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ABSTRACT
Judicious control of indoor wireless coverage is crucial in built

environments. It enhances signal reception, reduces harmful in-

terference, and raises the barrier for malicious attackers. Existing

methods are either costly, vulnerable to attacks, or hard to configure.

We present a low-cost, secure, and easy-to-configure approach that

uses an easily-accessible, 3D-fabricated reflector to customize wire-

less coverage. With input on coarse-grained environment setting

and preferred coverage (e.g., areas with signals to be strengthened

or weakened), the system computes an optimized reflector shape

tailored to the given environment. The user simply 3D prints the

reflector and places it around a Wi-Fi access point to realize the tar-

get coverage. We conduct experiments to examine the efficacy and

limits of optimized reflectors in different indoor settings. Results

show that optimized reflectors coexist with a variety of Wi-Fi APs

and correctly weaken or enhance signals in target areas by up to 10

or 6 dB, resulting to throughput changes by up to -63.3% or 55.1%.
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1 INTRODUCTION
Customizing the coverage of wireless networks explicitly for built

environments is critical. By regulating the physical coverage of

each wireless access point (AP), we can enhance signal reception

in desired regions while weakening signals in others. It improves

the efficiency of wireless infrastructure in buildings by mitigating

the impact of building’s insulations, partitions, and interior layouts,

reducing harmful interference, and enhancing system security. Such

physical confinement of wireless signals serves as a complimentary

method to existing network security measures, such as encryption,

and hence raises the barrier for attackers.
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Achieving this goal is particularly challenging indoors, because

of the complex interactions of radio signals with the environment.

Existing approaches rely on directional antennas to concentrate sig-

nals in desired directions. These approaches, however, have three

shortcomings. First, they face a tradeoff between cost and control

flexibility. Low-cost directional antennas [8] concentrate signals

in a static direction, offering very few coverage shapes. Antenna

arrays with more sophisticated control (e.g., arbitrary beam pat-

terns, dynamic configuration) are costly, e.g., $5000+ for Phocus

array [6], $200 for an 802.11ac AP [1]. It is because forming a nar-

row beam needs a large number of antennas, each with a separate

RF chain [44]. These additional RF chains lead to a prohibitive cost.

Second, they often fail to provide strong security guarantees. On the

one hand, fixed-beam directional antennas cannot physically limit

signals within an arbitrary area of interest due to their fixed radia-

tion patterns. On the other hand, multi-user beamforming systems

(e.g., 802.11ac APs) cannot differentiate intended and malicious

clients and strengthen signals for both types of clients. Third, they
require significant configuring efforts due to rich multi-path effects

indoors [8, 14, 34]. Users must try different antenna configurations

to identify the one best matching the desired coverage.

In this paper, we present a low-cost, physically-secure, and easy-

to-configure approach that customizes each AP’s coverage without

requiring directional antennas. Given the increasing popularity and

easy accessibility of 3D printers
1
, we study the use of 3D-fabricated

reflectors produced by 3D digital manufacturing (“3D printing”)

to control signal propagation in the space. Specifically, we place

a signal reflector around an AP, where the reflector shape is com-

putationally optimized, taking into account the environment (e.g.,

interior layouts, partitions, AP locations) and the desired signal dis-

tribution (i.e., target areas to strengthen or weaken signal strength).

The reflector reflects wireless signals to realize a desired coverage.

Indeed, anecdotal experiments [2] have demonstrated substantial

(29.1%−57.2%) bandwidth gain by placing a soda can behind aWi-Fi

AP to strengthen signal in one direction. Our work generalizes this

idea by presenting a systematic approach to optimizing reflector

shapes for enabling a rich set of signal distributions.

Our approach provides four benefits. First, it provides strong

physical security by limiting the physical reach of wireless signals,

hence creating a virtual wall for wireless signals. Second, it relies

on a low-cost ($35), reproducible 3D reflector, which can be easily

replaced upon substantial changes in the environment or cover-

age requirement. Third, it offers an easily-accessible and easy-to-

configure solution to non-expert users. Users only need to specify

coverage requirements and a coarse environment model
2
, with

which our system computes a reflector shape tailored to the built

environment. Finally, it is applicable to commodity low-end Wi-Fi

1
Many online printing services [4, 7] are available when 3D printers are absent.

2
Indoor models can be obtained using full-fledged systems (e.g., Google Tango, Mi-

crosoft HoloLens) or other 3D geometry reconstruction techniques [17, 25, 40].
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Physical Config. Hardware Directionality
Security Effort Cost Gain

Fixed-beam DA Limited High Low Good

Configurable-beam DA Yes High High Best

Multi-user beamforming No Low High Best

Our solution Yes Low Low Good

Table 1: Comparing our solution to directional antennas (DA) or
beamforming.

APs without directional or multiple antennas. Table 1 compares

our solution to its alternatives.

Our work comprises two technical components: First, we de-

sign an effective optimization algorithm that optimizes reflector

3D shapes for a target wireless coverage. During this process, we

represent a reflector shape as a parametric model [39] in computer

graphics to ensure surface smoothness and in turn the feasibility

of 3D fabrication. The shape optimization leverages a 3D wireless

modeling to evaluate the effectiveness of a candidate shape and

improve the shape iteratively. We guide a Simulated Annealing

algorithm [28] using local gradient descent to sample the shape

space more efficiently. We also extend our optimization to deal with

multiple APs and jointly optimize their reflector shapes. Second,
we develop an efficient modeling approach that uses 3D ray trac-

ing to simulate radio signal propagation and signal’s interaction

with objects in a 3D environment. We consider signal’s reflection,

transmission, and diffraction through objects. For APs with multi-

ple antennas, we also take into account the antenna location and

orientation to trace radio signals accurately in the 3D space.

We 3D print optimized reflectors, test them with various Wi-Fi

APs (including the latest 802.11ac AP) via signal and throughput

measurements in two indoor settings. Our findings are as follows:

• Optimized reflectors correctly adjust signal distribution towards

the target coverage. Resulting signal strength can decrease by up

to 10 dB and increase by 6 dB, leading to throughput differences

from -63.3% to 55.1%;

• Optimized reflectors coexist nicely with various Wi-Fi APs in-

cluding MIMO APs (e.g., TP-Link AP and Netgear R7000). They

allowmultiple APs to collaboratively serve a region, or to confine

each AP’s coverage to enhance security and reduce interference;

• The optimized reflector is relatively easy to place. Its efficacy

is not sensitive to slight placement offsets, tolerating up to 10
◦

offset in orientation and 10 cm offset in the distance to the AP.

