JOURNAL OF XXXX, VOL. XX, NO. X, AUGUST XXXX

1

Adaptive Skinning for Interactive Hair-Solid Simulation

Menglei Chai, Changxi Zheng and Kun Zhou, Fellow, IEEE

Abstract—Reduced hair models have proven successful for interactively simulating a full head of hair strands, building upon a fundamental assumption
that only a small set of guide hairs are needed for explicit simulation, and the rest of the hair move coherently and thus can be interpolated using guide
hairs. Unfortunately, hair-solid interactions is a pathological case for traditional reduced hair models, as the motion coherence between hair strands can be
arbitrarily broken by interacting with solids.

In this paper, we propose an adaptive hair skinning method for interactive hair simulation with hair-solid collisions. We precompute many eligible sets of
guide hairs and the corresponding interpolation relationships that are represented using a compact strand-based hair skinning model. At runtime, we
simulate only guide hairs; for interpolating every other hair, we adaptively choose its guide hairs, taking into account motion coherence and potential
hair-solid collisions. Further, we introduce a two-way collision correction algorithm to allow sparsely sampled guide hairs to resolve collisions with solids that
can have small geometric features. Our method enables interactive simulation of more than 150K hair strands interacting with complex solid objects, using
400 guide hairs. We demonstrate the efficiency and robustness of the method with various hairstyles and user-controlled arbitrary hair-solid interactions.

Index Terms—hair simulation, interactive method, reduced model, adaptivity, collision correction.

<+

Introduction

umans interact with their hair using solid objects every day,

brushing or combing their hair daily and even playing with
their hair while reading. In a virtual world, hair simulation is of
vital importance in depicting computer animated characters.
Despite its wide adoption in offline production, interactive
hair simulation, especially with intricate hair-solid interactions,
remains a great challenge, mainly because of the dense hair
volume typically composed in excess of 100K individual strands.
Indeed, virtually no hair-solid simulation of a full head of hair
has achieved interactive performance yet. It is this interactive
hair-solid simulation problem that we focus on in this paper.

A popular approach of interactive hair simulation is to use a
reduced model: it simulates only a small set of representative
hairs (or guide hairs) and interpolates the rest of the hairs
(or normal hairs) in a way similar to the Linear Blend Skin-
ning [1]. This method enjoys fast performance and plausible
results, building on a fundamental assumption that there exists
strong coherence between normal hairs and their guide hairs
throughout.

Unfortunately, when used for simulating hair-solid interac-
tions, current reduced hair models have significant deficiencies:
because of the interactively user-controlled solids, any pair of
hairs can move completely differently at any time. Thus, the
coherence between guide and normal hairs can be disrupted in
an unpredictable manner. Consequently, interpolating normal
hairs using a fixed set of guide hairs leads to serious artifacts,
such as ghost drifting and interpenetration (Figure 10 and the
supplemental video). To make matter worse, when a solid has
small geometric features such as the fine teeth of a comb, the
sparsely selected guide hairs may not even touch those small
features, and thus provide no clue to normal hairs for avoiding
interpenetration (Figure 4).

e Menglei Chai and Kun Zhou are with the State Key Laboratory of
CAD&CG, Zhejiang University, Hangzhou, China, 310058. Email: cm-
latsim@gmail.com, kunzhou@acm.org.

e Changxi Zheng is with the Department of Computer Science, Columbi-
a University, 616 Schapiro (CEPSR), New York, NY 10027. Email:
cxz@cs.columbia.edu.

Fig. 1: Interactive hair salon. We propose the first interactive
hair-solid simulation method. Using 400 guide hairs, our method
is able to simulate a full head of hairs with more than 150K
hair strands interacting with complex solids. With our technique,
a user-controlled virtual hair salon is made possible. See the
supplemental video for animation results.

We notice that a hair strand always shares similar motions
with some other hair strands at any moment, because of the
dense distribution of hair strands. Interactions with solids break
the hair’'s motion coherence only in local regions in a time-
varying way, and thus dynamically change the groups of hairs
that move coherently. This observation suggests that the set of
guide hairs for every normal hair always exists, but dynamically
varies under the hair-solid interactions.

In light of this, we propose an adaptive hair skinning method
for interactive hair simulation with hair-solid collisions. In our
method, every normal hair has multiple eligible sets of guide
hairs, in contrast to a fixed single set of guide hairs in existing
methods. This fundamental difference from existing reduced
models allows our runtime simulation to exploit two key ideas:
(i) when interpolating a normal hair, we take into account the
current and potential hair-solid collisions, and adaptively choose
an optimal set of guide hairs for interpolation; and (ii) to enable
sparsely distributed guide hairs to reliably detect collisions

JOURNAL OF XXXX, VOL. XX, NO. X, AUGUST XXXX

with solids, we exploit the densely distributed normal hairs
to “propagate” hair-solid collisions to the guide hairs, leading
to a novel two-way correction scheme for collision resolution at
interactive rates.

While our runtime simulation method is independent from
any particular guide-hair precomputation algorithm, we further
propose a data-driven approach to precompute multiple sets
of guide hairs and their interpolation weights. This approach
learns a guide-hair skinning model from a set of hair animation
data pre-simulated using a non-reduced hair model. With a
single set of training data, we are able to simulate a wide
range of hair-solid interactions at runtime, and the resulting
hair animations are comparable to the full simulation results.
Moreover, our precomputation and adaptive runtime simulation
are made possible by a strand-based polynomial representation
of hair skinning relationship. This representation is compact,
significantly reducing memory footprint, and facilitates spatially
coherent hair interpolation at runtime.

Our adaptive hair skinning model can account for hair
friction, as long as both the training data and the runtime
guide hairs are simulated with a friction model. Unfortunately,
accurately modeling hair friction for a large hair volume
remains computationally expensive. While an interactive hair
friction model is out of our scope, we demonstrate that our
interactive hair-solid simulation can obtain frictional effects by
incorporating a simple and fast friction model (Section 7.1).

Contributions. In summary, we introduce three major technical
contributions for interactive hair-solid simulation:

« We develop an adaptive algorithm for choosing guide hairs
that affect a normal hair at runtime (Section 4).

« We design a two-way collision correction algorithm to avoid
hair-solid intersections at runtime (Section 5).

« We propose a data-driven approach to precompute multiple
eligible sets of guide hairs and their interpolation weights
(Section 6).

We demonstrate the efficacy and robustness of our method
simulating a full head of hair (with 150K strands) with various
hairstyles at an interactive frame rate (Figure 1). Experiments
show that our method produces similar results as produced by
full-space simulations. To our knowledge, this kind of interactive
hair-solid simulation has not yet been achieved.

2 Prior Work

There exist numerous work on creating realistic and efficient hair
animation. Here we review topics most relevant to our interactive
hair-solid simulation, while referring to the surveys [2], [3], [4]
for more elaborate discussion.

Hair Dynamics. Hair has been modeled in a variety of ways.
Perhaps the most classic approach, and the one commonly
used in computer graphics, is to treat hair strands as particles
interconnected with springs, starting from the pioneer work [5],
[6]. Other successive work have focused on modeling bending
and stretching effects of hair strands [7], [8]. Later, Selle et
al. [9] augmented the mass-spring model to handle torsion and
stretch-limiting for improved realism. More recently, Iben et
al. [10] addressed the needs for artistic control in spring-mass
hair simulation, and demonstrated its efficacy in production of
feature films.

2

To accurately model hair strands’ nonlinear bending and
twisting deformations, Kirchhoff rods [11] has been introduced
in graphics simulation [12]. Along this line of models, Bertails
et al. [13] proposed Super-Helices to animate naturally shaped
strands with high-order piecewise helical rods; Bergou et al. [14]
used the twist-free Bishop frame to parameterize strands’
material frame and facilitate the discretization of Kirchhoff
equations. Later, Casati and Bertails-Descoubes [15] used a high-
order rod element with affine curvature, and introduced an
accurate integration scheme based on power series expansions
to simulate highly curly strands.

Different from these methods, we do not propose a specific
hair strand integrator. Rather, we focus on the interactive simu-
lation of a large volume of hair strands interacting with solids.
Our method can incorporate any of these hair models, as long as
its computational cost is affordable for the interactive simulation
of selected guide hairs. In our examples, we implement a spring-
particle model, as it allows us to animate a full head of hair with
150K strands.

Hair-solid Interaction. Robustly simulating hair-hair and hair-
solid interactions has long been a challenging problem. McAdams
et al. [16] relied on a fluid solver to capture the spatial coherence
of hair motions, while using spring-mass model to resolve
detailed hair contacts and collisions. Other work have focused on
accurate simulation of hair-hair interactions: Daviet et al. [17]
introduced an iterative solver that computes hair dynamics in
the presence of Coulomb friction for hair-hair contacts. Using the
solver of [17] and the elastic rod model [14], the recent work
of Kaufman et al. [18] introduced a collision response algorithm
that adapts the degree of nonlinearity during the simulation.

