test data (eavg),
maximum L∞ estimation error for von Mises stress on test data (e∗max), maximum L2 estimation error for maximal principal stress on test data
(ẽmax), maximum L∞ estimation error for maximal principal stress on test data (ẽ∗max), time for full FEM computation (Full), time for estimation
by using all points (Est), time for estimation by using only sparsely sampled points (SpEst). The speedups (SU) are compared with full FEM
computation.

tensor is less than 11%.

Our method supports different types of shape defor-
mations, such as bending/twisting (the Bar), thickening
(leg of the Bird), and stretching (ear of the Armadillo).
We found that to support complex deformation operations,
many stress bases are often needed. In artistic design, shapes
with non-zero genus are common, and editing the shape
of its silhouette is often needed from the designer’s point

view, but this would change the volume of the model. The
Fertility model serves as an example to test these cases and
shows that our method can handle such editing well. We
use the Lamp as an example of man-made shapes. The big
lampshade generates stress concentrations near the slender
struts and joints. Consequently, the pose modification leads
to a fast change of the stress fields. The estimation on this
model works fairly well using sufficient training data.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. VV, NO. N, MONTH YYYY 11

Fig. 12. The estimation er-
rors (red) and energy func-
tion values (blue) of interpo-
lated (left) and extrapolated
(right) shapes. As the edited
shape moves out of the sub-
space, both curves increase
and share a similar trend.

We validate the efficacy of our pull-back and push-
forward operators by comparing the L2 stress errors pro-
duced with those operators enabled and disabled. We use
the bar model and perform two experiments and show them
in Figure 5. For every test pose (indexed by the abscissa
in the plots), we construct two bases, with and without
the pull-back/push-forward operations. In the first exper-
iment, we use the ground-truth stress vector and project it
to the subspaces spanned by both bases respectively. We
compute the L2 difference between the original and the
projected stress vectors. As shown in Figure 5-left, with
pull-back/push-forward, the resulting subspace can express
the stress vector more closely. In the second experiment
(Figure 5-right), we directly compare the stress errors using
both bases and confirm that our pull-back/push-forward
operations indeed improve the estimation accuracy greatly.

In addition, we test other possible pull-back/push-
forward definitions. In particular, one can use corota-
tional and second Piola-Kirchhoff stress tensors to pull-
back/push-forward stress basis. However, we found that
those alternatives are much less efficient in comparison to
our pull-back/push-forward operations (Figure 5-right).

While we show in the above tests that our reduced stress
analysis produces fairly accurate estimations, it is possible
that the user deforms a shape completely out of the sub-
space spanned by the stress basis. In this case, we provide a
metric to indicate the estimation quality, as the ground-truth
stress would not be available in a practical application. As
a preliminary test, we found the energy function value of
Eq. (10) can serve as such an indicator. Figure 12 shows the
change of energy function values along with the estimation
errors with respect to the change of shapes. Both curves
share roughly the same trend. Therefore, a large energy
value of Eq. (10) can indicate that the current shape is
probably out of the current stress subspace, suggesting a
compromised estimation accuracy.

Table 2 also lists the estimation parameters (i.e., α, r,
and |V̄|), whose values affect the estimation accuracy. For
the relationships between different choices of the estimation
parameters and the estimation errors, we refer to Figure 2,
Figure 5, Figure 6, and the discussions therein.

6.3 Performance
We measured the computation time of our method and
compared with the full-space FEM computation (COMSOL)
(Table 2). COMSOL allows the user to choose different state-
of-the-art linear solvers. In practice, we use the direct solver
PARDISO for linear elements and the Multigrid solver with
GMRES for quadratic elements, which has proven much
faster than direct solvers on large-scale problems. Finite
element solvers in COMSOL take full advantage of all
available CPU processors.

54 kPa 92 kPa 140 kPa 180 kPa 181 kPa

m1 m2 m3 m4 m4 (our)

Fig. 13. Standard finite element stress analysis using meshes with four
different resolutions (from coarse to dense). The rightmost shows the
stress distribution estimated using our reduced method. The estimated
peak stress values are also listed.

Across all the experiments, our method gains 1-2 orders
of magnitude speedups over the standard finite element
analysis. Such performances allow real-time or interactive
stress estimation during shape design, as demonstrated in
the supplemental video. Even for complex models like the
Armadillo, which has more than 300,000 DoFs, we can still
maintain interactive performance. We also tested a tetrahe-
dral mesh with more than 2 million elements: As mentioned
in §1, COMSOL takes 8 minutes to perform the stress
analysis, whereas our method finishes the computation in
2.3 seconds, resulting in a 208× speedup.