• Given an environment model, our system computes an optimized

reflector shape in 23 minutes on a laptop (2.2. GHz Intel Core i7).

Our work presents a low-cost, secure, and easy-to-configure ap-

proach that can coexist with directional communication via multi-

antenna beamforming. Physical reflectors regulate signal distribu-

tion across regions at the macro level, while beamforming enables

finer-grained signal enhancement at individual clients within the

coverage. While we use Wi-Fi as an example, our approach can be

generalized to other wireless bands (e.g., light, millimeter waves,

acoustics). It can improve efficiency of diverse wireless networks in

built environments, and potentially help in delivering higher-order

services for buildings, e.g., occupancy detection, lighting control.

2 SYSTEM OVERVIEW
Our system takes three inputs: 1) a digitized, simplified environ-

mental model including the main room structure (e.g., walls); 2)

information of wireless APs: their locations, the number of anten-

nas, and positions of antennas if they are external antennas; and 3)

the target wireless coverage specified as areas where users aim to

strengthen or weaken the received signal strength.

The core of our system is an iterative stochastic optimization

process that searches for a 3D reflector shape for each AP, so that

collectively they achieve the target wireless coverage. Starting from

an initial 3D shape and reflector position, our algorithm perturbs

the current shape and estimates the resulting signal distribution

with the new shape. Based on an objective function that measures

the quality of a reflector shape, it then chooses to accept or re-

ject the perturbed shape before moving on to the next iteration.

Evaluating the objective function requires a 3D wireless propaga-

tion model that predicts the spatial distribution of received signal

strength. Our wireless propagation model takes into account the

indoor environment and simulates the radio waves interacting with

environment objects. The process stabilizes at a final shape until

no further improvement can be made to better match the target.

Finally, we output the shape and placement of the reflector, then

the user fabricates the optimized reflector shape and coats it with a

thin metal layer (e.g., aluminum foil) to enhance its ability to reflect

wireless signals. The fabricated reflector is then mounted around

the wireless AP to realize the customization of wireless coverage.

Next, we describe our optimization of reflection shape, followed

by wireless propagation modeling and reflector fabrication.

3 REFLECTOR SHAPE OPTIMIZATION
We optimize the reflector shape, aiming to generate a target wireless

coverage for a given environment. We first present parameterizing

the 3D geometry of a reflector, followed by our shape optimization

procedure, as well as its extension to deal with multiple APs.

3.1 Representing the Reflector Shape
To represent a 3D surface, we seek a shape parameterization that

can express a large space of feasible shapes and yet entail a low con-

trol degrees of freedom for the sake of computational performance.

A naive solution is to represent a shape as a triangle mesh and

optimize the positions of mesh vertices. However, this approach

has a large number of optimization variables (i.e., the positions of

mesh vertices). It results into an optimization problem in a high

dimensional space, which is rather computationally expensive. Fur-

thermore, the resulting shape might not be well-formed and thus

cannot be fabricated in practice.

We overcome this challenge by leveraging the Non-uniform ra-

tional B-spline (NURBS) surface [39], a shape parameterization com-

monly used in computer graphics and engineering design [18]. The

NURBS surface offers appealing properties: 1) it is flexible, support-

ing a large variety of shapes including standard analytical shapes

such as spheres and free-form shapes; 2) it guarantees a smooth

surface, facilitating the fabrication; and 3) it enables fine-grained

control with low complexity using a small number of control points.

The NURBS surface is defined by NURBS curves. A NURBS

curve consists of a set of weighted control points, a knot vector

and its order. We aim to fit control points on the curve, which then

determine the curve shape. The knot vector is a list of ascending

numbers, defining where and how control points affect the NURBS
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Figure 1: NURBS surface [39] to generate and control a 3D surface
using a few (4 × 4) control points.

curve. By manipulating the knot vector, we can decide whether the

curve passes through or passes by certain control points. The size

of the knot vector is equal to the number of control points plus the

order. The order defines the number of nearby control points that

influence any given point on the curve.

A NURBS surface is calculated as the tensor product of two

NURBS curves. Thus, it has two parametric directions (u and v)
and two corresponding orders and knot vectors. For our purposes,

we predefine its knot vectors and orders and then manipulate its

shape by changing positions of the control points. A NURBS surface

Ω(u,v ) is constructed as:

Ω(u,v ) =
l∑
i=1

w∑
j=1

Ri, j (u,v )P i, j , (1)

with

Ri, j (u,v ) =
Ni,n (u)Nj,m (v )wi, j∑l

p=1
∑w
q=1 Np,n (u)Nq,m (v )wp,q

as rational basis functions, where we have l ×w control points P i, j ,

and wi, j is the corresponding weight. Ni,n (u) is the i
th

B-spline

basis function of degree n [19]. In our model, a shape Ω is defined

by l ×w control points P i, j . We set their weights as 1, which is a

common usage. Figure 1 illustrates two example NURBS surfaces

with 4 × 4 control points, where we lift the center control points to

generate a concave shape on the left and then lift the four corner

points to generate the shape on the right.

