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ABSTRACT
Through analysis of large volume of user behavior logs dur-
ing playing multimedia streaming, we extract a user viewing
pattern. The pattern indicates that random seek is a perva-
sive phenomenon, contrary to the common assumptions that
users would watch a video session sequentially and passively
in most works on peer-to-peer streaming. We propose to use
efficient prefetching to facilitate the random seek function-
ality. Because of the statistical nature of the user viewing
pattern and the ignorance of the users to the content, we
argue that the pattern should be used as a guidance to the
random seek. Based on the pattern, we set up an analogy
between the optimization problem of minimizing the seeking
distance and the optimal scalar quantization problem. We
then propose an optimal prefetching scheduling algorithm
based on the optimal scalar quantization theory. We fur-
ther propose a hierarchical prefetching scheme to carry out
the prefetching more effectively. Real user viewing logs are
used to drive the simulations which demonstrate that the
proposed prefetching scheduling algorithm and the hierar-
chical prefetching scheme can improve the seeking perfor-
mance significantly.

Categories and Subject Descriptors
C.2.4 [Computer-communication networks]: Distrib-
uted Systems—Distributed applications; H.3.5 [Information
storage and retrieval]: Online Information Services—
Data sharing

General Terms
Design, Performance
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Peer-to-peer streaming, prefetching, random seeking
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1. INTRODUCTION
Multimedia streaming over peer-to-peer (p2p) network

has become an active research topic in the past few years,
due to the excellent match between the rigorous requirement
(e.g., high bandwidth, delay sensitivity etc.) of multimedia
content delivery and the resource abundance in a p2p net-
work. Particularly, the local storage of each peer on the net-
work is leveraged as a “cache-and-relay” mechanism [3,4,8]
for scalable asynchronous multicast. Using this approach,
a recipient would “cache” the most recently played portion
of the feed in a sliding-window fashion. The cached content
could then be relayed to the later peers in the system who
also request the same feed. Furthermore, the “cache-and-
relay” mechanism is extended from caching only the played
portion to prefetching some future portions using additional
bandwidth (besides storage) in paper [12,13].

In a prefetching protocol, peers prefetch and store var-
ious portions of the streaming media ahead of their play-
ing position, which grants peers the ability to overcome
the bursty packet loss and the departure of source-peer and
to smoothen the playing experience. In a p2p context, as
claimed in paper [13], the prefetched portion of content can
also serve to others on the network, and ease the content
distribution. While it requires the additional bandwidth
and storage for prefetching, considering the increasing band-
width on network and storage capability on local peers nowa-
days, it actually offers a more desirable tradeoff between
quality and cost.

Most of the existing work on p2p-based streaming sys-
tems have made an implicit assumption that a user who
joined a streaming session would keep on watching till it
leaves or fails the session. Hence, the prefetching protocol
would prefetch the stream successively, bit by bit without
any skips. Unfortunately, based on the analysis of a large
amount of real user viewing logs, we found that users usu-
ally do not play the video successively and passively. In-
stead, users perform random seek quite frequently. As a
result, the real performance of these p2p-streaming systems
may suffer from a performance drop in a practical deploy-
ment. In paper [9], Jin and Bestavros have shown that
asynchronous multicast techniques do not scale as adver-
tised when content is not accessed from beginning to end.
In consequence, the random seek functionality should be
considered, instead of being overlooked under some unreal-
istic assumptions, in a practical streaming system because
of its significant impact on users’ experiences. Specifically,
in [17], we proposed a Segment-Tree based control plane pro-
tocol for efficient streaming service discovery, with the sup-



port of efficient random seek being an implicit target, in a
p2p-based “cache-and-relay” collaborative streaming frame-
work. In this paper, we are further motivated to consider a
prefetching scheme, according to the user behavior pattern,
in the p2p-streaming framework to better support random
seek functionality.

User viewing logs can be utilized in a few ways. Some
previous works have already focused on modelling the user
behavior pattern. A Hidden Markov Model(HMM) was pro-
posed in paper [14] to model the user behavior into sev-
eral different states during browsing and playing. However,
manual training is required for this model to specify which
state a user is currently in, which may hinder its deploy-
ment when a large amount of movies are to be served. In
paper [7], Huang and Chao proposed a scheme to mine the
user-behavior pattern from the logs and to prefetch and
cache some content on video proxy. In this paper, we also
pay our attention to the statistical user behavior pattern,
especially the seeking behavior. Different from the previous
works, we extract the pattern from user playing logs and use
it to guide the prefetching.