We also investigated the performance gain resulting
from individual parts of our method. Without the sparsifi-
cation (§4.3), already we are able to achieve 2-14× speedups
compared to the standard FEM (second last column of Ta-
ble 2). With the sparsification, the stress estimation becomes
even faster (last column of Table 2).

A few parameters affect the performance of the method.
One is the number of DoFs of the finite element mesh. In
general, a larger speedup can be obtained from our reduced
method when there is a large number of DoFs. For instance,
as shown in Table 2, models using quadratic elements all
have more than 100× speedups. Other parameters that
affect the performance-accuracy trade-offs include the size
of the reduced stress basis (r) and the number of sampled
vertices (|V̄|) in sparsification (§4.3). Figure 2 and 6 show
their influences of the stress estimation’s L2 errors.

Low resolution finite element computation. We also com-
pare the accuracy and cost of our method with the finite
element stress analysis using different mesh resolutions.
Mesh resolution can affect the stress analysis accuracy. As
illustrated in Figure 13, the standard finite element analysis
on a low-resolution mesh m2 (313 elements) has a compa-
rable runtime cost with our reduced method on a high-
resolution mesh m4 (15602 elements), but produces 49%
error relative to the high-resolution finite element analysis
(on m4). In contrast, our reduced method produces much
more accurate stress estimation (e∗max = 3.5%, see Table 2)
with a comparable time cost.

6.4 Application: Stress-Aware Design

We now augment the interactive shape editing tool with
our reduced stress analysis method to enable stress-aware
design. Enjoying the accuracy and high performance of
our method, our stress-aware editing tool demonstrates the
application of our method in the following three ways.

Function I: Overstress alert. Straightforwardly, we detect
the maximum stress of the designed shape immediately

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. VV, NO. N, MONTH YYYY 12

after the shape is changed, and check whether the stress
is beyond the yielding threshold, σyield, of the material. A
prompt check enables the shape editing tool to alert the user
when a structurally weak shape is made (Figure 14 (b)). In
addition, we highlight the overstressed regions of the shape,
that is, the areas in which the equivalent stress is larger than
σyield (see Figure 14(b) and video). This on-the-fly alert in
the design loop provides users immediate visualization of
the structural information of their designs and allows them
to rectify whenever needed.

Function II: Shape rollback. In addition to the overstress
alert, we allow the shape editing tool to automatically adjust
shapes when the stress exceeds the yielding threshold. We
provide two shape adjustment operations. The first one is
shape rollback. For instance, suppose when the user changes
the stem of the Lamp model from pose p (Figure 14 (a))
to pose p∗ (Figure 14 (b)), the stress exceeds the yielding
threshold. This indicates that the shape is changed from
a structurally valid state to an invalid state. One option
to avoid the invalid state is to rollback the shape changes
toward p until the entire shape is within the yielding thresh-
old, while it still respects the user’s shape changes as much
as possible. Therefore, we find the latest valid shape (Fig-
ure 14 (c)) on a path that changes from p to p∗. In particular,
we record the shape change path {hi|i = 1, 2, . . . ,K} while
the user deforms the shape. Here h1 is the transformation
states of all LBS bones and handles of p, hK is for the ending
shape p∗, and K is the number of poses in the path. We
find the last shape on the path with valid stress values.
This is efficiently implemented using a binary search on
the path. Each search step requires a stress analysis of the
corresponding shape on that path, resulting in O(logK)
stress solvings. Because of the fast performance of each
reduced stress analysis, this adjustment can be finished
interactively.

Function III: Automatic thickening. Sometimes, it is hard,
if not impossible, to fix the overstressed regions of a shape
by merely bending and twisting the current shape. We
found that in many of these cases, bone thickening operation
can effectively resolve those overstressed regions. When
the user enables this option in our shape editing tool, our
system first detects the bones B = {bi} whose correspond-
ing regions have excessive stresses, and then incrementally
thickens B until all the regions have stresses within the
yielding threshold (Figure 14 (e)). Particularly, we conduct
a two-step iterative process: (1) applying anisotropic scaling
s = diag(1, r, r) 2 into the current transformation of B to
obtain a new shape produced with the thickened bones B;
(2) executing our reduced stress analysis on the new shape
and checking whether the excessive stresses are resolved.
We break the loop when no excessive stresses are found or
the maximum number of iterations is reached. The thick-
ening factor r is set to a constant value 1.1. This operation
requires training exemplars with various thicknesses, such
as the Bird legs shown in the video. After precomputing the
reduced model, our editing tool is fast enough to maintain

2. Here we suppose the major axis of the bone in a material space is
along the x-direction, so that the expanding directions are along the y-
and z- directions, normal to the x-axis.

yield: 10.0 MPa
 max: 8.2 MPa

yield: 10.0 MPa
 max: 9.9 MPa

yield: 10.0 MPa
 max: 13.7 MPa

Maximum stress > yield strength !