3.2 Optimizing the Reflector Shape
To search for the reflector shape optimized for a target coverage, we

start with a flat plane as the reflector shape Ω and then perturb Ω
over iterations. In each iteration, we evaluate the effectiveness of a

candidate shape Ω by the objective function F (Ω), where F (Ω) mea-

sures the difference between the desired coverage and the coverage

CΩ resulting from reflector shape Ω. We estimate CΩ by running

the 3D wireless modeling described in Section 4. Specifically, we

divide the environment into small cells in uniform size (1 m × 1

m in our implementation). We apply the 3D wireless propagation

modeling to predict signal strength at each cell’s center. Assuming

M+ and M− denote the areas where users aim to strengthen and

weaken signals respectively, we compute F (Ω) as:

F (Ω) =
∑

i ∈M+∪M−

| |CTarдet (i ) −CΩ (i ) | |
2, (2)

where CΩ (i ) is the signal strength in dBm at cell i after placing re-

flector shape Ω, andCTarдet (i ) is the target signal strength of cell i .
To deriveCTarдet (i ), we first compute signalC (i ), which is the esti-
mated signal strength at cell i when no reflector is placed. We then

add/subtract δ , which is the expected signal enhancement/reduction

(a) (b)

Figure 2: (a) shows the objective function F (Ω) as we perturb
two control points of the NURBS surface. (b) illustrates our search
method. In the (k −1)-th iteration (Ωk−1), we apply gradient descent
to seek the local optimum Ω′k and choose Ω′k as the next candidate.

at cell i . To determine δ , we tested different materials on their per-

formance of signal enhancement and attenuation at distances from

1 to 3 meters. Results (Figure 5) show that the signal change is at

most 15 dB. Thus we set δ to 15 dB and write CTarдet (i ) as:

CTarдet (i ) =



C (i ) + δ if i ∈ M+

C (i ) − δ if i ∈ M−
. (3)

Here we use a cell-dependent target valueCTarдet (i ), rather than a

uniform signal upper and lower bound, becauseCTarдet (i ) defines
an equal range (δ ) above or belowC (i ). As a result, a given amount

of signal enhancement or reduction leads to the same amount of

change in F (·), regardless of the cell location. This, however, is

no longer guaranteed if a uniform bound is used, because of the

quadratic nature of F (·). Thus,CTarдet (i ) ensures the optimization

process is unbiased across cells. Finally, the optimization process

searches for Ω⋆
: Ω⋆ = argminΩ F (Ω), where Ω⋆

is the 3D reflector

shape that leads to signal distribution best matching the target.

While the optimization problem appears standard, the search

space is daunting and many local optimums exist (Figure 2(a)). Sim-

ple local search methods such as hill climbing can easily be stuck at

local optimums. We need efficient algorithm to identify the global

optimal. To achieve this goal, we consider simulated annealing

(SA) [28], which allows the iterations to opportunistically escape

from the current local search area even if the escape leads to an

increase in the objective function. The escape likelihood p is deter-

mined by two parameters in the algorithm: current temperature T
and the increase in the objective function. SA keeps examining can-

didate shapes until T reaches the minimal temperature (0). When a

candidate shape Ω is examined, the current temperature is cooled

at a rate r . SA accepts Ω if F (Ω)is lower than the previous candi-

date. Otherwise, it accepts Ω with a probability p. p is adapted over

iterations. In the beginning whenT is higher, p is also higher so SA

tends to explore other areas in the shape space. As T decreases to

0, p approaches 0 so that it gradually settles at an optimum.

However, SA can require a fairly large number of iterations as

it randomly samples the search space. To achieve better results,

we propose to guide SA’s iterations using gradient descent. The

key idea is to consider characteristics of a local search area for

determining the next candidate. Specifically, in each iteration of SA,

instead of randomly generating a shape as the candidate, we apply

gradient descent to seek the local minimum as the next candidate.

Take the kth iteration as an example, we first generate a random

shape Ωk , then we calculate the shape gradient∇F (Ωk ) of objective
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Algorithm 1 Shape Optimization

1: initialize Ωk , k = 0, T = Tmax
2: while T > Tmin do
3: k ← k + 1
4: F (Ωk−1 ) ← Eq .(2)
5: Ωk ← per turb (Ωk−1 )
6: while do
7: ∇F (Ωk ) ← дetGradient (F (Ωk ))
8: λ ← дetStepSize ()
9: if F (Ωk − λ∇F (Ωk )) < F (Ωk ) then
10: Ωk ← Ωk − λ∇F (Ωk )
11: else
12: break
13: end if
14: end while
15: F (Ωk ) ← Eq .(2)

16: p ← e
F (Ωk−1 )−F (Ωk )

T

17: if F (Ωk−1 ) ≥ F (Ωk ) or rand[0, 1] ≤ p then
18: Ω⋆ ← Ωk
19: end if
20: T ← T · r
21: end while
22: return Ω⋆

function F (Ωk ) at Ωk :

∇F (Ωk ) = lim

| |dΩk | |→0

F (Ωk + dΩk ) − F (Ωk )

dΩk
, (4)

where dΩk is obtained by slightly changing the control points of

Ωk . Then we apply backtracking line search to find an appropriate

step size λ. Finally we take Ωk − λ∇F (Ωk ) as Ωk and repeat Eq. (4)

until we find a local optimum Ω′k . We take Ω′k as the candidate

instead of Ωk to go over the accept/reject procedure. This method

directly iterates from one local minimum to another (Figure 2(b)),

and thus is more efficient to approach the global optimum than

SA’s random sampling [31]. Algorithm 1 lists the detail.

Accelerating the Search. Each iteration in our search can be

time-consuming, because deriving ∇F (Ωk ) requires altering the

positions of Ωk ’s control points one by one. The running time of

each iteration is linear with the number of Ωk ’s control points. To

speed up the gradient computation, we leverage the simultaneous

perturbation stochastic approximation (SPSA) algorithm [13, 46],

which perturbs all parameters (i.e., control points) simultaneously

with a random perturbation vector ∆ to estimate the gradient of

each parameter. Thus, it approximates the gradient computation

using only two calculations of the objective function, regardless of

the parameter dimension (i.e., the number of control points in our

problem). Additionally, we run these iterations as parallel threads

to further shorten the process. As a result, an iteration take 1.71

seconds on average on a MacBook Pro (2.2 GHz Intel Core i7).

3.3 Extending to Multiple APs
We now extend the above shape optimization to handle multiple

APs. We classify APs into two types: 1) Collaborative APs: APs
that are deployed by the same entity, e.g., a user or an enterprise

deploying multiple APs in a home or workplace. These APs collab-

oratively serve a region to provide wireless coverage and user’s

device automatically connects to the AP with the strongest signal;

2) Non-Collaborative APs: APs that are deployed by different enti-

ties. Each AP serves users in its own pre-defined coverage region,

without the knowledge nor any control of other APs.