To handle hair-solid interactions, common approaches are
similar to those for cloth simulation, as they all involve small
geometric features and require robust treatment of contacts and
collisions. Bridson et al. [19] introduced a practical framework
combining a fail-safe collision method with a fast repulsion
force method. It detects collisions using a continuous collision
detection method, which was improved in later works [20],
[21]. This method was made more robust with globally-coupled
geometric collision handling [22] and an improved impact zone
method [23]. While robust for complex collision scenarios, these
methods are generally expensive; it is not straightforward to
apply them in interactive hair simulations. Another efficient
solution is to represent solid objects implicitly using a signed
distance field [24], [25]. Collisions are then detected in constant-
time by querying distance values. Selle et al. [9] adopted this
method to resolve collisions between hair and upper body by
interpolating distance values using a semi-Lagrangian advection
scheme. Our runtime simulation adopts this method for robust
hair-solid collision resolution.

Reduced Hair Simulation. In parallel to the hair models
focusing on realism, various reduced hair models have been
devised. Exploiting the spatial coherence of hair motions, hair
simulation has been reduced and simulated as continuum
volume [16], [26] or coupled particles [27]. These models
enjoy fast computational performance, but capture limited hair
motion details, especially in the presence of complex hair-hair
and hair-solid interactions.

We follow another widely adopted school of reduced hair
models: among all hair strands, only a small subset of strands
(i.e., guide hairs) are explicitly simulated, and the rest of the

JOURNAL OF XXXX, VOL. XX, NO. X, AUGUST XXXX

,Plrel:omuttion: - 2\\ \\‘&\ ."\‘ .

hair 2 hair |
- =y
B

@

’
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
|

e .
training animation multiple sets of skinning models !
' (section 6.2) iR

guide-hair simulation grouping guide hairs

adaptive skinning

two-way correction !
(section 4.3)

(section 4.1, 4.2) (section 5) K

Fig. 2: Overview of our pipeline. We perform offline simulation to create a few sequences of training animation. Then we preform
skinning precomputation, multiple sets of skinning models are assigned to each normal hair. At runtime, we simulate guide hairs to
resolve large-scale collision. All guide hairs are dynamically grouped into many clusters. Each normal hair is then calculated using
one of its adaptive skinning models that obey to current guide clusters. Finally, two-way correction is applied to further resolve

remaining collisions.

hairs are interpolated using guide hairs [28], [29]. A recent
data-driven reduced hair model [30] can simulate up to 8000
strands in realtime, but neglects the entire hair-hair interactions.

Multi-resolution hair representations have long been used
in hair modeling and animation [31], [32]. These methods
adaptively choose the local resolution of a control structure for
efficient simulation and rendering. The adaptation is determined
by the hair velocity, visibility, and the distance from the viewer,
but not hair-solid contacts. In comparison, our method always
animates and renders the entire hair model, but our adaptive
selection of guide hairs is determined by hair-solid contacts.

Our algorithm of preparing multiple sets of guide hairs is
relevant to the method of Chai et al. [33], which automatically
selects guide hairs and builds a reduced hair model using
precomputed animation data, also similar in spirit to other
methods for cloth and deformation simulation [34], [35], [36].
Unlike our method, their method may not produce spatially
coherent skinning weights along hair strands. More importantly,
they focus on the fast simulation of hair-hair interactions, but are
insufficient to simulate complex hair-solid interactions (details
in Section 3.2), which we address by introducing two new
techniques, namely adaptive runtime skinning and two-way
collision correction.

Bertails et al. [13] also used their Super-Helix model to
animate sparse guide strands. Their interpolation skinning
weights vary smoothly along a hair strand. We also use a per-
strand skinning model; we further use a polynomial representa-
tion of the per-strand skinning weights to reduce the memory
cost. Simulating only guide hairs has fundamental limitations
to capture detailed hair-solid interactions, as discussed in
Section 3.2 and Section 7.1. It is those limitations that we
focus to address in this paper.

Recently, Somasundaram [37] proposed a method to resolve
hair-solid collisions in a reduced hair simulation. The main idea
is detecting penetrations at runtime and updating interpola-
tion weights to push interpolated normal strands away from
solids. We found that a position-based correction approach can
introduce temporal incoherence (Figure 5) and even fail to
interpolate properly in certain cases (e.g., the bottom row of
Figure 6).

Instead of using guide hairs, an alternative approach of
Miiller et al. [38] simulates hair and fur using one iteration per
timestep while ensuring the hair’s inextensibility. This is achieved
using the algorithm of Follow The Leader [39] combined with
position-based dynamics (PBD) [40]. Because of the nature
of PBD, this method is not easy to control the hair’s material

== guide hair
== normal hair
o guide particle
e normal particle
+-- skinning relationship

Fig. 3: Particle-based and strand-based hair skinning. (a)
The particle-based hair skinning in [33], in which every normal
particle can be affected by multiple guide particles on a guide
hair (Section 3.1). (b) In our strand-based hair skinning, every
normal particle is affected by one guide particle on a guide hair,
enabling a compact polynomial representation of the skinning
weights (Section 6.1).

properties such as stiffness. Moreover, it simplifies the collision
volume using ellipsoids in exchange of performance. As a result,
this method is not as accurate as physically based techniques.
In the supplemental video, we compare this method with our
simulation method.

3 Motivation and Overview

We start by briefly reviewing the standard reduced hair simu-
lation method (Section 3.1), and then discuss its fundamental
limitations for simulating hair-solid interactions (Section 3.2).
Lastly, we overview the major steps of our method (Section 3.3)
and highlight the key differences from the traditional reduced
method.

3.1 Background on Reduced Hair Model

The standard reduced hair model simulates a small set of guide
hairs and interpolates a large set of normal hairs. Here we follow
the notation of Chai et al. [33].Consider hair strands attached
to a rigid head model. Every hair strand is represented using
a B-spline curve defined by a chain of particles. The state of a
hair particle is described by a tuple of s = (p, t) indicating its
position p € R® and tangential direction t in the world frame
of reference (Figure 3). Further, let § = (p, t) denote a hair
particle position in the head’s local frame of reference. In other
words, if the head’s rigid transformation is T, then s relates to
§ through s = Ts, in which p is translated and t is rotated by
T. In addition, when the head is static, every particle has a rest

JOURNAL OF XXXX, VOL. XX, NO. X, AUGUST XXXX

/ /

(@) (b) © ()] (e ®

Fig. 4: A simple solid-hair interaction. Two normal hairs
(in blue) are interpolated using two guide hairs (in orange).
(a—c) In our proposed simulation method, the normal hairs
are interpolated with adaptively selected guide hairs, leading
to physically correct results. (d—f) In previous reduced hair
simulation, normal hairs are always interpolated using fixed
sets of guide hairs, resulting in unnatural hair shapes and
intersections with the solid object.

state s* in the world space and a corresponding rest state §* in
the head’s local space.

A reduced hair model consists of a small group of hair strands
as guide hairs and the rest as normal hairs. At runtime, only the
states of the guide hairs are simulated, while the states of the
normal hairs are interpolated using guide hairs. In particular,
for every normal particle i (i.e., a particle on a normal hair), it
associates with a set %, of guide particles (i.e., the hair particles
of some guide hairs). At each simulation step, after updating the
states of all guide particles, this method interpolates the states
of every normal particle using

si=T| D wiBgs; |,
8€E;

where B, is a linear transformation that transforms a guide
particle g from its rest state §; to its current state §, in the head’s
local space (i.e., Sg= Bg§;‘), T is the current rigid transformation
of the head, and w;, are hair skinning weights. This interpolation
scheme is similar to the Linear Blend Skinning models [1] widely
used in deforming meshes [34], so we refer it as a hair skinning
model.

1

3.2 Fundamental Limitations for Hair-Solid Interaction

Existing reduced hair models are able to simulate plausible
hair motions interactively (e.g., [29], [33]). However, when
simulating hairs interacting with solid bodies — especially when
the solids are controlled by the user at runtime and thus have no
predictable motions, the existing methods are inherently limited:

1) While the interpolation weights (i.e., Wi, in (1)) can be spa-
tially varying, they, once computed, typically stay unchanged
all the time in a simulation. The assumption here is that for
every normal hair, its entire set of guide hairs manifest similar
motions throughout the runtime simulation, so the normal
hairs can always be interpolated as some states in between.
However, this assumption breaks when a user-controlled
object interacts with hairs. As shown in Figure 4.(a-c), a solid
object can split a group of guide hairs (e.g., the orange hairs
in Figure 4), causing completely different motions among
them. In fact, when hair strands interact with solids, it is
almost impossible to use fixed guide hairs and skinning
weights all the time; the set of guide hairs that affect a
normal hair ought to be dynamically changed.