Highlight

deform rollback

(a) (b) (c)
yield: 60 MPa
 max: 109 MPa

yield: 60 MPa
 max: 37 MPa

thicken

(d) (e)
Fig. 14. Stress-aware design. (a) An input shape has a valid stress. (b)
The shape is deformed by the user into an invalid pose (i.e., maximum
equivalent stress becomes larger than a 10 MPa of yielding strength). (c)
Shape rollback operation is triggered to pull the shape back to a valid
pose with 9.9 MPa maximum stress. (d) The stress is till too large on the
supporting leg. (e) Bone thickening operation is triggered to make the
shape valid under a 60 MPa of yielding strength.

interactive performance (see video).

7 LIMITATIONS AND FUTURE WORK

We have introduced an example-based subspace stress anal-
ysis method for stress-aware shape design. Compared with
the full FEM computation, our method runs up to two
orders of magnitudes faster, and thereby enables respon-
sive and fluent design experiences. Meanwhile, our method
retains the accuracy of estimated stresses comparable to
ground truth stresses. We demonstrate the high accuracy
and performance of our method on various types of models.

We envision our reduced stress analysis method as a
key computation component useful in various design and
analysis tasks. Harnessing the reduced stress analysis with
little computational overhead, users could explore the shape
space interactively using their favorite deformation tools,
but with the resulting stress computed and visualized on
the fly. Moreover, the reduced stress analysis opens up new
opportunities for parametric shape optimization. Provided
a space of possible shape designs, one can sample a set of
shape parameters and precompute the stresses of the sam-
pled shapes. Consequently, any design optimization that
requires stress distribution information, e.g., metamaterial
design, can be executed to search for the best parameters.
Herein the reduced stress analysis takes a crucial role to
expedite the expensive FEM computation.

In this work, we assume that the locations of surface
tractions and fixed boundaries remain unchanged during

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. VV, NO. N, MONTH YYYY 13

editing, while their magnitudes and directions are allowed
to change. It is possible to extend our method for supporting
limited changes of surface tractions and fixed boundaries:
we can sample a set of surface tractions and fixed bound-
aries and construct a training set for the stress basis. Indeed,
many products have limited location-
s to fix (or exert traction force). For
instance, a mug handle has a specific
way to be held in hand. But if there are
many different locations for applying
traction forces or fixed boundaries, it
becomes impractical to sample and cover all the possibili-
ties.

We are also interested in extending our method to handle
periodic or probabilistic boundary conditions. These bound-
ary conditions are useful when, for example, fatigue is taken
into account—the stress range of a periodic motion is more
informative than the peak stress [58]. In other tasks (like
jewelry design), it is hard to predetermine external force lo-
cations or fixed boundaries. An interesting future work is to
develop a reduced worst-case structural analysis method [2]
that enables interactive computation of the weakness map
during runtime shape editing.

While our method offers high performance for linear
elastostatic stress analysis, the speedup decreases when we
increase the size of the stress basis in order to obtain higher
estimation accuracy. It is interesting to explore the use of
modal analysis or other deformation basis to factorize large
deformations at runtime. Thereby, we may build a reduced
stress basis of smaller size for runtime estimation.

In industrial product design, different from bending and
twisting operations, shape editing operations (e.g., sketch
based extrusion) need to keep the semantic (parametric) de-
sign constraints [59], which usually leads to a large volume
change, necessitating a complete remeshing. This problem
poses new challenges for precomputing a reduced space.

Moreover, the decreased quality (or inversion) of the
tetrahedral mesh is specific to the deformation method used.
To fully remove its potential influence on the estimation
accuracy, the boundary element method (BEM) is a possible
solution. BEM computes the stress directly on the surface
mesh, thus the tetrahedral mesh is no longer needed. It
also works better on the stress singularity problem often
encountered in engineering analysis, although it has limita-
tions when handling heterogeneous materials.

Finally, while our runtime stress analysis is fast, the
precomputation still takes time. Accelerating the subspace
construction for stress analysis is also a direction worthy of
future exploration [60].

ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers
for their constructive comments. This work is partially sup-
ported by the NSF of China (No.61303136 and No.61272305),
the National Science Foundation of U.S. (CAREER-1453101),
the National Program for Special Support of Eminent Pro-
fessionals of China, Lenovo’s Program for Young Scientists,
and generous gifts from Intel and Adobe. Kun Zhou is the
corresponding author of this paper.