For collaborative APs, we jointly optimize their reflector shapes

so that the resulting signal coverage best matches the target. Here

the signal coverage map is defined based on the strongest sig-

nal received at a location from all collaborative APs. Thus, let

O = {Ω1, ...,ΩM } denote a set of candidate reflector shapes for

M collaborative APs, where Ωj is the reflector shape for AP j . Then
its objective function F (O) is similar to Eq.(2):

F (O) =
∑

i ∈M+∪M−

| |CTarдet (i ) −CO (i ) | |
2, (5)

where CO (i ) is the signal strength at cell i after placing reflector

shapes O at all APs. CTarдet (i ) is computed following Eq.(3), but

withC (i ) as the signal received at cell i from the strongest AP. Thus

the search is to seek the optimal set of shapes O⋆ = argminO F (O).
To jointly optimize M reflectors, we interleave the perturbation

of each AP’s reflector shape across iterations. Specifically, in an

iteration, we perturb only one AP’s reflector shape to seek its next

candidate shape while fixing other APs’ reflector shapes, and then

move on to perturbing the next AP’s reflector shape in the next

iteration. Each iteration of the optimization procedure is similar to

Algorithm 1. We omit the algorithm details in the interest of space.

For non-collaborative APs, each AP has its own pre-defined

coverage region without the knowledge of other APs, thus each

AP’s reflector shape is optimized separately following Algorithm 1.

For non-collaborative APs operating on the same channel, they can

interfere with one another if their coverage regions are nearby. The

impact of interference can be minimized if the information (e.g.,

location, reflector shape) of other interfering APs is available to

the shape optimization algorithm. We can estimate the interference

at each cell and consider signal-to-interference ratio (SINR) as the

target (Eq. (2)) for shape optimization. We leave it for future work.

4 EFFICIENT 3DWIRELESS MODELING
An essential part of our shape optimization is an efficient modeling

that simulates wireless signal propagation in a given environment

for evaluating the efficacy of a candidate reflector shape. Most ex-

isting models either fall far short in modeling accuracy [29, 36],

or require expensive measurement or computation overhead. To

achieve a better tradeoff, we choose 3D ray tracing for its best

accuracy [26, 35, 53] and design schemes to speed up its compu-

tation. In particular, we choose the Shooting-and-Bouncing Ray

(SBR) launching algorithm [21, 30, 43], which launches a number

of rays from the transmitter and traces all their possible paths to

reach a receiver. Next we describe the key steps of our modeling.

Ray Launching. We model each antenna of a Wi-Fi AP as a

signal source
3
. To achieve accurate ray tracing, rays need to be

uniformly spread from the transmitter, i.e., angles between any two

adjacent rays are uniform. To do so, we use the geodesic sphere ray

launching [51]. A geodesic sphere (Figure 3) is formed by tessellat-

ing faces of a regular polyhedron and extrapolating the intersection

points on the surface of a sphere [27]. The geodesic vertices pro-

vide equivalent angular separation around the entire sphere [43].

Thus, we can place the transmitter at the sphere center and emit a

ray to every geodesic vertex on the sphere to guarantee uniform

3
More antennas imply more signal sources and thus higher computation overhead in

wireless modeling. They also impose more physical constraints to place the reflector.
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(a) (b) (c)

Figure 3: Geodesic sphere for uniform ray launching, where a ray
is emitted from the sphere center to each geodesic vertex on the
sphere. The sphere is generated by tessellating a regular icosahe-
dron (a). (b) and (c) show the resulting spheres after tessellating each
triangle surface in (a) into 4 and 256 triangles, respectively.

ray launching. In our implementation, we consider tessellating an

icosahedron (20 triangular faces and 12 vertices) [54]. To achieve

high resolution, we divide each edge into N = 8 segments and thus

tessellate each triangle surface into N 2 = 64 triangles (Figure 3(c)).

It leads to 10N 2 + 2 = 642 launched rays (i.e., geodesic vertices)

with the average radial angular separation θ of
1

N

√
4π
5

√
3

≈ 0.1506

rad, where the unit of 4π is steradian [21].

Ray Tracing. We track each ray’s interaction with environmental

objects. Given the wavelength of Wi-Fi signals, we consider three

types of interactions (Figure 4(a)): transmissions (rays penetrate the
objects), reflections (a ray is bounced over a smooth surface), and

diffractions (a ray hitting an object edge is diffracted as a set of rays

in a cone shape, Figure 4(b)). To model diffraction, we leverage the

Uniform Theory of Diffraction (UTD) used by the fast-wave acous-

tics simulation in computer graphics [52]. It has also been applied

in modeling RF propagation in buildings [37]. Similar to [24, 26], we

do not consider wave phase as we average signal strengths in each

1 m × 1 m cell when evaluating coverage. We do not model other

wave phenomena like scattering since they have negligible impact

on the resulting signal map [26]. We also do not consider the near-

field effect, since we calculate signal strength at locations at least

meters away from the antenna, while the Fraunhofer distance [11]

defining the near field is tens of centimeters in our setting
4
.

Each type of ray interaction contributes to additional energy

loss of a ray, in addition to its signal degradation over distance. To

integrate all these contributors, we choose a partition model [9, 26]

to calculate each ray’s signal power at a receiver location. The

model consists of four parts: 1) the signal degradation over distance,

represented by the pathloss exponent α ; 2) the reflection attenu-

ation, which is the product of the reflection coefficient β and the

number of reflections; 3) the transmission attenuation, which is the

product of the transmission coefficient γ and the number of times

that a ray penetrates obstacles; and 4) the diffraction attenuation,

which is the product of the diffraction coefficient λ and the num-

ber of diffractions. We do not consider multiple diffractions and

reflection-diffraction [43].

Formally, let P
j
i denote the power in dBm contributed by the ith

ray of jth AP after traveling a distance of di to reach a receiver, we

can calculate P
j
i as:

P
j
i = P

j
0
− 10αloд10 (di/d0) − βNi,r ef − γNi,trans

− λNi,dif f − β ′N ′i,r ef − γ
′N ′i,trans ,

(6)

4
Fraunhofer distance is calculated as 2D2/λ, where D is the largest physical linear

dimension of the antenna and λ is the wavelength.