Exploiting a prefetching scheduling scheme akin to the
optimal scalar quantization, we determine the segments of
the video to be prefetched in a strategic way such that the
average seeking distance (which will be defined later on)
are minimized. For our scheme, we can see the following
advantages:

1. Like the previous prefetching schemes, user can employ
the prefetching scheme to overcome the bursty network
degradation.

2. Due to the statistical nature of large amount of user-
behavior logs, the segments prefetched according to
the statistical model are more likely to be the desired
piece of content of users’ seeks. For those already
prefetched segments, the additional buffering time is
exempted.

3. It provides meaningful guidance for the seek. The rea-
sons are three-fold: first of all, user behavior usually
tends to reflect a small-world phenomenon and leads to
a Zipf-like distribution [2]; secondly, the seek are gen-
erally blind because the users are ignorant to the new
video content; and thirdly, the user viewing pattern is
actually a rich statistical summarization of other view-
ers’ experiences.

4. It provides an effective fast browsing functionality. This
is quite desirable and applicable in the case that there
are many movies on a server. User can browse the
prefetched slices of the movie to scrabble the skeleton
and preview the most wonderful scenes, and determine
whether to watch it in detail. The effectiveness results
from the fact that the scheduled segments using our
algorithm is more representative.

As with many other p2p-streaming works, in this paper,
we focused on the prefetching behavior of an autonomous
peers, i.e., designing a purely distributed prefetching scheme,
and studying its effect on the overall p2p-network where the
autonomous peers collaborate. Specifically, even though the
ultimate target is to shorten the user seeking delay, instead
of studying it explicitly, we study the number of concurrent

Table 1: Useful Log Fields

Field Definition
s-session-id Internal session ID used by server to track

a given client session.
c-playerid Client GUID. This can be a unique GUID

if the user has not disabled unique identi-
fication.

c-starttime Time stamp (in seconds) indicating the
start time (position) of this log.

x-duration Amount of time (in seconds) that the client
has been playing the content. Buffered
data is excluded.

c-status Code describing the status of the client.
c-rate The indicator of user behavior such as play,

rewind, fast forward/backward etc.

users which has an implicit impact on shortening the seek-
ing delay, as revealed in other performance modeling work
for p2p-network [5, 16].

The paper is organized as follows. In section 2, we pro-
vide a detailed description and thorough analysis about the
characteristics of user viewing behavior. We then present
a model to describe the user behavior pattern and state an
algorithm analogized from quantization theory to schedule
the prefetching segments in section 3. Next, in section 4,
we present a hierarchical prefetching scheme and the cache
and replacement policy. Then we evaluate our scheme in
section 5 through the simulations driven by real user view-
ing logs. Finally, we conclude the paper and discuss some
future works in section 6.

2. USER VIEWING PATTERN
In this section, we perform in-depth analysis of user view-

ing behavior through a large amount of user viewing logs.

2.1 Log collection
We collected the user viewing logs on the multimedia

streaming server at Shanghai Jiaotong University, China
from Nov. 16, 2004 to Dec. 19, 2004. There are hundreds
of movies on that server to for the entertainment purpose
for the students living on campus. Thousands of viewing
sessions occurred daily from that server. Throughout this
paper, by a session, we mean a user watching a movie. The
server employs Microsoft Windows Media Server, and pro-
duces detailed logs for each session. We collected more than
600 thousand log items about all of those movies and about
150 thousand individual sessions throughout the more than
one month duration. This volume of logs, we believe, is ad-
equate for mining out a convincible pattern of user viewing
behavior.

On the Microsoft Windows Media Server, a log item is
generated whenever one of the client events occurs, such as
session setup, session teardown, seek, fast forward or back-
ward, etc. Each item consists of several fields. Those useful
for the user viewing behavior analysis are listed in Table 1.

In this paper, we mainly focus on the seeking rather than
the other behaviors such as rewinding, fast forward/backward
etc. A session can be uniquely identified using the fields s-
session-id and c-playerid. We exclude the error status and
the case of rewinding/fast forwarding/fast backwarding ac-
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Figure 1: Plots of statistical features of user viewing behavior for a typical movie: (a) The accumulated view
duration; (b) The number of random seeks; (c) The relation of seeking frequency and occurring positions.

cording to the fields c-status and c-rate, respectively. Fi-
nally, the fields c-starttime and x-duration reflect the play-
ing and seeking behaviors.