4

2) Guide hairs, which are sparsely selected over the entire
volume of hairs, can not fully resolve hair-solid collisions at
runtime. Because of the guide hair sparsity, it is quite possible
that the geometric features of solid objects are smaller than
the granularity of guide hairs (Figure 4.(d)). Consequently,
guide hairs can be unaware of the collisions between normal
hairs and solids, and thus unable to “guide” the normal
hairs to avoid collisions. Increasing the density of guide hairs
would allow guide hairs to capture more collisions, but also
drastically sacrifice the interactive performance. The position-
based hair correction method in [33] designed for resolving
hair-hair collisions may also be used to resolve hair-solid
collisions. Unfortunately, it suffers from flickering artifacts
due to the lack of temporal coherence, because its position-
based correction disregards hair strands’ velocity continuity
with respect to the solids (see Figure 5 and supplemental
video).

3.3 Method Overview

Runtime Simulation with Multiple Sets of Guide Hairs. To

tackle these limitations, we first augment the reduced hair model

by introducing multiple sets of guide hairs for every normal hair,
in contrast to a fixed single set of guide hairs in previous methods.

This augmentation in turn allows us to implement two key ideas:

« Adaptive hair skinning (Section 4). To address the first
limitation above, we adaptively choose a set of guide hairs
when interpolating the state of a normal hair, taking into
account possible hair-solid collisions. As a result, guide hairs
and the interpolation weights are time-varying during the
simulation.

« Two-way collision correction (Section 5). We further correct
hairs to avoid hair-solid intersections using a new two-way
collision correction algorithm. In this algorithm, not only the
normal hairs are interpolated using guide hairs, but guide
hairs are also adjusted according to the intersections between
normal hairs and solids. Thereby, we are able to resolve hair-
solid collisions with only guide hairs explicitly simulated, and
thus retain the interactive simulation performance.

Guide-Hair Precomputation. Our method does not depend
critically on any particular scheme for selecting guide hairs
and computing interpolation weights. We demonstrate that
even with a naive skinning model that computes interpolation
weights at run-time, our adaptive hair-skinning method produces
significantly better results (see Figure 11 and video). Further,
we propose a data-driven method to automatically compute
exhaustively many eligible sets of guide hairs for every normal
hair and estimate corresponding skinning weights (Section 6).

4 Adaptive Hair Skinning

We first present our runtime method for simulating hair-solid
interactions. Different from previous methods, it requires for
every normal hair s multiple eligible sets of guide hairs, denoted
as G,. Every element ¢ € G; is a set of guide hairs, whose hair
skinning weights wg_,s, Vg € ¢ need to be precomputed before
the simulation. We defer the details of preparing guide hairs
and weights until Section 6 and assume they are given in this
section.

Like previous reduced hair models, to obtain interactive
performance, we simulate only guide hairs and use them to

JOURNAL OF XXXX, VOL. XX, NO. X, AUGUST XXXX

; N simulation tlmesteps

Fig. 5: Temporal incoherence of position-based hair correc-
tion. (top) Hair interpolation is unaware of the hair’s collision
states; (bottom) position-based correction at individual frame
lacks the temporal coherence and can introduce flickering
artifacts.

after correction | before correction

interpolate normal hairs. While there exist many hair simulation
models, we choose the one of [9] and handle hair-object and
inter-hair collision and friction as described in Section 7.1.

Adaptive Skinning in Brief. After simulating guide hairs at each
timestep, we choose for every normal hair s an element ¢ of
its eligible guide-hair sets G,. We then use the guide hairs in ¢
to interpolate the state of s (recall (1)). When choosing ¢, we
take into account two criteria:

« Hair motion similarity (Section 4.1). Guide hairs in ¥
must have similar states and velocity. If their motions are
radically different, they are likely affected by external objects.
Interpolating using their linear combination makes little sense
physically.

Avoiding collisions with solids (Section 4.2). Interpolations
using guide hairs in ¢ must avoid collisions with solids. For
instance, if the guide hairs in ¢ are separated by a solid in-
between (Figure 4.(e-f)), they should not be used together for
interpolating a normal hair, as the resulting normal hair would
likely colliding with the solid object.

In brief, we cluster all potential guide hairs into groups using
a graph representation: a node in the graph represents a guide
hair; two nodes are directly connected only when the corre-
sponding guide hairs satisfy the two criteria above. Finally, we
choose the best 4 € G, that is also consistent with the clustered
groups. We also note that both criteria are complementary to
each other, rendering the guide-hair interpolation more robust
(Figure 6).

4.1 Motion Similarity

When not affected by external objects, two guide hairs that are
in proximity have similar shapes and moving velocities. This
similarity is disrupted when a solid interacts with guide hairs.
We therefore define a measure of the runtime motion similarity
between two guide hairs i and j:

1
dGi,j) = 2 P —p|* + 1%_ [vi — v

where p; and p; stack current positions of all the particles on
the hairs i and j respectively; v; and v; respectively stack their
velocities; o is a user-controlled scalar to balance both terms,
and A; and B; are constants at runtime to normalize the position
and velocity discrepancies respectively. In our implementation,
o is set to 5, and A; and Bj;; are automatically chosen based on

2

) (2)

Fig. 6: Comparison of guide-hair selection criteria. We com-
pare different selection criteria in two situations: (top) the hair
strands are split by a thin and solid rod; and (bottom) after
picking up a small group of hair, the solid rod is removed and
the hair starts to drop down. (a) We select guide hairs based on
only motion similarity; the interpolated normal hairs intersect
with the solid rod (a-top). (b) We use only collision avoidance
to select guide hairs; and the interpolated normal hairs spread
unnaturally when dropping down (b-bottom). (¢) Combing both
criteria together for guide-hair selection, we obtain plausible
hair motion in both situations.

provided training data. We defer this implementation detail until
Section 7.1.

4.2 Avoiding Collisions with Solids

Next, we check for every pair of guide hairs if the linear
combination of their states possibly intersects with solids. This
check is complementary to the motion similarity measure
introduced above, because even if the shapes and velocities
of two guide hairs are close to each other, their interpolation
can still collide with a solid body (Figure 4(d)). A normal hair in
essence is a linear combination of a set, ¢, of guide hairs. Thus,
as long as the linear interpolation between any pair of guide
hairs in ¢ is collision-free from solids, the interpolated normal
hair is most likely collision-free as well.

To maintain interactive simulation performance, we perform
the check approximately and keep it lightweight. Consider two
guide hairs i and j which have N; and N; hair particles respectively.
Let p;(t) and p;(t) denote respectively the t-th particles on both
hairs. Assuming hair particles are uniformly distributed on the
hair strands in our setup, we simply check if the line segment
connecting p;(t) and p;(t) intersects with any solid body for all
t = 1...min(N;, N;). This check is a standard continuous collision
detection for which fast algorithms exist [20]. In the rest of the

} Interpolation check succeeded
/ Interpolation check failed
L]

presentation, we refer these checks as the guide hairs’ interpola-
tion check.

4.3 Adaptation of Guide Hairs

With the two criteria depicted, we now present our algorithm
for runtime guide hair adaptation. Our idea is to cluster guide

JOURNAL OF XXXX, VOL. XX, NO. X, AUGUST XXXX

Algorithm 1 Runtime guide-hair adaption and interpolation

Require: guide-hair graph .#Z = (7, &)
eligible sets of guide hairs, G, for each normal hair s
1: C—@
2: for each guide-hair node g € ¥ do

3 Ty
4: for each adjacent node t of g on .#Z, t € ¥ do
5: T — T Uit}
6: end for
7: while 3a,b € .7, a and b are not connected on .# do
8: if d(g,a)>d(g,b) then > Keep the closer guide hair
9: T — T\ {a}
10: else
11: T — T\ {b}
12: end if

13: end while
14 T« TUfghC—Cui{T}

15: end for

16: for each normal hair s do

17 Ty« Q

18: for each eligible guide-hair set 4 € G, do

19: for each guide-hair cluster ¥’ € C do

20: T, — T, U{¥9NE}

21: end for

22: end for

23: 7, «the best set of guide hairs from T, > Eq. (3)
24: interpolate state of s using guide hairs in .7, > Eq. (5)

25: end for

hairs into groups such that the guide hairs in each group can be
used together for interpolating normal hairs. Taking into account
these groups and a normal hair’s eligible sets of guide hairs,
we select the normal hair’s best set of guide hairs, from which
we interpolate its state (Algorithm 1). Figure 7 visualizes the
guide-hair adaptation using one of our examples.

Guide-Hair Graph. We create a guide-hair graph .# = (¥,&)
consisting of a set of nodes ¥ and edges &. Every node in ¥
corresponds to a guide hair, and thus we refer it as a guide-
hair node in Algorithm 1. An edge e;; connects nodes i and
j when two conditions are satisfied: (i) the motion similarity
d(i,]) between two guide hairs i and j that correspond to the two
nodes is less than a threshold & (6 = 2 in all our examples);
and (ii) the guide hairs i and | pass the interpolation test
described in Section 4.2. In short, if two nodes i and j are
connected, potentially we can use the linear combination of the
corresponding guide hairs to interpolate a normal hair.