Tx

reception sphere 

ray1, transmission

ray3, diffraction

ray2, reflection

Rx

(a) ray interactions

Incident ray

Diffracted rays
Edge

θi

θd

θi = θd

(b) Uniform theory of diffraction

Figure 4: Ray tracing.

where P
j
0
(in dBm) is the reference power of jth AP at distance d0,

pathloss exponent α captures how quickly the signal degrades over

distance, Ni,r ef ,Ni,trans ,Ni,dif f are the number of reflections,

transmissions, and diffractions that ray i experiences, respectively.
Since the reflector surface is designed to be highly reflective, we

consider different transmission and reflection coefficients (β ′, γ ′)
for the reflector. N ′i,r ef and N ′i,trans are the number of times ray i

penetrates and is reflected by the reflector, respectively.

We can adapt the model to various environments easily as param-

eters (P
j
0
,α , β,γ , λ, β ′,γ ′) are calibrated only once. The calibration

needs measurements only at a few sampled locations, rather than a

site survey. The best-fit parameter values are identified by apply-

ing simulated annealing [26] to minimize modeling errors. These

parameters can then be reused at all locations of an environment.

Ray Reception. Finally to calculate the received signal strength

at a receiver location, we sum the power of each ray within the

reception zone Z of this receiver. Formally, let P j (in dBm) be the

received power from AP j, we have P j = 10loд10
∑
i ∈Z 10

P ji /10,

where P
j
i is the power contributed by ray i from AP j calculated

by Eq. (6). We consider the reception zone as a sphere with radius

of θd/
√
3 centered at the receiver [42], where θ is the average

radial angular separation between adjacent rays launched from the

transmitter, and d is the length of a ray’s propagation path to the

receiver. The radius of the reception sphere considers the fact that

rays are spread out as they propagate. Figure 4 shows the reception

sphere for each ray, where ray2 travels the longest distance to reach

receiver and thus has the largest reception sphere.

Speeding Up Ray Tracing. While offering higher accuracy, ray

tracing incurs heavy computation, mainly because of calculating

intersections of a large number of rays and triangle meshes
5
. To

speed up the ray tracing process, we index the triangle meshes

with a Kd-Tree [12]. We construct a Kd-Tree of the bounding boxes

containing these triangle meshes. For each ray, we first search the

tree to identify the bounding boxes that the ray intersects. Only for

the triangle meshes in those bounding boxes, we examine the ray-

triangle intersection, which avoids many unnecessary intersection

tests. For each ray-box and ray-triangle intersection test, we apply

prior algorithms [22, 32] to improve the efficiency.

5 REFLECTOR FABRICATION
With the optimized shape Ω⋆

, the last step is to realize it as a

physical reflector. We represent Ω⋆
as its corresponding control

points of the NURBS surface, calculate the coordinates of each mesh

point based on Eq. (1), and store all mesh points in an .obj file. We

5
In our implementation, the indoor model has 107 triangle meshes and the ray tracing

launched 1926 rays, producing ≈ 10K rays after multiple reflections and transmissions.
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Figure 5: Different plane reflector’s ability to reflect and attenuate
Wi-Fi signals, at distances from 1 to 3 meters.

edit the .obj file in Blender, an open-source 3D computer graphics

software. We add thickness and export it to a .stl file for a 3D printer

(MakerBot) to print it. Its build volume is 25.2 cm × 20 cm × 15.0

cm. Overall fabricating a 20 cm × 20 cm reflector costs no more

than $35 (one large spool of MakerBot PLA Filamen).

We add a thin layer of metal to the plastic reflector surface

because metals have exceedingly high conductivities and thus are

effective reflectors and attenuators of radio waves [3]. To determine

themetal material, we systematically test three types ofmetal sheets

made of silver, copper, and aluminum, which are all 0.1-mm thick.

We also test aluminum sheet with 0.25-mm thickness to evaluate

the impact of the metal-layer thickness. We attach each metal sheet

to a 30 cm × 30 cm plastic (the same material used by 3D printers in

fabrication) to form the final reflector. We place the reflector at the

back of an AP to test its ability to reflect Wi-Fi signals to a receiver.

To test its ability to attenuate signals, we place the reflector between

the AP and the receiver. For both tests, we vary the distance of the

receiver to the AP from 1 m to 3 m.

In Figure 5, we see that copper and aluminum perform similarly

in enhancing and attenuating Wi-Fi signals, and silver performs

slightly better. Increasing sheet thickness moderately improves its

ability to attenuate signals, but not its reflection property. Given

the lower cost of aluminum and the difficulty of applying a 0.1-

mm sheet to an uneven reflector surface, we choose to cover the

reflector surface with a 0.024-mm household aluminum foil.

We also observe that reflectors are better at weakening than

strengthening Wi-Fi signals, mainly because of Wi-Fi’s wavelength

and the energy loss when signals penetrate the reflector. When Wi-

Fi signals interact with the reflector, the signal either penetrates,

or is absorbed, or is reflected by the reflector. Only the reflected

energy can be directed to strengthen the signal at locations before

the reflector, while both the reflected and the absorbed energy

contribute to the signal attenuation at locations behind the reflector.

6 EVALUATION
We evaluate our approach by testing optimized reflectors in two

indoor scenes.We seek to understand its capability in affecting wire-

less signal distribution and throughput, implications on enhancing

security and reducing interference, its sensitivity to reflector place-

ment and size, and other performance microbenmarks.

6.1 Experimental Setup

Indoor Scenes. We experiment two indoor scenarios with differ-

ent room layouts: (a) workspace scenario: a 19 m × 13 m indoor area

with a narrow (7.5-m long) hallway connecting a research lab and

two offices; (b) home scenario: a 16 m × 12 m area where a spacious

lobby (5.8 m × 5.1 m) is surrounded by three rooms. Figure 6(a) and

Figure 7(a) show their floor maps, respectively. Although rooms

are furnished in both scenes, the 3D environment models used

in our shape optimization contain only walls and doors (we will

evaluate the impact of including furniture in environment models

in § 6.5). Experiments are conducted during working hours with

moving users around (walking, working at their desks, or stand-

ing and talking to others). For the simplicity and feasibility of the

user input, we assume the same material for objects in the envi-

ronment. To consider heterogeneous materials, we can adapt the

reflection, transmission and diffraction coefficients in Eq. (6) based

on materials, and track what materials a ray has traveled through.