2.2 Characteristics of user viewing behavior
After distilling the large amount of user viewing logs, we

extract some useful information such as the accumulated
viewing duration per movie, the number of random seeks
cross sessions, and the seeking frequency vs positions per
movie etc. These features of a typical session are plotted in
Figure 1.

From the plots in Figure 1, we can reach the following
observations/conclusions:

1. Users rarely view the movie from the beginning to the
end. Instead, for a single movie, the total playing time
of a user is quite limited and tends to be short. Figure
1(a) shows the histogram of the accumulated user play-
ing time for a single movie. It is apparent that many
sessions only last a very short period of time. The re-
sult is led to mainly by the following two causes: 1) the
user browse a movie and tear down the session when
find the movie does not fit his/her taste; 2) the user
only wants to watch a special portion of the movie. Of
course, from figure 1(a), we can also see a peak near
the end of the movie, which implies there are still many
users watched almost the whole movie. Nonetheless,
there are still seeks since the peak does not appear at
the end point, i.e., the accumulated viewing duration
is still less than the movie length.

2. Most users always perform some random seeking, more
or less, during the session, as can be clearly seen in Fig-
ure 1(b). This is counter to the assumption in most
of existing p2p-streaming work. The average amount
of seeking is about 7 times. This observation actu-
ally fits our own viewing experience well: one would
always like to skip the boring scenes, to preview the
climax or to review some meaningful dialogues. All of
these render the seeking operation to be a pervasive
phenomenon.

3. Another remarkable point is that the seeking is always
aimless. We divide a movie uniformly into segments,
each of which lasts about 50 seconds, and accumulate

the occurring frequency for seeking from a source seg-
ment y to a destination segment x. There are two ob-
vious trends: 1) Many of the seeks are forward-looking
yet aimless, or in other words, browsing-like behavior,
as can be seen from the x axis in Figure 1(c). This is
due to the ignorance of the user to the movie; 2) for
many of the seeks, the source position and the desti-
nation position are quite close, as can be inferred from
the rigid along the line y = x in Figure 1(c). This
is generally due to the fine tune of a previous seek
to reach the exact desired viewing point or fast for-
ward/backward behavior. These observations are also
coincident with our common experiences.

2.3 Playing and seeking pattern
Having identified that seeking is such a pervasive phenom-

enon, now we want to extract some useful patterns such that
we can utilize them for better support of the random seek
functionality.

We choose some the popular movies from the server, uni-
formly divide each of the movies into segments, each of which
lasts about 10 seconds. We will use such segment as the
prefetching unit later. Then we accumulate the times for
each segment being played. Figure 2(a) shows the playing
frequency for one of the movies, which is about 5400 seconds
in length. According to the figure, the first peak appears at
the offset of about 200 seconds, which is the beginning of the
movie right after the prelude. The second peak comes in the
period from 2100 seconds to 2500 seconds. This portion is
the most attractive scenes in this movie. The playing pat-
tern is quite intuitive since people always like to watch the
most wonderful portion of a movie. Wonderful scenes are
always appreciated by most audience and leads to a consen-
sus on the popularity of a movie. Note that the two peaks
are consistent with those appeared in Figure 1(c).

Now let’s pay our attention to the seeking pattern. As
with the above analysis, we divide the movie into segments.
Since we are more care about the destination of a seek op-
eration, we calculate the accumulated frequency of seeking
destinations. In other words, we are more interested in the
marginal distribution of seeking destination rather than the
joint distribution of both the seek source position and the
seeking destination even though it also provides useful in-
sights. To our surprise, as shown in 2(b), the accumulated
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Figure 2: Playing/seeking pattern: (a) Playing pattern for a movie; (b) Seeking pattern for a movie;

Table 2: Notations

Notation Definition
Pp(x) Playing frequency of each segment x
Ps(x) The frequency of seeking to the segment x

L Number of segments that should be
prefetched

g A specific prefetching scheme.
d(x, g) The seeking distance for a destination seg-

ment x under a prefetching scheme g.
Ds(g) Expected seeking delay under a prefetching

scheme g.
p(x) The probability of seeking to segments x.
Bl The lth partition region in the video play-

ing time span.
gl The lth prefetched segment.

seeking frequency distribution seems highly correlated to
that of playing frequency. That reflects that people want to
seek directly to the hot spots of a movie. Note that this pat-
tern actually presents an opportunity that we may shorten
the seeking delay (i.e., increase the hit ratio) according to
the seeking pattern.