Guide-Hair Groups. With the guide-hair graph, we cluster guide
hairs into groups so that hairs in each group can be used together
for interpolating a normal hair. If ¢ is such a guide-hair group,
then any two hairs in this group should be connected on the
graph .#, owing to the construction of the graph. In other
words, this group needs to be complete (or fully connected) on
M . For robust interpolation of normal hairs, we wish to identify
guide-hair groups whose sizes are as large as possible. This is
a typical maximum clique problem, a well-known NP-complete
problem [41].

To obtain interactive performance, we propose an approx-
imate algorithm (Line 1-15 of Algorithm 1). Because of the
bijective mapping between graph nodes and guide hairs, we
refer to them interchangeably herein. For every guide hair g, we

T iy nk s
O%HW \ ""Hmnllmmumnu&lnﬂ"
T CW

_—7

L]
[
Ilmmllll\!lHIll

i jus

o Ay
mmnnlwuu jigman
'&il?\:‘
\——

Fig. 7: Adaptive hair skinning. We visualize the adaptivity of
hair skinning using two simulation snapshots in the top and
bottom row, respectively. (left) We visualize guide hairs each
with a different color. (middle) The hair interpolation weights
are color-mapped at the two simulation frames. The weight
distribution dynamically changes. (right) The current effective
guide hairs (in red) that are serving for interpolation. Because
of the adaptivity, the sets of guide hairs change during the
simulation.

identify a complete subgraph which contains g using a simple
algorithm: we start from a set .7 consisting of nodes that are
adjacent to g (Line 3-6 of Algorithm 1). Then we repeatedly
check all pairs of nodes in .7. If there exists two nodes a,b € .7
that are not connected, we simply remove one of the two nodes
from .7 and repeat the check (Line 7-13 of Algorithm 1) until
all notes in .7 are connected on .. In particular, we remove
the node who has larger motion difference from the guide hair g
(i.e., argmax;_,, d(i,g)). Finally, the resulting .7 becomes one
guide-hair group. After adding the guide hair g into .7, we add
7 into a set C (Line 14 of Algorithm 1).

Guide-Hair Assignment. Now we have a set of guide-hair group-
s, denoted by C, that can be used for normal-hair interpolation.
On the other hand, a normal hair s has many eligible sets of guide
hairs, G, assembled at the precomputation stage (Section 6).
We therefore combine C and G to select the guide hairs of s and
meanwhile maximize the temporal coherence of the interpolated
state of s. Namely, let ¥, be the set of guide hairs used for
interpolating s in the previous timestep. We select its updated
guide hairs .7; by computing
¢, 9" =argmin ||s(¢ n9) —s(%)||" and F,=¢"nY",
3
where s(:) is a vector stacking the interpolated states of hair
particles on s using the provided set of guide hairs. In short, we
choose among all eligible and valid guide hairs a set that leads to
an interpolation with the best temporal coherence. As a result, .7
consists of the guide hairs that are most suitable for interpolating
s and unlikely introduce collisions. The skinning weights of guide
hairs in 7, have been estimated at the precomputation stage.
Thus, we set 7, as the current guide hairs of s, and update its
state by computing s(.7;) using (1).

5 Two-Way Collision Correction

In this section, we address the second limitation discussed in
Section 3.2. Namely, it is insufficient to fully resolve hair-solid col-

JOURNAL OF XXXX, VOL. XX, NO. X, AUGUST XXXX

© (d

Fig. 8: Comparison of two-way collision correction. We
compare four different schemes to resolve collisions: (a) full-
space simulation, (b) guide-hair interpolation only, (c) our
two-way collision correction, (d) the position-based collision
correction as used in [33]. Our two-way correction (c) produces
results closely matching the full-space simulation, while the
other two (b,d) both show artifacts.

lisions by simulating only guide hairs that are sparsely sampled.
The interpolated normal hairs can still suffer from intersections
with solids (Figure 8). Adaptively updating guide hairs for every
normal hair can alleviate the solid-hair intersections, but never
eliminate them completely. This is because in the construction
of guide-hair graph for updating guide hairs (Section 4.3), we
perform the guide hairs’ interpolation check approximately in
exchange for performance. Further, when interacting with small
solids, sparsely selected guide hairs are fundamentally limited
for resolving the collisions.

One natural attempt is to resolve collisions with solids
using the position-based hair correction method introduced
in [33]. This method has proven fast and effective for resolving
hair-hair collisions, and we follow it to resolve the hair-hair
collisions in our system. However, when used for resolving
hair-solid collisions, it can result in hair flickering. This is
because the position-based method is a post-processing approach,
disregarding the hair dynamics and the temporal coherence of
velocities (see Figure 8 and the supplementary video).

Key Idea. Inspired by the schemes of applying forces from fine
levels back to coarse levels [42], [43] in deformable simulations,
we propose a two-way collision correction approach to resolve
solid-hair collisions. Our approach is different from previous
reduced hair simulation approaches, wherein after integrating
guide-hair states at a simulation step, guide hairs are fixed for
interpolating normal hairs. In other words, normal hairs are
one-way coupled with guide hairs in previous approaches. In
contrast, we allow the normal hairs that are in collision with
solids to further affect the states of guide hairs, which in turn

7

help normal hairs to avoid collisions. Thus, in our simulation,
normal and guide hairs are two-way coupled. Through this two-
way correction scheme, guide hairs are aware of the collisions
even if they are not directly colliding with solid bodies.

5.1 Collision Detection

To enable fast collision detection between hair and solids, we
precompute an object-space signed distance field for each solid
body [24], and store it on a uniform grid [44]. Points outside
of the object have positive distance values, and negative values
are assigned inside. With this data structure, we can quickly
detect collisions of hair particles against solid bodies by querying
their distance values. Similar to other hair models (e.g., [13],
[45]), we adopt a penalty method to compute collision forces
for pushing hair particles away from interpenetration. By the
end of the collision detection stage, we get a set of hairs that are
in collision with solids, as well as the penalty forces on colliding
hair particles. In the rest of this section, we use a vector I to
denote the penalty forces on the hair s, so I (i) indicates the
force on the i-th particle. If the hair s is not in collision, I is
zero.

5.2 Two-Way Correction via Collision Forces

The collision forces can be quickly computed by checking the dis-
tance values without degenerating the interactive performance.
However, we can not afford to directly apply these forces to
all hairs, as that would require computing internal forces and
simulating the dynamics of all hairs. To maintain the interactive
performance, we propose a two-way correction: we estimate
effective collision forces on guide hairs for integrating the guide-
hair dynamics. Afterwards, we interpolate normal hairs.

We reuse the skinning relationships between normal and
guide hairs. Let ¢ be the set of all guide hairs, and .4 be the
set of all normal hairs. We estimate the effective collision forces
Ig,g € ¢ on guide hairs such that the interpolated collision
forces on normal hairs approximate the forces computed at the
collision detection step. This amount to solving a least-squares
problem,

2
Ns

min >0 > we OO -LA| @

9’ seN i=1 ||geY, 5

where N, denote the number of hair particles on the hair s. ¥, is

the set of guide hairs of s. I(i) is the penalty force applied on

the i-th particle of s. If s is collision free, then I vanishes.

In practice, there is no need to solve the least-squares
problem (4) as a single system. Very often, hair-solid collisions
occur locally, and the guide hairs influence only normal hairs in
their local regions. Therefore, in our implementation, we split
this least-squares problem into multiple smaller subsystems, and
solve them in parallel.

After estimating the effective collision forces I;, ge Y, we
apply these forces on guide hairs together with their direct
penalty forces from collision detection, and then integrate the
dynamics of guide hairs. It is possible that after the two-way
correction there still exist collisions. One can repeat this step, and
iterate a few times to eliminate collisions. In our implementation,
we do not iterate inside each timestep, but simply use a smaller
timestep size in the runtime simulation (At = 10ms in our
examples).

JOURNAL OF XXXX, VOL. XX, NO. X, AUGUST XXXX

One additional advantage of using effective collision forces
to correct hairs is the ability to eliminate flickering artifacts. This
is because we essentially correct the acceleration of hairs and
adjust their positions using time integrations, which is able to
eliminate small discontinuities and produce temporally coherent
motions.

6 Precomputation of Hair Skinning Model

Our runtime hair simulation relies on multiple sets of eligible
guide hairs prepared for every normal hair, but does not
depend on any specific algorithm to select those guide hairs
and compute the interpolation weights. Even with a naive
skinning model that computes interpolation weights at runtime,
our adaptive skinning method can improve the simulation results
(see Section 7.2).