Wi-Fi APs. We use Netgear R7000 (IEEE 802.11ac) as default

APs. R7000 has three antennas and operates on both 2.4 GHz and 5

GHz frequency. We configure it to transmit at 10 mW and collect

RSS values at 2.4 GHz band. We also test two other popular APs:

Linksys WRT54GL (IEEE 802.11g) and TP-Link WR841N (IEEE

802.11n), both operating on 2.4 GHz frequency and equipped with

two external antennas. To minimize interference from external

APs, we analyze channel usage status using a mobile app (Wi-Fi

Analyzer) and set the AP to operate on the least congested channel

(channel 9 in our environment).

Ground Truth Signal Collection. Although our approach does

not require exhaustive site survey measurements to compute re-

flector shapes, such measurements are necessary for us to evaluate

the impact of optimized reflectors on signal distribution. To gather

signal measurements, we divide each area into 1 m × 1 m cells

and average received signal strength (RSS) values within each cell.

We also sample a few locations (blue circles in Figure 6(a) and

Figure 7(a)) to measure the throughput.

To automate RSS measurements in the 3D space, we apply a

drone-based method in [55]. We program an AR Drone 2.0 to collect

RSS at specified locations. We reuse drone’s built-in Wi-Fi radio to

receive beacons from our AP and record RSS values. To decide the

measurement duration per location, we let the drone hover over

a location, measure for 1 minute and 10 seconds respectively, and

compare the mean and standard deviation of RSS. Results reveal

that 10 seconds are sufficient for collecting stable RSS statistics.

6.2 Efficacy of Optimized Reflector
We start by examining the overall efficacy of the optimized reflector

in a single-AP setting. We consider a target coverage in Figure 6(a),

where we mark areas with received signals to be strengthened by

ticks and areas with signals to be weakened by crosses. We run

our shape optimization algorithm to derive the optimized reflector

shape, fabricate the reflector (20 cm × 20 cm in size), and place it

around AP’s antennas. Figure 6(d) shows the optimized 3D shape,

its estimated radiation pattern, and its placement. The radiation

pattern is generated by simulating signal change at one meter away.

For this target coverage, an antenna is behind the reflector and

the others are in front of the reflector. We measure changes in the

resulting RSS and throughput.

Impact on Signal Distribution. We collect the signal maps be-

fore and after placing the reflector around the AP. We also compare
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(a) Target coverage of an AP (scene 1) (b) Naive concave reflector (c) RSS change using naive reflector

(d) Optimized reflector (e) RSS change using optimized reflector
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Figure 6: Efficacy of an optimized reflector for achieving a target wireless coverage (a), where areas users aim to strengthen the signal are
marked by green ticks and areas to weaken the signal are marked by red crosses. (b) and (c) show a reflector in a simple concave shape and its
resulting signal change in dB, while (d), (e), and (f) show a reflector in optimized shape, and the resulting changes in signal distribution and
throughput. The optimized reflector shape leads to a signal distribution better matching the target.

the results to that of a naive reflector shape (the concave shape

used in anecdote experiments, Figure 6(b)). Figure 6(c) and (e) show

the RSS change (in dB), where positive numbers indicate signal

enhancements and negative numbers indicate signal declines. We

observe that the optimized reflector correctly adjusts signals in all

target areas, weakening signals in the hallway and room2 by 10 dB

while strengthening signals in other target areas by 6 dB. It achieves

the goal by blocking an antenna that emits signals to the hallway

and room2 while reflecting the signals of the other two antenna

towards room1. The naive reflector, however, generates a simple

radiation pattern that uniformly weakens signals in all areas in

the back of the reflector, and thus fails to meet requirements of all

target areas. The result demonstrates the necessity and efficacy of

our optimization, which considers the indoor layout to customize

the reflector shape and enables more flexible control.

A side effect of the optimized reflector is that in order to weaken

signals in the hallway and room2, it also slightly weakens the RSS

in the right bottom of the lab. It is a sacrifice made by the shape

optimization to reach an overall signal distribution better matching

the target. As we further analyze signal change at individual cells,

83.1% of cells have their signals correctly strengthened or weakened,

demonstrating the overall efficacy of the optimized reflector.

Impact on Throughput. We further examine how signal-level

changes translate into throughput differences at clients. We sample

a few locations (marked as blue circles in Figure 6(a)) and mea-

sure the throughput at those locations before and after placing the

reflector. In particular, we associate two laptops (MacBook Pro)

with our AP. We fix the location of a laptop, while a user holds the

other laptop walking around within each location to measure the

throughput. We instrument one laptop to transmit 500-MB data to

the other using the iperf utility and collect throughput statistics.

We repeat the experiment for 10 rounds.

Figure 6(f) shows the percentage of throughput change un-

der different APs with optimized reflectors. We also include er-

ror bars covering 90% confidence intervals. Overall throughput in-

creases/decreases by up to 22.1%/36.7% in target areas. The through-

put improvement at location 8 is small because its RSS is low, re-

quiring a larger signal enhancement to switch to higher data rates.

The throughput at location 9 slightly decreases because its RSS

is slightly weakened by the reflector (Figure 6(e)). Most other lo-

cations in the lab experience improved throughput. Overall, the

optimized reflector correctly adjusts throughput for 11 out of 12 lo-

cations. The result also shows that our reflectors can coexist nicely

with MIMO APs (i.e., TP-Link AP and Netgear R7000).

6.3 Multi-AP Settings
We now move on to scenarios with multiple APs. As follows, we

consider two types of APs described in § 3.3.