REFERENCES

[1] O. Stava, J. Vanek, B. Benes, N. Carr, and R. Měch, “Stress relief:
improving structural strength of 3d printable objects,” ACM Trans.
Graph., vol. 31, no. 4, p. 48, 2012.

[2] Q. Zhou, J. Panetta, and D. Zorin, “Worst-case structural analysis,”
ACM Trans. Graph., vol. 32, no. 4, p. 137, 2013.

[3] W. Wang, T. Y. Wang, Z. Yang, L. Liu, X. Tong, W. Tong, J. Deng,
F. Chen, and X. Liu, “Cost-effective printing of 3d objects with
skin-frame structures,” ACM Trans. Graph., vol. 32, 2013.

[4] L. Lu, A. Sharf, H. Zhao, Y. Wei, Q. Fan, X. Chen, Y. Savoye, C. Tu,
D. Cohen-Or, and B. Chen, “Build-to-last: Strength to weight 3d
printed objects,” ACM Trans. Graph., vol. 33, 2014.

[5] Y. Xie, W. Xu, Y. Yang, X. Guo, and K. Zhou, “Agile structural
analysis for fabrication-aware shape editing,” Computer Aided Ge-
ometric Design, vol. 35, pp. 163–179, 2015.

[6] C. Multiphysics, “Comsol multiphysics user guide (version 4.3 a),”
COMSOL, AB, 2012.

[7] J. Lewis, M. Cordner, and N. Fong, “Pose space deformation:
a unified approach to shape interpolation and skeleton-driven
deformation,” in SIGGRAPH ’00, 2000, pp. 165–172.

[8] R. W. Sumner, M. Zwicker, C. Gotsman, and J. Popović, “Mesh-
based inverse kinematics,” ACM Trans. Graph., vol. 24, 2005.

[9] K. G. Der, R. W. Sumner, and J. Popović, “Inverse kinematics for
reduced deformable models,” ACM Trans. Graph., vol. 25, no. 3,
pp. 1174–1179, Jul. 2006.

[10] O. Weber, O. Sorkine, Y. Lipman, and C. Gotsman, “Context-aware
skeletal shape deformation,” Computer Graphics Forum, vol. 26,
no. 3, pp. 265–274, 2007.

[11] X. Shi, K. Zhou, Y. Tong, M. Desbrun, H. Bao, and B. Guo,
“Example-based dynamic skinning in real time,” ACM Trans.
Graph., vol. 27, no. 3, p. 29, Aug. 2008.

[12] C. Von-Tycowicz, C. Schulz, H.-P. Seidel, and K. Hildebrandt,
“Real-time nonlinear shape interpolation,” ACM Trans. Graph.,
vol. 34, no. 3, p. 34, 2015.

[13] T. W. Sederberg and S. R. Parry, “Free-form deformation of solid
geometric models,” ACM SIGGRAPH computer graphics, vol. 20,
no. 4, pp. 151–160, 1986.

[14] M. Botsch and L. Kobbelt, “An intuitive framework for real-time
freeform modeling,” ACM Trans. Graph., vol. 23, no. 3, pp. 630–634,
2004.

[15] D. Zorin, P. Schröder, and N. Fong, “Interactive multiresolution
mesh editing,” in SIGGRAPH ’97, 1997, pp. 259–268.

[16] L. Kobbelt, S. Campagna, J. Vorsatz, and H.-P. Seidel, “Interactive
multi-resolution modeling on arbitrary meshes,” in SIGGRAPH
’98, 1998, pp. 105–114.

[17] Y. Lipman, O. Sorkine, D. Cohen-Or, D. Levin, C. Rössl, and H.-P.
Seidel, “Differential coordinates for interactive mesh editing,” in
Shape Modeling International ’04, 2004, pp. 181–190.

[18] O. Sorkine, D. Cohen-Or, Y. Lipman, M. Alexa, C. Rössl, and H.-P.
Seidel, “Laplacian surface editing,” in SGP’04. New York, NY,
USA: ACM, 2004, pp. 175–184.

[19] Y. Yu, K. Zhou, D. Xu, X. Shi, H. Bao, B. Guo, and H.-Y. Shum,
“Mesh editing with poisson-based gradient field manipulation,”
ACM Trans. Graph., vol. 23, no. 3, pp. 644–6351, 2004.

[20] M. Botsch and O. Sorkine, “On linear variational surface defor-
mation methods,” IEEE Trans. Visualization and Computer Graphics,
vol. 14, no. 1, pp. 213–230, 2008.

[21] S. Martin, B. Thomaszewski, E. Grinspun, and M. Gross,
“Example-based elastic materials,” ACM Trans. Graph., vol. 30,
2011.