3. PREFETCHING SCHEDULING
In this section, we start with the basic pattern model. We

then formulate the optimal prefetching scheduling problem
and apply the quantization theory to solve the problem. The
notations used in this paper are listed in Table (2).

3.1 Pattern Model
As mentioned above, we divide the video into segments as

the prefetching units in our scheme. Intuitively, the playing
pattern can be easy modelled as Pp(x) where x represents
the specified segment in the movie. But for the seeking pat-
tern, we have two choices, namely Ps(y, x) and Ps(x). The
former represents the frequency of a seek operation from a
source segment y to a destination segment x. It can also be
interpreted as the frequency of a seek operation to a desti-

nation segment x where the segment y has been played pre-
viously. All in all, this model considers the seeking depen-
dency between two segments. However, it is not practically
tractable since it requires a large amount of logs to extract a
meaningful 2-D pattern function. If there are 500 segments
in a movie, it need the logs to cover the whole 250,000 sam-
ples. In fact, we cannot extract a convincing pattern from
our one-month collections. On the other hand, the latter
model is actually the marginal distribution of Ps(y, x). It
is quite simple and easy to obtain. It also provides a good
capture of general user viewing patterns and reflects good
insights. As will be demonstrated later on, a remarkable re-
sult can be obtained based on this model, which proves the
validity of the model.

In short, we use the two pattern functions Pp(x) and Ps(x)
to represent the playing and seeking frequency, respectively.

3.2 Optimization problem statement
Knowing the playing and seeking patterns, we state the

problem we are going to solve formally in this section. In
general, we want to find a scheduling algorithm to optimally
determine which segments should be prefetched. Before pre-
ceding further, we need a quantifiable metric so as to tell
different scheduling algorithms. We use the seeking distance
as the metric which is defined as the minimum distance be-
tween the desired seeking destination and resulting position
of a scheduled segments. The rationale of this metric is as
follows: as argued before, the user viewing pattern should
be used as a guidance of a random seek operation. On the
other hand, the users’ seeking requests are usually noisy be-
cause they are ignorant to the movie content. Suppose we
can find some most representative segments from the movie,
then when different users want to seek to different destina-
tions, we can safely schedule them to prefetch the nearest
representative segments. This “trick” (or guidance) can be
viewed as a filtering process to remove the noise in users’
seeking requests. Since the user viewing pattern is a statis-
tical summarization of many users, the most representative
segments should have minimum average distance to all users’
seeking requests.

Given a prefetching scheme g and a seeking destination



x, then the expectation of the seeking distance is:

Dg = E{d(x, g(x))|x ∈ L} =

Z
x∈L

d(x, g(x))p(x)dx (1)

where d(x, g(x)) is the seek distance which obviously de-
pends on the prefetching scheme g(x) and the seeking des-
tination x and is a function of them.

The probability p(x) is quite difficult to determine since
it relies on several varying factors, including the individual
tastes, the segments already played by the user, the playing
state(browsing/seeking/watching), etc. How to model p(x)
is the focus of user behavior modeling works [1,14]. Here we
want to establish p(x) from the user viewing behavior logs.
In other words, p(x) is represented as a function of Pp(x)
and Ps(x).

p(x) = f(Pp(x),Ps(x))

We argue that the synthesis function f depends on different
application scenarios. We tried several synthesis schemes,
and finally, we simply employ

p(x) = f(Pp(x),Ps(x)) = C × Pp(x)× Ps(x) (2)

as the synthesis function that works well, where C is a nor-
malization factor. As an extension work, we can design dif-
ferent kinds of synthesis function, and provide an interface
to user, so that them can customize it as the individual de-
sire.

Now the target of the optimization problem is to find an
optimal prefetching scheme g̃ to minimize the expected de-
lay.

g̃ = argmin
g

{E{d(x, g(x))|x ∈ L}} (3)

3.3 The proposed solution
In this subsection, we first present two intuitive solutions

and then briefly review the quantization theory based on
which our optimal solution is derived

3.3.1 Intuitive solutions
The most intuitive and simplest way for which segments to

be prefetched is to uniformly distribute them throughout the
movie. But this kind of decision is usually far from optimal
since it ignore the user viewing pattern completely. Another
intuitive solution that considers the user viewing pattern is
a greedy “inverse water-filling” algorithm. As illustrated in
Figure 3, suppose there is a horizontal line moving down-
ward. It will intersect with the curve of probability function
p(x). Since the high probability areas are intersected earlier
than low probability areas, one can treat the intersection to
be the portion need to be prefetched. The line will keep on
moving down until the intersection is large enough (i.e. L
prefetched segments are found).