Collaborative APs. To evaluate the efficacy of jointly optimized

reflectors, we deploy two APs in scene 2 and jointly optimize their

reflector shapes for a target coverage in Figure 7(a). We measure

the signal map before and after placing reflectors, where the RSS

at a location is the signal from the stronger AP. We plot the signal

change in Figure 7(b). The two optimized reflectors successfully

reduce signal strength in lobby by up to 10 dB and increase signals

up to 6dB in room 3, 4 and 5
6
. Overall, 91% of cells have their

signals correctly strengthened/weakened. To further examine the

impact on resulting bandwidth, we sample 9 locations (blue circles

in Figure 7(a)) and plot in Figure 7(c) the throughput change brought

by optimized reflectors. For 7 out of 9 locations, the throughput

changes from -63.3% to 55.1%. Location 13 and 18 experience little

change because of their minor signal changes (Figure 7(b)). Overall

6
The numbers are slightly different from that in Figure 5 since the result here is

measured at further distances and also affected by the environment.
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(a) Target coverage of two collaborative APs (scene 2) (b) RSS change with optimized reflectors
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Figure 7: Efficacy of optimized reflectors of two collaborative APs to achieve a target wireless coverage. In (a), areas where users aim to
strengthen or weaken signals are marked by green ticks and red crosses, respectively. (b) shows the map of resulting signal change in dB. (c)
plots the throughput improvement at sampled locations (blue circles in (a)).

(a) Target regions of two non-collaborative APs (scene 1)
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Figure 8: Experiments on efficacy of reflectors confining wireless coverage and reducing interference. (a) shows the placement and desired
Wi-Fi regions of two APs. (b) plots the packet loss rate change outside the desired region of each AP when optimized reflectors are placed. (c)
presents reflectors’ impact on SINR inside the AP’s desired region.

the signal and throughput changes are notable for the majority of

locations, demonstrating the efficacy of our joint optimization.

Non-Collaborative APs. For non-collaborative APs, we aim to

confine each AP’s coverage. We examine the implications on secu-

rity/privacy and interference reduction with optimized reflectors.

1) Implications on Security/Privacy: We set up two Netgear

R7000 APs in scene 1 and mark each AP’s coverage region in

Figure 8(a). We then fabricate reflectors for these APs to confine

their coverage. We measure packet loss rates at sampled locations

(marked as blue circles) before and after placing reflectors. We asso-

ciate two laptops (MacBook Pro) with the same AP and instrument

a laptop to transmit packets to the other using the iperf utility. Sim-

ilarly to [45], we desire packet loss rates above 30% for locations

outside an AP’s coverage region, as many TCP and UDP based

applications [10, 41] require a packet loss rate below 25%.

Figure 8(b) plots packet loss rates when a receiver outside an

AP’s region attempts to connect to this AP. Before placing any

reflector, all locations have access to both APs. After placing opti-

mized reflectors, we find that room2 (location 1 and 2) is unable to

access the network of AP1 (50 - 60% packet loss rates), and locations

at the lab (location 6, 7 and 8) can not access AP2. This demonstrates

that optimized reflectors help confine Wi-Fi signal strength in the

desired region. We also observe that for some locations outside an

AP’s region, packet loss rate does not change much after placing

the reflector, e.g., the packet loss rate of AP2 at location 9 is nearly

0% with or without the reflector. It is because location 9 is relatively

close to AP2 and receives a strong signal from AP2 even with the

reflector. The same holds for location 3, 4, and 5. To address this

limitation, we plan in future work to include transmit power as

another parameter in our model to control coverage more precisely.

2) Reducing Interference: To quantify the benefit on interfer-

ence reduction, we examine Signal to Interference Noise Ratio
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Figure 9: Sensitivity to reflector placement offset.

(SINR) at locations in each AP’s coverage region. We reuse the set-

ting in Figure 8(a) and compute the SINR at all locations. Figure 8(c)

shows that reflectors boost the SINR for most locations by up to

13 dB. The SINR at location 9 barely changes because while AP2’s

reflector weakens the interference, AP1’s reflector also weakens

the signal at this location, resulting into little change in its SINR.

6.4 Reflector Placement and Size
In addition to the reflector shape, the reflector placement and size

can also affect reflector’s efficacy. Next we examine system’s sensi-

tivity to these factors. In following experiments, we use the opti-

mized reflector in Figure 6(d) as an example.

Placement Offset. We first study the impact of orientation offset,

which can occur during manual placement. In the experiment, the

reflector (20 cm × 20 cm) faces room1 and room2 to enhance sig-

nals, which corresponds to the 0
◦
orientation offset. We rotate the

reflector from −30◦ to 30◦ in a counterclockwise manner with 5
◦

interval. We then plot the average signal enhancement of interested

locations in room1 and room2 in Figure 9(a). During the experiment,

we observe some large signal variation at certain locations (location

10) when the orientation offset is within 10
◦
, but the variation is

only within 0.51 dB for room1 and 0.83 dB for room2, indicating that

the reflector can tolerate small orientation offset. Orientation offset

larger than 10
◦
results in slow decrease in signal enhancement.
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Figure 10: Accuracy of 3D wireless propagation modeling, in com-
parison to the 2D modeling in prior work [16].

We then examine how the distance between the reflector and

AP affects the performance. We fix the reflector’s orientation, vary

its distance from 0 cm to 25 cm with 5-cm interval, and plot the

average signal enhancement at room1 and room2 in Figure 9(b). We

observe that offsets within 10 cm have negligible impact. Once the

distance is above 10 cm, the signal enhancement starts to decrease.

It is because as signals travel, they are further spread out with atten-

uated strength. Thus, a reflector further away from the AP reflects

fewer signals and is less effective in affecting signal distribution.

Reflector Size. We also study the impact of reflector size on

reflector’s ability to adjust signal distribution. A larger reflector

reflects more signals and can be more effective, however its fabri-

cation is harder and more costly. We aim to seek a proper size to

achieve a good tradeoff. We fabricate the reflector in two sizes: 20

cm × 20 cm and 40 cm × 40 cm. Given that the height and width of

all our APs are roughly 20 cm, a 20 cm × 20 cm reflector can cover

all antennas. We place each reflector around the AP and measure

the resulting RSS change at room1 and room2. As we compare the

mean RSS change and the standard deviation for these two sizes,

we observe negligible difference, indicating as long as the reflector

covers all antennas, it needs not to be larger. This observation can

be a guideline for determining reflector size for APs in other sizes.