[22] C. Schumacher, B. Thomaszewski, S. Coros, S. Martin, R. Sumner,
and M. Gross, “Efficient simulation of example-based materials,”
in Symp. on Computer Animation (SCA), 2012.

[23] D. L. James, C. D. Twigg, A. Cove, and R. Y. Wang, “Mesh ensem-
ble motion graphs: Data-driven mesh animation with constraints,”
ACM Trans. Graph., vol. 26, no. 4, Oct. 2007.

[24] C. Zheng, “One-to-many: Example-based mesh animation synthe-
sis,” in Symp. on Computer Animation (SCA), 2013.

[25] A. McAdams, Y. Zhu, A. Selle, M. Empey, R. Tamstorf, J. Teran, and
E. Sifakis, “Efficient elasticity for character skinning with contact
and collisions,” ACM Trans. Graph., vol. 30, no. 4, p. 37, 2011.

[26] S. S. An, T. Kim, and D. L. James, “Optimizing cubature for effi-
cient integration of subspace deformations,” ACM Trans. Graph.,
vol. 27, no. 5, p. 165, Dec. 2008.

[27] Y. Teng, M. A. Otaduy, and T. Kim, “Simulating articulated sub-
space self-contact,” ACM Trans. Graph., vol. 33, no. 4, p. 106, 2014.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. VV, NO. N, MONTH YYYY 14

[28] A. Treuille, A. Lewis, and Z. Popović, “Model reduction for real-
time fluids,” ACM Trans. Graph., vol. 25, no. 3, pp. 826–834, Jul.
2006.

[29] M. Chai, C. Zheng, and K. Zhou, “A reduced model for interactive
hairs,” ACM Trans. Graph., vol. 33, no. 4, 2014.

[30] S. Li, J. Huang, F. de Goes, X. Jin, H. Bao, and M. Desbrun, “Space-
time editing of elastic motion through material optimization and
reduction,” ACM Trans. Graph., vol. 33, no. 4, p. 108, 2014.

[31] C. Schulz, C. von Tycowicz, H.-P. Seidel, and K. Hildebrandt, “An-
imating deformable objects using sparse spacetime constraints,”
ACM Trans. Graph., vol. 33, no. 4, p. 109, 2014.

[32] C. Zheng and D. L. James, “Rigid-body fracture sound with
precomputed soundbanks,” ACM Trans. Graph., vol. 29, no. 3, 2010.

[33] H. Xu, Y. Li, Y. Chen, and J. Barbič, “Interactive material design
using model reduction,” ACM Trans. Graph., vol. 34, no. 2, 2015.

[34] N. Umetani, T. Igarashi, and N. J. Mitra, “Guided exploration of
physically valid shapes for furniture design.” ACM Trans. Graph.,
vol. 31, no. 4, p. 86, 2012.

[35] M. Skouras, B. Thomaszewski, S. Coros, B. Bickel, and M. Gross,
“Computational design of actuated deformable characters,” ACM
Trans. Graph., vol. 32, no. 4, Jul. 2013.

[36] X. Chen, C. Zheng, W. Xu, and K. Zhou, “An asymptotic numerical
method for inverse elastic shape design,” ACM Trans. Graph.,
vol. 33, no. 4, 2014.

[37] A. Francavilla, C. Ramakrishnan, and O. Zienkiewicz, “Optimiza-
tion of shape to minimize stress concentration,” The Journal of
Strain Analysis for Engineering Design, vol. 10, no. 2, pp. 63–70,
1975.

[38] P. Pedersen, “On optimal shapes in materials and structures,”
Structural and Multidisciplinary Optimization, vol. 19, no. 3, pp. 169–
182, 2000.

[39] W. A. Wall, M. A. Frenzel, and C. Cyron, “Isogeometric structural
shape optimization,” Computer Methods in Applied Mechanics and
Engineering, vol. 197, no. 33, pp. 2976C–2988, 2008.

[40] N. Umetani and R. Schmidt, “Cross-sectional structural analysis
for 3d printing optimization,” in SIGGRAPH Asia 2013 Technical
Briefs, ser. SA ’13, 2013.

[41] J. Barbič and D. L. James, “Real-time subspace integration for st.
venant-kirchhoff deformable models,” ACM Trans. Graph., vol. 24,
no. 3, pp. 982–990, 2005.

[42] K. Hildebrandt, C. Schulz, C. V. Tycowicz, and K. Polthier, “Inter-
active surface modeling using modal analysis,” ACM Trans. Graph.,
vol. 30, no. 5, p. 119, 2011.

[43] L. Kharevych, P. Mullen, H. Owhadi, and M. Desbrun, “Numer-
ical coarsening of inhomogeneous elastic materials,” ACM Trans.
Graph., vol. 28, no. 3, p. 51, 2009.