However, this seemingly optimal algorithm is not a glob-
ally optimal one. It results in a local optimum because only
the most popular segments are to be prefetched. Some other
sub-popular segments can never be prefetched. As an exam-
ple, in Figure 3, there is a peak at offset t, which represents
a sub-popular (not most popular but still popular) segment.
If the inverse water-filling algorithm are to be used, it can
never be prefetched since the prefetching always concen-
trates on the most popular segments. However, it is not
necessarily good to prefetch all the most popular segments.
As argued in paper [11], in order to shorten the delay, only

t

Prefetched SegmentsP(x)

Figure 3: Greedy solution for the optimization
prefetching problem and its shortage.

a portion of the video need to be download/prefetched.1

Moreover, we are more interested in studying a scheme so
that it offers best performance for the whole network, in-
stead to benefit some peers while sacrifice the others. With
these considerations, we found the problem are indeed very
similar to the optimal quantization problem.

3.3.2 Quantization theory based solution
Before presenting our solution, we briefly review the Scalar

Quantization Theory [15] widely used in image/video com-
pression.

In scalar quantization, each sample in a source signal is
quantized into one of the reconstruction values in a pre-
designed codebook. A quantizer is characterized by the
quantization level, L̄, the boundary values, bl̄, l̄ = 0, 1, . . . , L̄
and reconstruction values, gl̄, l̄ = 1, 2, . . . , L̄. The boundary
values establish the partition regions Bl̄ = [bl̄−1, bl̄). Letting
L̄ = {1, 2, . . . , L̄}, the quantization function is described by:

Q(f) = gl̄, ∀f ∈ Bl̄, l̄ ∈ L̄
The distortion of a quantizer, q, is defined accordingly as
the average distance between the original and the quantized
samples.

Dq = E{d(f, Q(f)} =

Z
f∈B

d(f, Q(f))p(f)df (4)

The optimal scalar quantization problem is to find the par-
tition regions Bl and the reconstruction values gl for a spec-
ified quantization level L such that the distortion metric
defined in formula (4) is minimized. That is, to find a quan-
tizer q such that

q̃ = argmin
Q

{E{d(f, Q(f))|f ∈ B}} (5)

From the optimal scalar quantization theory, it is stated
that the reconstruction values lie at the centroids of the
partition regions between the boundary values. The bound-
ary values and the reconstruction values should satisfy the
nearest-neighbor condition and centroid condition described
as follows:

Bl̄ = {f : d(f, gl̄) ≤ d(f, gl̄′), ∀l̄′ 6= l̄} (6)

gl̄ = E{f |f ∈ Bl̄} (7)

1In our opinion, it is good enough for the length of the
prefetched portion to be larger than (so as to hide) that of
the service discovery delay.



Table 3: Lloyd algorithm for prefetching scheduling
in a given region B

prefetching sche(L, B, p(x))
divide region B uniformly into L sub-regions.
For each sub-region: gl ←

P
x∈Bl

xp(x)

Seeking Delay: D ← 1
K

P
l∈L
P

x∈Bl
d(x, gl)

do
Dlast ← D
foreach sub-region

gl ←
P

x∈Bl
xp(x)

foreach sub-region
update the boundary value: bl ← (gl + gl+1)/2

Seeking Delay: D ← 1
K

P
l∈L
P

x∈Bl
d(x, gl)

while abs(D −Dlast) ≥ Vthreshold

return gl l = 1, 2, . . . L

Return to our problem. Our target is to minimize the
seeking delay defined in equation (1). Yet the target of op-
timal scalar quantizer design is to minimize the distortion
defined in equation (4). Comparing the two equations, we
can easily see the analogy between them. This analogy is
further confirmed if we compare the equations (3) and (5).
If the seeking delay function d(x, G(x)) can be mapped to
the distortion measure d(f, Q(f)), then a sample f will be
mapped to a seek operation and the reconstruction values,
gl, can be mapped to the segments to be prefetched. Fur-
thermore, we can also bring in the concept of boundary val-
ues and partition regions into our problem. The partition
regions come from the division of the whole playing period,
each of which contains a prefetched segment. When users
feel like to seek to a partition region, the prefetched seg-
ment in that region is a suggestion for the seeking. And
when users browse the video, the prefetched segment can be
used to represent the region that it belongs to.