In this section, we present a new method to prepare a guide-
hair skinning model. Our method is built on the method of
Chai et al. [33], and offers two major advantages comparing
to previous approaches: our skinning representation is memory-
efficient and guarantees spatially coherent skinning weights;
automatically learned from a provided full simulation data, our
skinning model produces hair animations comparable to the full
simulation, even with complex hair-solid interactions.

Hair Strand Notation. We first introduce some notation. Recall
that every hair strand is represented by a chain of sy
particles. When constructing the hair strands, we Sy
sample hair particles uniformly over the hair strands,

so the distance between two adjacent particles of a hair 53
is constant. We index these particles with an integer S4
number. Consider a hair strand s with N; particles. S5
Following the same notation in Section 3.1, we use

s;,i = 1...N, to denote the states (i.e., s; = (p;, t;)) of %6

the i-th particles starting from the hair root on a head scalp.
Following the notation in Section 3.1, we put a bar over the
letter (e.g., §;) to distinguish the coordinates in the head’s local
frame of reference from the coordinates in the world frame.

6.1 Spatially Coherent Representation of Hair Skinning

Similar to [13], we use a strand-based hair skinning represen-
tation, in which all the particles of a normal hair are affected
by the same set of guide hairs, and the skinning weights vary
continuously along hair strands.

Hair skinning representation. For every normal hair s, it has a
set ¢, of guide hairs. Our skinning model interpolates the state
of every normal particle s; using

si=T| Y wyo(@By(D5] |, i=1..N,
9€%,

where 5 is the rest-state coordinate of the i-th particle in the
head’s local frame, By(i) linearly transforms the i-th particle of
the guide hair g from its rest state to its current state in the
head’s local frame, and w,_,(i) is the skinning weights for the
i-th particle of g affecting the i-th particle of s. As indicated
in (5), in our skinning model, all the particles of a normal hair
are affected by the same set of guide hairs. The i-th particle of a
normal hair depends only on the i-th particles of its guide hairs
(Figure 3(b)). If a normal hair is longer than one of its guide
hairs, then the normal particles that exceed the length of the
guide hair are affected by the closest particles on guide hairs.

5)

Algorithm 2 Precomputation of skinning for a normal hair

Require: a normal hair s and a set ¢ of eligible guide hairs
1: procedure SKINNINGPRECOMPUTATION(S, ¥)
2. Gg— O
3: foreach 9’ C ¥ and ¥’ # @ in ascending order of |¥’|
do
for each guide hair g€ ¥’ do
Estimate coefficients of Wg_)s(l') in (6) » Section 6.2
if maxwgy_,s < € then
goto next_set
end if
end for
10: G, —G,U{9"}
11: next_set:
12: end for
13: return Gg
14: end procedure

> Skip this guide hair set

R A A S

> s gets one more guide hair set

Furthermore, we guarantee the spatial continuity of the
skinning weights along hair strands by representing wg_,.(i)
using polynomials. In our experiment, we found that second-
order polynomials are sufficient to enable the skinning model to
closely fit the training data (within 5% error, while in contrast
linear fitting results in about 5x larger error) and also work well
at runtime. Thus, wy_¢(i) takes a quadratic form,

Weos(i) = ai® + bi +c, (6)
where the coefficients a, b and ¢ depend on a specific pair
of guide and normal hairs, and are precomputed based on
the training data (details in Section 6.2). We also note that,
besides being able to largely reduce over-fitting, the polynomial
expressions of w,_,; form a compact representation of hair skin-
ning. It stores three scalars to describe the skinning relationship
between a normal hair and a guide hair, consuming much less
memory in comparison to the previous method which stores the
weight per particle (about 25x reduction). This compactness is
particularly beneficial for our adaptive skinning model, as we
need to prepare multiple sets of guide hairs for every normal
hair. In our experiments, the memory footprints are always less
than 400MB, even for hair models with more than 100K strands.

Remark. Notable differences exist between our hair skinning
model and the previous method [33]. Previously, the skinning
is defined in terms of particles: a normal particles has a group
of guide particles; the distribution of these guide particles can
be arbitrary, whether they are on a single guide hair or multiple
guide hairs. This scheme offers a flexibility to allow a normal
particle to have its optimal set of guide particles, but fails to
ensure the spatial coherence of guide-particle distributions. For
instance, two adjacent normal particles, a and b, on a single
normal hair can have guide particles from many different guide
hairs (Figure 3(a)). When the motion discrepancy among those
guide hairs becomes large, the interpolated positions of a and b
start losing spatial coherence. In the case of hair-solid interaction,
it is very likely for those guide hairs to have distinct motions;
and the loss of spatial coherence leads to unpleasant artifacts.

6.2 Precomputation of Skinning Weights

Training data. We construct the hair skinning model based on
provided hair animation data. While our focus is to simulate
hair-solid interactions, it is neither practical nor necessary to

JOURNAL OF XXXX, VOL. XX, NO. X, AUGUST XXXX

include hair-solid interactions in the training data. Despite
infinitely possible hair-solid interactions, our skinning model (5)
interpolates states of normal hairs purely based on the states
of guide hairs. Therefore, all we need to extract from the
training data is the correlations between different pairs of normal
and guide hairs. This allows us to simply follow the previous
method [33] to prepare the training data, including complete
hair geometry in a rest state, several sequences of rigid head
motions, and the resulting hair motions simulated using a full-
space simulation method. We refer to their paper for more
details. Throughout the training, no solid object is involved, and
inter-hair friction is handled in the same way as Section 7.1.

Multiple Combinations of Guide Hairs. Our goal at the
precomputation stage is to prepare multiple sets of guide hairs
for every normal hair (see an overview in Algorithm 2). Consider
one normal hair s. We first select a set & of eligible guide hairs,
from which we build multiple sets of guide hairs for runtime
adaptation. The selection of ¢, based on the training data,
follows the method in [33]. We further improve its efficacy using
a sparse coding method, which we postpone until Section 6.3.
Given a set ¢ of eligible guide hairs, we check exhaustively
all the (nonempty) subsets 4’ C ¢ (Line 3 of Algorithm 2),
and estimate the skinning weights of the guide hairs in ¢’ for
interpolating s. If the weights wy_,¢ for a guide hair g € 4’ is
too small, then g is unnecessary, and ¢ is excessive and thus
discarded (Line 6-8 of Algorithm 2). Otherwise, we add ¢’ as
one of the potential guide hair sets for runtime selection. In
the rest of this paper, we denote all the eligible guide hair sets
of a normal hair s as G,. Every element of G is a set of guide
hairs that can potentially serve for runtime interpolation of s. In
practice, ¢ typically consists of less than 10 guide hairs, so the
total number of combinations of guide hairs in ¢ is no more than
511. Discarding excessive combinations, we obtain about 100
different sets of guide hairs (i.e., |G| ~ 100) for every normal
hair.

Estimation of w,_,.. Now the step in Algorithm 2 that remains
to be described is the estimation of wy_, (Line 5 of Algorithm 2).
Given a normal hair s and one of its guide hair set 4 € G, we
first estimate the skinning weights for every normal particle on s,
and then fit the weights along every guide hair using a quadratic
polynomial (6).

We estimate the weights wy_,(i),Vg € ¢ by solving a

constrained least-squares problem,
2

F
min Z wys(1)By(1, £ — 5;(f)|| >

Wgﬂs(i)le gefé’ 5 (7)

s.t. we_(i) >0, and D wg_ (i) =1.
S
Here we account for all animation frames 1...F in the training
data; the notations are the same as those in (5); the parameter f
indicates an input frame f. This least-squares problem is a zero-
extended version of that in [33]. It solves for a single normal
particle indexed by i and all guide hairs in ¢, so we solve it for
every particle on s (i.e., i = 1...N;) using a linearly constrained
quadratic programming solver [46].

In contrast to the previous method, we further compress
the weights by fitting the values of wy_¢(i) using a quadratic
polynomials. This amounts to solving another small least-squares

Fig. 9: Comparison of guide hair precomputation. A snapshot
of a full simulation (left) is compared against the reduced
simulation with guide hairs selected using our sparse coding
method (middle) and the previous graph-based method [33]
(right). Our results with sparse coding are visually closer to the
full-space simulation (which are absent from the training data).

problem for every pair of normal and guide hairs,

8

Ny
min » [ai® + bi + ¢ — wy_(i)]2.
a,b,c =

We note that because we use a low-order (quadratic) polynomial
regression, overfitting never happens in our examples; the
resulting polynomials always produce positive weights for
i = 1...N;. But it can not guarantee the unit constraint in (7).
Therefore, we simply normalize the weights when using them at
runtime.

Because of the preparation of multiple sets of guide hairs, the
precomputation cost is certainly larger than that in the previous
reduced hair simulation method. Nevertheless, we note that both
least-squares problems (7) and (8) are lightweight, and can be
solved in parallel for all pairs of guide and normal hairs.

In summary, at the end of the precomputation step, every
normal hair has multiple eligible sets of guide hairs, whose
hair skinning weights are also estimated. The weight function
for every pair of normal and guide hairs is represented by a
quadratic polynomial and stored using its three coefficients.