[44] M. Nesme, P. G. Kry, L. Jeřábková, and F. Faure, “Preserving
topology and elasticity for embedded deformable models,” ACM
Trans. Graph., vol. 28, no. 3, p. 52, 2009.

[45] D. Chen, D. I. Levin, S. Sueda, and W. Matusik, “Data-driven finite
elements for geometry and material design,” ACM Trans. Graph.,
vol. 34, no. 4, p. 74, 2015.

[46] M. E. Gurtin, An introduction to continuum mechanics. Academic
press, 1982.

[47] R. v. Mises, “Mechanik der festen körper im plastisch-deformablen
zustand,” Nachrichten von der Gesellschaft der Wissenschaften zu
Göttingen, Mathematisch-Physikalische Klasse, vol. 1913, pp. 582–592,
1913.

[48] J. Gere and B. Goodno, Mechanics of materials. Nelson Education,
2012.

[49] O. Zienkiewicz, R. Taylor, and J. Zhu, The finite element method: its
basis and fundamentals. Butterworth-Heinemann, 2005.

[50] J. Bonet, Nonlinear continuum mechanics for finite element analysis.
Cambridge university press, 1997.

[51] J. N. Reddy, An introduction to continuum mechanics. Cambridge
University Press, 2013.

[52] C. von Tycowicz, C. Schulz, H.-P. Seidel, and K. Hildebrandt, “An
efficient construction of reduced deformable objects,” ACM Trans.
Graph., vol. 32, no. 6, p. 213, 2013.

[53] A.-L. Tertois, T. Frank, and J.-L. Mallet, “Real-time tetrahedral
volume editing accounting for discontinuities,” in IEEE Computer
Aided Design and Computer Graphics, 2005.

[54] E. D. Andersen and K. D. Andersen, “The mosek interior point
optimizer for linear programming: an implementation of the ho-
mogeneous algorithm,” in High performance optimization. Springer,
2000, pp. 197–232.

[55] OpenMP, “OpenMP application program interface version
3.0,” May 2008. [Online]. Available: http://www.openmp.org/
mp-documents/spec30.pdf

[56] A. Jacobson, D. Panozzo et al., “libigl: A simple C++
geometry processing library,” 2015. [Online]. Available: http:
//libigl.github.io/libigl/

[57] A. Jacobson, I. Baran, J. Popovic, and O. Sorkine, “Bounded bi-
harmonic weights for real-time deformation.” ACM Trans. Graph.,
vol. 30, no. 4, p. 78, 2011.

[58] W. Schütz, “A history of fatigue,” Engineering fracture mechanics,
vol. 54, no. 2, pp. 263–300, 1996.

[59] R. Gal, O. Sorkine, N. J. Mitra, and D. Cohen-Or, “iwires: An
analyze-and-edit approach to shape manipulation,” ACM Trans.
Graph., vol. 28, no. 3, p. 33, 2009.

[60] Y. Yang, D. Li, W. Xu, Y. Tian, and C. Zheng, “Expediting precom-
putation for reduced deformable simulation,” ACM Trans. Graph.,
vol. 34, no. 6, p. 243, 2015.

Xiang Chen is an Assistant Professor in the
State Key Lab of CAD&CG, Zhejiang Universi-
ty. He received His Ph.D. in Computer Science
from Zhejiang University in 2012. His curren-
t research interests mainly include fabrication-
aware design, image analysis/editing, shape
modeling/retrieval and computer-aided design.

Changxi Zheng is an Assistant Professor in the
Computer Science Department at Columbia U-
niversity. Prior to joining Columbia, he received
his M.S. and Ph.D. from Cornell University and
his B.S. from Shanghai Jiaotong University. His
research spans computer graphics, physically-
based simulation, computational design, com-
putational acoustics, scientific computing and
robotics. He has been serving as an Associated
Editor of ACM Transactions on Graphics, and
won the NSF CAREER Award and the Cornell

CS Best Dissertation award in 2012.

Kun Zhou is a Cheung Kong Professor in the
Computer Science Department of Zhejiang U-
niversity, and the Director of the State Key Lab
of CAD&CG. Prior to joining Zhejiang University
in 2008, Dr. Zhou was a Leader Researcher of
the Internet Graphics Group at Microsoft Re-
search Asia. He received his B.S. degree and
Ph.D. degree in computer science from Zhejiang
University in 1997 and 2002, respectively. His
research interests are in visual computing, paral-
lel computing, human computer interaction, and

virtual reality. He currently serves on the editorial/advisory boards of
ACM Transactions on Graphics and IEEE Spectrum. He is a Fellow of
IEEE.