6.5 Microbenchmarks
Finally, we examine the accuracy of our 3D wireless modeling and

overall running time of the shape optimization.

Accuracy of 3D Wireless Modeling. Using scene 1 as an ex-

ample, Figure 10 (a) and (b) plot CDFs of absolute RSS errors of

our 3D wireless model (described in § 4), using measured RSS as

ground truth. Figure 10 (a) is the result without any reflector, while

Figure 10 (b) is for a concave shaped reflector placed around the

AP. Overall the mean RSS error of 3D wireless modeling is 3 dBm.

Furthermore, we compare our 3D modeling to the 2D modeling

in a prior work [16]. We observe that 3D modeling notably lowers

the tail of RSS errors. The maximal error of 2D modeling is 11 dBm

and 16 dBm, with and without reflector respectively, while they

are 8 dBm and 12 dBm for 3D modeling. 3D modeling outperforms

2D modeling because of more accurate characterization of signal

interaction in the third dimension. We also include the results when

2D/3D wireless modeling uses a finer-grained environment model

that includes main furniture (e.g., desks, sofas). We observe that for

both 2D and 3D modeling, adding furniture leads to negligible dif-

ference in resulting accuracy in both scenarios. The results indicate

that coarse-grained 3D environmental models are sufficient.

Running Time. We run our shape optimization algorithm on a

MacBook Pro (2.2 GHz Intel Core i7) and record the time to generate

an optimized shape for various target coverage requirements. We

observe that the algorithm stabilizes after 23 minutes on average.

We further look into effectiveness of our speedup schemes: the

Kd-tree used to speed up wireless modeling, the SPSA algorithm

and multiple threads to speed up the search for optimized shape.

Table 2 lists the running time of the optimization process when

using either no speedup scheme, or only one speedup scheme, or

all of them. Having 107 triangle meshes and 10K rays in the ray

tracing model, we see that the Kd-tree accelerate around 1.6 times.

For a complex model that has thousands of triangle meshes, the

speedup of Kd-tree can be up to tens of times. Theoretically SPSA

can reduce tens of time to calculate the gradient when we have

3×5 control points, however it only speeds up roughly 1.5 times,

because the search for appropriate step size is another bottleneck.

Multiple threads accelerate nearly 4 times. Together, they reduce

the average running time from 207 minutes to 23 minutes.

Scheme No SPSA Kd-tree Threads Full
speedup only only only speedup

Time (minutes) 207 141 128 48 23

Table 2: Running time of our shape optimization with and without
speedup schemes (SPSA, Kd-Tree, and multiple threads).

7 RELATEDWORK

Configuring Wireless Coverage. Prior works have optimized

AP placement to improve signal reception in certain areas [35].

However, moving the AP to enhance one area would result into the

decline of signal strength in other areas. Thus, such methods are

constrained in its flexibility. Another method is to use directional

APs to confinewireless coverage to a specified region [45]. However,

this method needs multiple costly directional APs. Our approach

works with a single AP without directional antennas.

As for the use of reflectors, recent work [20, 49, 50] has studied

reusing walls to reflect radio waves and control signal propagation.

This method, however, relies on smart walls made of special mate-

rials and requires infrastructure-level changes. Similarly, a latest

work [23] examined placing multiple metal plates in the environ-

ment to enhance wireless performance of a single AP. This approach

also requires nontrivial changes in the environment by installing

reflectors likely in large sizes. In contrast, our approach uses only

a small reflector at the AP, is applicable in any environment, and

supports multiple APs. Additionally, [23] optimizes reflector loca-

tions, whereas our work optimizes reflector shape. Another prior

work [16] studied the feasibility of applying fabricated reflector to

control wireless coverage. We advance this prior work in multiple

fronts: a more sophisticated shape model, a more efficient shape

optimization and extension to multiple APs, 3D wireless modeling,

and extensive indoor experiments with optimized reflectors.

Directional Antennas. Directional antennas increase signal

gain in a chosen direction and thus improve spatial reuse [8, 14,

15, 33, 38, 47, 48]. Researchers have studied steerable-beam direc-

tional antenna’s link quality outdoors [15] and its directionality

indoors [14]. Its directionality greatly decreases due to rich multi-

path effects [8, 14, 34]. In comparison, we consider the influence of

indoor layout when optimizing reflector shape. Besides, low-cost

directional antennas (e.g., microstrip antennas [8], sectorized an-

tennas [48]) only provide limited simple patterns. Our reflector is

low-cost and flexible in radiation patterns.
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Directional antennas often rely on multi-antenna beamforming,

which electronically adjusts an array of omni-antennas to form

narrow beams and maximize the signal strength for one or multiple

users [5, 44]. Despite its superior performance, it has three main

limitations. First, it cannot provide physical security, as it only

enhances client’s signal reception and cannot take into account

client’s location information (i.e., whether the client is inside the

authorized location or not). As a result, it can end up forming a

beam towards an attacker outside the authorized area. Second, it is

more costly than our solution as it requires multiple antennas, each

with a separate RF chain. Finally, it imposes expensive measurement

overhead by collecting real-time Channel State Information (CSI).

8 CONCLUSION AND FUTUREWORK
We studied the design of a low-cost, 3D-fabricated reflector to

customize wireless coverage. We demonstrated the efficacy of opti-

mized reflectors with reflector prototypes and indoor experiments.

We summarize the limitations of our study and plans for future

work. First, our current reflectors are in static shapes. Thus, upon

substantial changes in the environment (e.g., removal/addition of

walls), the reflector shape needs to be re-calculated and fabricated.

Minor furniture changes have minimal impact on the resulting

coverage, as shown in Figure 10, thus not requiring to replace

the reflector. In the future, we will study reflectors made of trans-

formable materials, enabling the reflector to automatically adapt

its shape upon major changes. Second, the wavelength of Wi-Fi

signals limits reflector’s ability to reflect and block signals (Fig-

ure 5). Thus, changes on RSS and throughput have been moderate.

Moving forward, we will examine higher frequency bands such as

millimeter waves and visible light, where reflectors can block and

reflect signals more effectively and cause more significant change in

signal distribution. Finally, we will explore augmenting directional

antennas with optimized reflectors and analyze their interplay.
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