6.3 Guide Hair Selection using Sparse Coding

The precomputation of skinning weights of a normal hair s in
Algorithm 2 requires a set, ¢, of eligible guide hairs as input. ¢4
can be chosen using the method in [33], wherein it clusters all
hairs based on their motion similarities in the training data and
selects one guide hair from each individual cluster. While this
method is directly applicable in our pipeline, its graph-based
algorithm using a heuristic measure of hair motion similarity
renders the selected guide hairs suboptimal.

We extend our method to further improve the guide hair
selection, formulating it as a problem of sparse basis selection.
In the hair skinning model, guide hairs serve as basis functions,
whose linear combinations represent the states of normal hairs.
Every normal hair is affected by only a small subset of guide
hairs. In other words, the coefficients of the linear combinations
need to be sparse, suggesting that we can formulate the guide
hair selection as a best-subset-selection problem, one that is
ubiquitous in many disciplines and a central topic in the field of
Compressed Sensing [47].

Specifically, in the training data, we represent the state
of a hair strand at a time frame f by stacking the states
of the hair particles along that strand, that is, we denote a
hair’s state in the head’s local frame of reference as s(f) =
[5:(f) 5:(f) ... 3, (f)]T. Again, we put a bar over the variables
to indicate states in the head’s local frame of reference. For a

JOURNAL OF XXXX, VOL. XX, NO. X, AUGUST XXXX

normal hair s, we further stacking its states at every frame into
a long vector ug = [5(1) 5(2);... ENf]T, where N; is the total
number of frames in the training data. u, therefore represents
the state of a hair s in the training data. We then choose a set
of basis vectors to represent hair states ug for all hairs .7 in
the training data. Our plan is to use the basis vectors to select
guide hairs afterwards. Thus, we seek basis vectors whose linear
combination can closely approximate all u,, and meanwhile the
basis coefficients stay sparse. Formally, we solve a minimization
problem :

. 2
argraglz (Ilus — Gall3 + Bllagll) , C)

se.s

where G is a matrix consisting of the basis vectors as its column
vectors; and a, is a vector of coefficients for representing u,
using the basis in G. This is a well-known sparse coding problem
(also known as basis pursuit [48]): the first term of (9) penalizes
the approximation error; the second term penalizes the L; norm
of a, leading to a sparse solution of a,. The scalar 3 balances
the weights of both terms; in practice we use 0.15. The user also
specifies the number of basis vectors (i.e., the number of columns
of G). In our case, it is the total number of guide hairs. In our
implementation, we solve the problem (9) using the method
of [49] and their released library.

After we solve (9), the resulting basis vectors in G also depict
a picture of the “ideal” guide hairs: if there exist hairs whose
state vector (i.e., u) in the training data agree with the basis
vectors, then they are the best choice of guide hairs under the
metric used in (9). Therefore, for every column vector g of G,
we find a hair g that is closest to g, that is

= i — g 10
g arggg};}llus gl (10

We repeat this process for every column vector g of G, obtaining
the set, ¢, of guide hairs. Lastly, we stack the state vectors
ug, Vg~ € ¥ in a matrix G. We replace the basis matrix G in (9)
with G, and solve for a,. The resulting a, is sparse, indicating
skinning weights for interpolating a normal hair s using guide
hairs in ¢. After discarding the guide hairs whose corresponding
coefficients in ag are less than a threshold € (¢ = 0.01 in our
examples), we obtain the set of eligible guide hairs of a normal
hair s.

As shown in Figure 9, our formulation selects guide hairs
that lead to much smaller fitting error and higher quality of
runtime interpolation in comparison to the previous method.

7 Implementation and Results
7.1 Implementation Details

Motion Similarity. Within motion-similarity calculation (Sec-
tion 4.1), A; and B; are constants at runtime to normalize the
position and velocity discrepancies respectively. We precomptue
their values using their averages in training animations:

1, 3 1 Gy, i
A= E; 15 - B and B, = Ef2:1]||vi(f)—v,.(f)||2.

Here F is the total number of animation frames in the training
data, and p;(f) and ¥;,(f) are respectively the particle positions
and velocities of the hair i at frame f of the training data.

Friction. Hair-hair and hair-object frictions are vital for realistic
hair simulation. Following the method of Bridson et al. [19], we
use an approximation of the Coulomb friction model [24] to
handle frictions in both precomputation and runtime simulation.

10

Specifically, for every detected collision, we estimate the repul-
sion force f, along the normal direction of the contact point.
The friction impulse is then approximated as I; = uf. At, where
u is the friction coefficient and At is the timestep. We determine
the sticking-slipping status by comparing the velocity change
caused by friction (i.e., Av =1 ¥ /m) with the current relative
tangential velocity magnitude |v,| at the contact point. If |v,| is
smaller than Av, the contact is strictly stuck, otherwise slipping
is allowed with relative tangential velocity (1 — Av/|v,|)v,.

Note that our friction solution is a simplified approximation
of the Coulomb friction model. While a more accurate solution
is available for generating higher fidelity simulation [17], it is
unaffordable in real-time simulation due to the high computation
cost of iteratively solving the complex hair dynamics. The
simplified solution fits well in our real-time system and is able
to produce visually plausible results in practice (see video).

Testing Environment. We implemented our adaptive skinning
method in C++. The code was run on a commodity PC with a
quad-core Intel i7 CPU (32GB memory) and a Nvidia GTX 760
graphics card. Under this setting, with about 400 guide hairs, our
adaptive skinning method is able to interactively simulate and
render solid-hair interactions in a variety of simulation scenes
for as many as 150K normal hair strands (see video).

In the following sub-sections, we verify our method by
comparing it with a full-space simulation and previous (or
alternative) methods (Section 7.2), and then present our main
results with a range of hair styles and solid-object setups.

7.2 \Validation and Comparison

Robustness. To verify the robustness of our method for simu-
lating complex solid-hair interactions, we compare our method
with the previous work on interactive hair simulation [33], and
use a full-space simulation as a reference. Figure 10 shows
one snapshot of 80K simulated hairs. Both our method and the
method of Chai et al. [33] are able to simulate them interactively.
However, their method is unable to avoid complex hair-solid
interactions; hairs can penetrate into the solids, leading to
visually incorrect hair motions (insets of Figure 10). In contrast,
our method is able to robustly avoid collisions while maintaining
the interactive performance. By comparing to the reference, our
simulation indeed produces similar motion as obtained using the
full-space simulation (see video for the animated comparisons).

Adaptive Guide Hairs. We then validate our adaptive guide-hair
selection scheme. Since we use two criteria for selecting guide-
hairs, namely the motion similarity and collision avoidance
(recall Section 4), we test their efficacy by comparing three
combinations of the criteria: (i) motion similarity only, (ii)
collision avoidance only; and (iii) the combination of both.
Figure 6 illustrates the comparison. Using either the motion
similarity or collision avoidance, the simulator shows artifacts at
different situations. In fact, these criteria are complementary, so
their combination produces much satisfying results (right most
column of Figure 6).

Two-way Correction. To validate our two-way correction
scheme, we compare four different methods (Figure 8): (i) a
full-space simulation; (ii) guide hair interpolation; (iii) position-
based hair correction as in [33], and (iv) our two-way correction.
Guide-hair interpolation disregards collisions and thus results in
inter-penetrations. The position-based correction method is less

JOURNAL OF XXXX, VOL. XX, NO. X, AUGUST XXXX

(1}

I

L
i’

T

Fig. 10: Comparison of reduced hair model. We use a full-
space simulation as a reference (left column), comparing it to
our method (middle) and the previous reduced hair simula-
tion method [33] (right). Our method resolves the hair-solid
collisions well, while in the previous method, collisions remain.

wl
gom

N

T iy

j j « y
e £ . Iy 'umuw‘ummuullmwﬂ"’

e
T

Fig. 11: A naive skinning model. We test our method with a
naive skinning model. (left) Full-space simulation. (middle) The
naive interpolation result using our adaptive skinning method.
(right) The naive interpolation result without using our method.

natural as our two-way correction scheme, and more importantly
it produces flickering artifacts (see video).

Working with Other Skinning Methods. As aforementioned,
our adaptive skinning method can be incorporated with any
guide-hair based reduced model. As an example, we tested our
method with a naive skinning model that randomly chooses a set
of guide hairs. For each normal hair, a fixed number of closest
guide hairs (ten in our experiments) are selected as its eligible
guide hairs. At runtime, we use our adaptive skinning method
to find the best guide hairs for each normal hair and computes
the per-particle interpolation weights:
dy (D)

Zg'egs dg’—>s(i)’
where dy_ (i) = 1/ ||ps(i) —pg(i)” is the reciprocal of the
distance between normal hair s and guide hair g at the ith
particle. Even for such a naive skinning model, our adaptive
skinning method manages to resolve hair-object penetrations
and improve the results. (see Figure 11). On the other hand, by
comparing with our data-driven skinning model, our approach
can produce results more closely to full simulation (see video).