http://www.openmp.org/mp-documents/spec30.pdf
http://www.openmp.org/mp-documents/spec30.pdf
http://libigl.github.io/libigl/
http://libigl.github.io/libigl/

Supplemental Material 1

Example-based Subspace Stress Analysis for Interactive Shape Design
SUPPLEMENTAL MATERIAL

Xiang Chen∗ Changxi Zheng† Kun Zhou∗

∗ Zhejiang University † Columbia University

1 Linear Tetrahedral Element

To aid explanation, we reproduce the discretized elastostatic stress equation from the main paper

∑

e

∫

Ve

σi jBk, j dV =
∑

e

�

∫

Ve

biBk dV +

∫

∂ Ve

t iBk dS

�

. (1)

Each linear element has 4 nodes, one for each vertex of the tetrahedron (solid points in Figure 1). The 4 nodal
basis functions Bk are linear. First, the RHS of Equation (1) is transformed by using the change of variables formula

∫

Ve

biBk dV =

∫∫∫

biBk det Je dξ1 dξ2 dξ3,

where ξ are local coordinates and Je =∇ξX is the Jacobian matrix. Here bi and det Je are constant with respect
to ξ, so only Bk is integrated (refer to the supplemental material for the details). We get the same result 1

4 biVe, or
in its matrix form 1

4 bVe for every k, where Ve is the volume of element e. In other words, the whole body force of
element e is equally lumped into its 4 nodes. For compactness, the traction term is omitted.

Similarly, the LHS of Equation (1) is transformed into
∫

Ve

σi jBk, j dV =

∫∫∫

σi jBk, j det Je dξ1 dξ2 dξ3,

where both σi j and Bk, j are constant. The result is σi j(n̄ j)k, or in its matrix form σn̄k, where n̄k is the outward
normal of node k (see Section 4.1).

Given the above integration results, we have the element equation σen̄e
k =

1
4 bVe for each element e. We then

assemble all the element equations to get the per-node static equilibrium equation

f i =
∑

e∈adj(i)

σen̄e
i =

1
4

b
∑

e∈adj(i)

Ve = g i ,

where e ∈ adj(i) indicates an element incident to node i. By stacking the above equation for each node, we get the
Equation (5) in paper, where Aσ represents the stacked sparse matrix from n̄e

i , and bσ is the stacked vector of g i .

0

1

2

3

4 7

5

6

8
9

ξ1

ξ2

ξ3

n1

n2

n3

n0

Figure 1: The finite tetrahedral element: linear (4 nodes) and quadratic (10 nodes).

Supplemental Material 2

2 Quadratic Tetrahedral Element

For quadratic elements, besides the 4 nodes located at mesh vertices, there are 6 more nodes positioned at the
midpoints of the edges (see figure above). The 10 basis functions for these nodes are quadratic.

The body force term on the RHS of Equation (1) is integrated analytically as ck biVe, where ck = −
1

20 for
k = 1, 2,3, 4, and ck =

1
5 for k = 5, 6, . . . , 10. Refer to the supplemental material for a detailed derivation.

For the LHS of Equation (1), both σi j and Bk, j change linearly in each element, leading to a complicated
analytical integration. A cheaper way is using numerical tetrahedral integration. Hence we choose 4 quadrature
points, with local coordinates ξq (q = 1,2,3,4), inside each element, which is provably accurate enough for
integration of quadratic functions. In matrix form, the integration is computed as (details in Section 4.2)

∫

Ve

σ (∇X Bm) dV ≈
4
∑

q=1

wqσ(ξ
q)T

�

∇ξBm(ξ
q)
�

,

where wq is the integration weight for quadrature point ξq, T = −[a1n1 a2n2 a3n3]
3 is a constant matrix for each

element, ai and ni (see the inset figure) are the area and normal vector of the triangular face opposite to vertex i
in the tetrahedron. Similar to the per-node equation stacking in Section 1, we get the Equation (5) in paper for
quadratic elements.

3 Construction of Et

Similar to Equation (1) in paper, the strain εmn is linearly related to σi j:

εi j =Di jmnσmn,

where D is a 4th-order tensor whose coefficients depend on material parameters. Given the stress subspace S, we
have s t

k , which is the stress field of tetrahedron t corresponding to the kth basis vector in S. Then we can write
the reduced stress field σt

mn = (s
t
k)mnrk according to the reduced coordinates r . Therefore, by using the above

linear relation between εmn and σi j , we can write the reduced strain field of tetrahedron t as

εt
i j =Di jmnσ

t
mn =Di jmn(s

t
k)mnrk.

Here we define E t
i jk =Di jmn(st

k)mn, which is exactly the 3rd-order tensor Et . Note that only linear operations are
involved.