Weo() = an

Comparison with Alternative Methods. Bertails et al. [13]
introduced a technique to effectively avoid collisions between the
hair and upper-body during guide-hair interpolation. It defines

11

Type Stretch Bend Twist Damping Friction
straight 3% 10° 30 15 10 0.05
wavy 2 x10° 200 100 10 0.1

TABLE 1: Dynamic parameters of our hair models. From left
to right: type of hair geometry, stretch spring stiffness, bending
spring stiffness, twisting spring stiffness, spring damping, and
friction.

Scene Normal Guide Seg. Time(o) Time(f) Memory

gears 80K 300 30 46ms 20s 120MB
hairy ball 60K 200 30 32ms 15s 80MB
hair salon 150K 400 25 50ms 60s 400MB

TABLE 2: Statistics of experiment scenes. From left to right:
names of the scenes, number of normal hairs, number of guide
hairs, averaged number of hair particles on every strand, average
simulation time per frame with our method and full simulation,
and memory footprint of the entire reduced model.

a distance threshold d,,,, (typically the minimal penetration
distance of target objects) and prevents interpolation between
two guide hairs if their tip distance is greater than d,,,,.. While
this technique works well for relatively large objects such as head
and body, it could introduce artifacts when handling intricate
hair-solid interactions shown in our paper. This is because for
objects having small features such as the fine teeth of a comb,
d e, Needs to be very small to avoid interpolation across objects.
In this case, a large portion of guide pairs may have tip distances
greater than d,,,,., and could be mistakenly prevented from being
used in interpolation. Furthermore, tip distances of free-moving
hair strands may jump across the threshold frequently during
simulation, leading to temporal jittering due to the sudden
change of the interpolation relationship. Please see the video for
a comparison between the technique and our method.

We also compared our method with the real-time hair simula-
tion method of Miiller et al. [38]. Due to the known limitation of
this PBD-based model (Section 2) to control physical properties
such as stiffness values within limited iterations (one iteration
per frame), it can result in excessive softness and unnatural
dynamic behaviors especially for long hairs (see video).

7.3 Main Results

We tested a variety of simulation scenes with the number of
hairs ranging from 60K to 150K. The timestep size is set to
10ms for all scenes. For all our examples, the offline training
takes less than two hours to precompute the skinning model,
including training data generation with full-space simulation,
guide selection using sparse coding and skinning estimation. The
full-space simulation dominates the precomputation time (more
than 80%). The runtime simulation takes 40ms-55ms per frame,
within which, guide hair simulation costs 20-25%, guide hair
grouping and assignment cost about 30%, adaptive interpolation
costs less than 10%, and two-way collision correction costs about
30%. The dynamic parameters of our hair models are listed in
Table 1 and the major statistics of these experiment scenes are
listed in Table 2.

Gear Set. We place a set of complex gear combinations under
80K long hair strands. The gears have cavities such that strands
can drop through the holes and fully contact with these detailed
solids. We animate gears with non-uniform rotation, which forces
strands into highly tangled shapes.

JOURNAL OF XXXX, VOL. XX, NO. X, AUGUST XXXX

Fig. 12: Hairy sphere. The user controls a hairy sphere to interact with a set of 3D solids.

L& U

Fig. 13: Hair salon. Interactive manipulation of hair strands with comb and animated hand. We demonstrate the simulation using
two different hair styles, including both the straight hairs (left) and the highly curly hairs (right), with a friction model.

Toys. A hairball has 60K hairs and is interactively controlled by
the user in a virtual environment to interact with 3D models
(Figure 12). The strands experience collisions with such solid
objects as smooth surface (e.g., the back of the horse) as well as
sharp features (e.g., the armadillo’s fingers).

Hair Interaction. We interact with a full head of hairs of virtual
characters. To realistically depict virtual characters, we use 150K
hairs interacting with a comb and pre-animated hand models.
We also tested different hair styles including both the straight
hairs and highly curvy hairs (Figure 13). Our method is able
to well resolve collisions between hairs and the densely spaced
comb teeth; it is also stable to form the hair strands into a
plausible stacking shape when pushed aside.

8 Conclusion

We have introduced an adaptive hair skinning method for simu-
lating a full head of hairs with complex hair-solid interactions
interactively. Our method is featured with an adaptive algorithm
for choosing guide hairs that interpolate a normal hair at
runtime, a two-way collision correction algorithm to avoid hair-
solid intersections, and a data-driven approach to precompute
the eligible sets of guide hairs and their interpolation weights.
Large scale interactive hair-solid simulation has not yet been
achieved before. We therefore hope our method further advances
the deployment of hair simulation in interactive applications.
Our data-driven approach to precompute the eligible sets
of guide hairs can supply results visually comparable to the
full simulation, but also has several limitations: i) The runtime
simulated hairs need to share the same geometry and simulation
parameters (e.g., the bending and twisting coefficients). The
skinning relationship can not be reused in a completely new
hair model. ii) The sets of eligible guide hairs precomputated
using full-space simulation remain unchanged at runtime. If
solid bodies break the motion coherence between a normal hair

and all guide hairs, that normal hair will no longer have guide
hairs for interpolation. Employing more densely distributed
guide hairs could alleviate the problem, but also increases the
runtime computation cost. Therefore, an effective algorithm to
dynamically add new guide hairs into the eligible guide hair sets
and remove unnecessary guide hairs at runtime is an interesting
future direction. iii) We focus on hair-solid interactions, and
adopt the hair collision correction method of Chai et al. [33] to
handle hair-hair collisions, which is not able to completely avoid
hair-hair penetrations and is frictionless. Extending our method
to account for hair-hair interactions would be a promising future
direction to further improve the animation quality.

Acknowledgments

This work is partially supported by NSF China (No. 61272305),
the National Science Foundation of U.S. (CAREER-1453101),
National Program for Special Support of Eminent Professionals of
China, Lenovo’s Program for Young Scientists, and generous gifts
from Intel and Adobe. Any opinions, findings and conclusions
or recommendations expressed in this material are those of
the authors and do not necessarily reflect the views of funding
agencies or others.

References

[1] N. Magnenat-Thalmann, R. Laperrire, and D. Thalmann, “Joint-
dependent local deformations for hand animation and object grasping,”
in Proceedings on Graphics interface’88, 1988.

[2] K. Ward, E Bertails, T.-Y. Kim, S. R. Marschner, M.-P. Cani, and M. C.
Lin, “A survey on hair modeling: Styling, simulation, and rendering,”
IEEE TVCG, vol. 13, no. 2, pp. 213-234, 2007.

[3] E Bertails, S. Hadap, M.-P Cani, M. Lin, T.-Y. Kim, S. Marschner,
K. Ward, and Z. Kac¢i¢-Alesi¢, “Realistic hair simulation: animation and
rendering,” in ACM SIGGRAPH 2008 classes, 2008, p. 89.

[4] C. Yuksel and S. Tarig, ‘Advanced techniques in real-time hair
rendering and simulation,” in ACM SIGGRAPH 2010 Courses, 2010.

JOURNAL OF XXXX, VOL. XX, NO. X, AUGUST XXXX

(5]

(6]

(7]
(8]

(9]
[10]

[11
[12]

—

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]
[25]
[26]

[27]

[28]

[29

=

[30

=

[31

—

[32]

[33]

[34]

R. E. Rosenblum, W. E. Carlson, and E. Tripp, “Simulating the structure
and dynamics of human hair: modelling, rendering and animation,”
The Journal of Visualization and Computer Animation, vol. 2, no. 4, pp.
141-148, 1991.

K.-i. Anjyo, Y. Usami, and T. Kurihara, “A simple method for extracting
the natural beauty of hair,” Computer Graphics (SIGGRAPH), vol. 26,
no. 2, pp. 111-120, 1992.

L. Petrovic, M. Henne, and J. Anderson, “Volumetric methods for
simulation and rendering of hair,” Pixar Animation Studios, 2005.

R. Gupta, M. Montagnol, P Volino, and N. Magnenat-Thalmann,
“Optimized framework for real time hair simulation,” in Advances
in Computer Graphics, 2006, pp. 702-710.

A. Selle, M. Lentine, and R. Fedkiw, “A mass spring model for hair
simulation,” ACM Trans. Graph., vol. 27, no. 3, pp. 64:1-64:11, 2008.
H. Iben, M. Meyer, L. Petrovic, O. Soares, J. Anderson, and A. Witkin,
“Artistic simulation of curly hair,” in Proceedings of SCA, 2013.