4 Integration of FEM Equation (1)

4.1 Linear basis functions

In case of linear tetrahedral element (4-nodes), we have the basis functions

B0 = λ, B1 = ξ1, B2 = ξ2, B3 = ξ3,

where λ= 1− ξ1 − ξ2 − ξ3. Thus the jacobian matrix Je is

Je =∇ξX =
3
∑

k=0

Xk ⊗∇ξBk = [X1 − X0 X2 − X0 X3 − X0],

and det Je = 6Ve, where Ve is the volume of tetrahedron e.

Supplemental Material 3

Taking B0 as an integration example
∫∫∫

biB0 det Je dξ1 dξ2 dξ3

= 6biVe

∫ 1

0

∫ 1−ξ1

0

∫ 1−ξ1−ξ2

0

(1− ξ1 − ξ2 − ξ3) dξ1 dξ2 dξ3

=
1
4

biVe,

while integration of B1, B2 and B3 are similar.
For the LHS of Equation (1), we use matrix form here for derivation. In linear case, both σ and ∇X Bk are

constant and thus independent of ξ. For instance

∇X B0 = J−T
e ∇ξB0

= J−T
e [−1 − 1 − 1]T

=
1

det Je
[c1 c2 c3][−1 − 1 − 1]T

where c1 = (X2−X0)×(X3−X0) = −2a1n1, c2 = −2a2n2, c3 = −2a3n3, ai and ni are the area and outward normal
of the triangle opposite to node i in the tetrahedron. Based on the above derivation, and define n̄k =

1
3

∑4
i 6=k aini

(i.e., the outward normal of node k), we have ∇X Bk =
6n̄k

det Je
. Thus the integration is

∫∫∫

σ (∇X Bk) det Je dξ1 dξ2 dξ3 = σn̄k.

4.2 Quadratic basis functions

For quadratic tetrahedral element (10-nodes, 4 on vertices and 6 on edges), we have the following basis functions

B0 = λ(2λ− 1), B1 = ξ1(2ξ1 − 1),
B2 = ξ2(2ξ2 − 1), B3 = ξ3(2ξ3 − 1),
B4 = 4ξ1λ, B5 = 4ξ2λ, B6 = 4ξ3λ,

B7 = 4ξ1ξ2, B8 = 4ξ1ξ3, B9 = 4ξ2ξ3.

When the 6 nodes are put right at the midpoints of edges, the jacobian matrix is Je =
∑9

k=0 Xk ⊗ ∇ξBk =
[X1 − X0 X2 − X0 X3 − X0], exactly the same as it is in the case of linear basis functions.

Again, taking B0 as an integration example
∫∫∫

biB0 det Je dξ1 dξ2 dξ3

= 6biVe

∫ 1

0

∫ 1−ξ1

0

∫ 1−ξ1−ξ2

0

λ(2λ− 1) dξ1 dξ2 dξ3

= −
1

20
biVe,

and B1, B2, . . . , B9 are handled similarly.
For the LHS of Equation (1), we have

∇X Bk = J−T
e ∇ξBk =

1
det Je

[c1 c2 c3]∇ξBk.

Supplemental Material 4

Since σ and ∇ξBk changes with ξ, we use numerical quadrature to compute the integral

∫

Ve

σ (∇X Bm) dV

≈
nq
∑

q=1

wq ∗
�

σ(ξq)
1

det Je
[c1 c2 c3]∇ξBk(ξq)

�

∗ Ve

=
nq
∑

q=1

wq ∗
�

σ(ξq)
[−2a1n1 − 2a2n2 − 2a3n3]

6Ve
∇ξBk(ξq)

�

∗ Ve

=
nq
∑

q=1

wq ∗
�

σ(ξq)
[−a1n1 − a2n2 − a3n3]

3
∇ξBk(ξq)

�

,

where nq is the number of quadrature points.

	linear_stress_est
	Introduction
	Related Work
	Background
	Notation
	Linear elastostatic analysis

	Reduced Stress Analysis
	Elastostatic Analysis using Stress Elements
	Reduced Stress Solver
	Sparsification
	Improving Mesh Quality

	Construction of Stress Basis
	Algorithm
	Stress Tensor Pull-Back
	Stress Basis Push-Forward
	Precomputation of Regularization Weight

	Validation and Results
	Preparing training and test data
	Accuracy
	Performance
	Application: Stress-Aware Design

	Limitations and Future Work
	References
	Biographies
	Xiang Chen
	Changxi Zheng
	Kun Zhou

	supplemental
	Linear Tetrahedral Element
	Quadratic Tetrahedral Element
	Construction of Et
	Integration of FEM Equation (??)
	Linear basis functions
	Quadratic basis functions