C. Shells, Cosserat theories: shells, rods and points. Springer, 2000.
D. K. Pai, “Strands: Interactive simulation of thin solids using cosserat
models,” Computer Graphics Forum, vol. 21, no. 3, pp. 347-352, 2002.
E Bertails, B. Audoly, M.-P Cani, B. Querleux, E Leroy, and J.-L.
Lévéque, “Super-helices for predicting the dynamics of natural hair,”
ACM Trans. Graph., vol. 25, no. 3, pp. 1180-1187, 2006.

M. Bergou, M. Wardetzky, S. Robinson, B. Audoly, and E. Grinspun,
“Discrete elastic rods,” ACM Trans. Graph., vol. 27, no. 3, pp. 63:1—
63:12, 2008.

R. Casati and E Bertails-Descoubes, “Super space clothoids,” ACM
Trans. Graph., vol. 32, no. 4, pp. 48:1-48:12, 2013.

A. McAdams, A. Selle, K. Ward, E. Sifakis, and J. Teran, “Detail
preserving continuum simulation of straight hair,” ACM Trans. Graph.,
vol. 28, no. 3, pp. 62:1-62:6, 2009.

G. Daviet, E Bertails-Descoubes, and L. Boissieux, “A hybrid iterative
solver for robustly capturing Coulomb friction in hair dynamics,” ACM
Trans. Graph., vol. 30, no. 6, pp. 139:1-139:12, 2011.

D. M. Kaufman, R. Tamstorf, B. Smith, J.-M. Aubry, and E. Grinspun,
“Adaptive nonlinearity for collisions in complex rod assemblies,” ACM
Trans. Graph., vol. 33, no. 4, pp. 123:1-123:12, 2014.

R. Bridson, R. Fedkiw, and J. Anderson, “Robust treatment of collisions,
contact and friction for cloth animation,” ACM Trans. Graph., vol. 21,
no. 3, pp. 594-603, 2002.

T. Brochu, E. Edwards, and R. Bridson, “Efficient geometrically exact
continuous collision detection,” ACM Trans. Graph., vol. 31, no. 4, pp.
96:1-96:7, 2012.

M. Tang, R. Tong, Z. Wang, and D. Manocha, “Fast and exact
continuous collision detection with bernstein sign classification,” ACM
Trans. Graph., vol. 33, no. 6, pp. 186:1-186:8, 2014.

E. Sifakis, S. Marino, and J. Teran, “Globally coupled collision handling
using volume preserving impulses,” in Proceedings of SCA, 2008.

D. Harmon, E. Vouga, R. Tamstorf, and E. Grinspun, “Robust treatment
of simultaneous collisions,” ACM Trans. Graph., vol. 27, no. 3, pp.
23:1-23:4, 2008.

E. Guendelman, R. Bridson, and R. Fedkiw, “Nonconvex rigid bodies
with stacking,” ACM Trans. Graph., vol. 22, no. 3, 2003.

R. Bridson, S. Marino, and R. Fedkiw, “Simulation of clothing with
folds and wrinkles,” in Proceedings of SCA, 2003, pp. 28-36.

S. Hadap and N. Magnenat-Thalmann, “Modeling dynamic hair as a
continuum,” Computer Graphics Forum, vol. 20, no. 3, 2001.

Y. Bando, B.-Y. Chen, and T. Nishita, “Animating hair with loosely
connected particles,” Computer Graphics Forum, vol. 22, no. 3, pp.
411-418, 2003.

B. Choe, M. G. Choi, and H.-S. Ko, “Simulating complex hair with
robust collision handling,” in Proceedings of SCA, 2005, pp. 153-160.
S. Tariq and L. Bavoil, “Real time hair simulation and rendering on the
GPU,” in ACM SIGGRAPH 2008 talks, 2008, p. 37.

P Guan, L. Sigal, V. Reznitskaya, and J. K. Hodgins, “Multi-linear data-
driven dynamic hair model with efficient hair-body collision handling,”
in Proceedings of SCA, 2012, pp. 295-304.

E Bertails, T.-Y. Kim, M.-P Cani, and U. Neumann, “Adaptive wisp tree:
A multiresolution control structure for simulating dynamic clustering
in hair motion,” in Proceedings of SCA, 2003, pp. 207-213.

K. Ward and M. C. Lin, ‘Adaptive grouping and subdivision for
simulating hair dynamics,” in Proceedings of Pacific Graphics, 2003, pp.
234-243.

M. Chai, C. Zheng, and K. Zhou, “A reduced model for interactive
hairs,” ACM Trans. Graph., vol. 33, no. 4, pp. 124:1-124:11, 2014.
D. L. James and C. D. Twigg, “Skinning mesh animations,” ACM Trans.
Graph., vol. 24, no. 3, pp. 399-407, 2005.

[35]

[36]

[37]
[38]
[39]

[40]

[41]
[42]
[43]
[44]
[45]

[46]

[47]

[48]

[49]

13

L. Kavan, D. Gerszewski, A. W. Bargteil, and P-P Sloan, “Physics-
inspired upsampling for cloth simulation in games,” ACM Trans. Graph.,
vol. 30, no. 4, pp. 93:1-93:10, 2011.

E Hahn, B. Thomaszewski, S. Coros, R. W. Sumner, E Cole, M. Meyer,
T. DeRose, and M. Gross, “Subspace clothing simulation using adaptive
bases,” ACM Trans. Graph., vol. 33, no. 4, pp. 105:1-105:9, 2014.

A. Somasundaram, “Dynamically controlling hair interpolation,” in
ACM SIGGRAPH 2015 Talks, 2015, pp. 36:1-36:1.

M. Miiller, T.-Y. Kim, and N. Chentanez, “Fast simulation of inextensible
hair and fur.” VRIPHYS, vol. 12, pp. 39-44, 2012.

J. Brown, J.-C. Latombe, and K. Montgomery, “Real-time knot-tying
simulation,” The Visual Computer, vol. 20, no. 2-3, pp. 165-179, 2004.
M. Miiller, B. Heidelberger, M. Hennix, and J. Ratcliff, “Position based
dynamics,” Journal of Visual Communication and Image Representation,
vol. 18, no. 2, pp. 109-118, 2007.

E. Balas and C. S. Yu, “Finding a maximum clique in an arbitrary
graph,” SIAM Journal on Computing, vol. 15, pp. 1054-1068, 1986.
E. Sifakis, T. Shinar, G. Irving, and R. Fedkiw, “Hybrid simulation of
deformable solids,” in Proceedings of SCA, 2007, pp. 81-90.

Y. Fan, J. Litven, D. I. W. Levin, and D. K. Pai, “Eulerian-on-Lagrangian
simulation,” ACM Trans. Graph., vol. 32, no. 3, pp. 22:1-22:9, 2013.
S. Osher and R. Fedkiw, Level Set Methods and Dynamic Implicit Surfaces.
Springer, 2003.

S. Hadap, “Oriented strands: Dynamics of stiff multi-body system,” in
Proceedings of SCA, 2006, pp. 91-100.

K. Schittkowski, “QL: A Fortran code for convex quadratic
programming-user’s guide, version 2.11,” Report, Department of
Mathematics, University of Bayreuth, 2005.

E. J. Candes and T. Tao, “Decoding by linear programming,” IEEE
Transactions on Information Theory, vol. 51, no. 12, 2005.

S. S. Chen, D. L. Donoho, and M. A. Saunders, ‘Atomic decomposition
by basis pursuit,” SIAM journal on scientific computing, vol. 20, no. 1,
pp. 33-61, 1998.

J. Mairal, E Bach, J. Ponce, and G. Sapiro, “Online learning for matrix
factorization and sparse coding,” The Journal of Machine Learning
Research, vol. 11, pp. 19-60, 2010.

Menglei Chai received the bachelor’s degree in com-
puter science from Zhejiang University in 2011. Current-
ly, he is working toward the PhD degree at the State
Key Lab of CAD&CG, Zhejiang University. His research
interests include image-based modeling and interactive
image manipulation.

Changxi Zheng is an Assistant Professor in the Com-
puter Science Department at Columbia University. Prior
to joining Columbia, he received his M.S. and Ph.D.
from Cornell University and his B.S. from Shang-
hai Jiaotong University. His research spans computer
graphics, physically-based simulation, computational
design, computational acoustics, scientific computing
and robotics. He has been serving as an Associated
Editor of ACM Transactions on Graphics, and won
the NSF CAREER Award and the Cornell CS Best
Dissertation award in 2012.

Kun Zhou is a Cheung Kong Professor in the Computer
Science Department of Zhejiang University, and the
Director of the State Key Lab of CAD&CG. Prior to
joining Zhejiang University in 2008, Dr. Zhou was a
Leader Researcher of the Internet Graphics Group at
Microsoft Research Asia. He received his B.S. degree
and Ph.D. degree in computer science from Zhejiang
University in 1997 and 2002, respectively. His research
interests are in visual computing, parallel computing,
human computer interaction, and virtual reality. He
currently serves on the editorial/advisory boards of ACM

Transactions on Graphics and IEEE Spectrum. He is a Fellow of IEEE.