The optimal scalar quantization problem can be elegantly
solved using the classical Lloyd Algorithm [6,10]. According
to above reasonings, we can readily apply the Lloyd algo-
rithm to solve our optimization problem, i.e., to optimally
determine which segments should be prefetched for a given
prefetching amount, L. The final prefetching algorithm is
given in Table 3. The synthetic probability function p(x) is
used as the probability distribution function in Lloyd algo-
rithm.

4. HIERARCHICAL PREFETCHING
Having determined the optimal representative segments

above, in this section, we focus on how to prefetch the deter-
mined segments. From the perspective of individual peer, it
needs a scheme about the prefetching order and also a cache
replacement policy due to possible limitation on storage.

Until now, the only parameter undetermined in our so-
lution described in section 3.3 is the prefetching level, L,
which means how many segments should be prefetched. On
the one side, we expect to prefetch the segments as many

Table 4: Hierarchical prefetching scheme

seek to(x)
while region stack.top() does not cover x

foreach segment in region stack.top()
segment.set to be replaced out()

region stack.pop()
level stack.pop()

end while

if region stack.size() < max hierarchy level
B ←region stack.top().subregion(x)
L ← λ(level stack.top())
prefetching sche(L, B, p)
region stack.push(B)
level stack.push(L)
Order Prefetching Segments()
Start Prefetching()

end if

as possible, i.e., the larger L, the better. But on the other
side, it is limited by the available bandwidth and local stor-
age. Clearly, L controls the prefetching precision and the
cost. Therefore, we choose to let L be a configurable system
parameter, even though we do provide some intuitions for
determination of L. To provide a better tradeoff, we pro-
pose a hierarchical prefetching scheme with a simple cache
replacement strategy.

Initially, the initial value of L(0), (L(0) = L) is chosen ac-
cording to the video length, number of local peaks in p(x)

and available local storage. Then the L(0) is used to de-
termine which segments should be prefetched. The corre-
sponding support region R(0) (a region on which to apply
the optimal prefetching scheduling algorithm), is the entire

video. The L(0) determined segments are ordered accord-
ing to their popularity in p(x): the segments with higher
popularity are prefetched with higher priorities. Note that
we also consider the phenomenon that users always like to
seek forward rather than backward, and hence the ordering
is biased for forward seeking.

Now suppose a seek operation is occurred, it jumps to
a new position, which supposedly belongs to the partition

region, B(k)
l , at hierarchy level k and region l. Now the seg-

ments that are scheduled and unfinished before the new seek
are reordered according to the new position. Meanwhile, the

current partition region B(k)
l is set as the new support re-

gion, R(k). The optimal prefetching scheduling algorithm
in section 3.3 is applied recursively to determine L(k) seg-
ments from R(k). In our hierarchical prefetching scheme, we
use a function to determine the number of segments to be
prefetched from one hierarchy level to the next level, namely
L(k) = λ(L(k−1)). Then the L(k) new segments are ordered
and prefetched. Note that we do not impose any limita-
tion here for the function λ(·). However, to save bandwidth
and storage in practice, the function decreases as hierar-
chical level increases. In our experiments, we simply let
L(k) = λ(L(k−1)) = L(k−1)/2 for storage considerations as
will be elaborated later on.
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Figure 4: An example for hierarchical prefetching.

The pseudo-code of the hierarchial prefetching scheme is
listed in Table 4. The hierarchy level is controlled by a
system parameter, K.

For more clarification, we illustrate the hierarchical prefetch-
ing scheme in Figure 4. Initially, the prefetching level is

three, so it determines three partition regions, namely B(0)
0 ,

B(0)
1 and B(0)

2 , each of which contains a prefetched segment.
When a seek operation occurred with the destination being

in region B(0)
0 , which now is the support region. It par-

titions the region B(0)
0 into two sub-regions B(1)

0 and B(1)
1 ,

and schedules two segments to be prefetched in the two sub-
regions, respectively. Then another seek operation occurred,

this time the destination is in the sub-region B(1)
1 . Same op-

eration will be applied onto sub-region B(1)
1 again. That is,

it partitions the B(1)
1 into B(2)

2 and B(2)
3 and schedules an-

other two segments to be prefetched for them. Now a new

seek operation that seeks to a destination in B(0)
2 happened.

Then it will partition the region B(0)
2 into two sub-regions

B(1)
4 and B(1)

5 and apply scheduling accordingly. Suppose
now the storage is not enough, we will replace the segments

contained in the B(1)
0 , B(1)

1 , B(2)
2 and B(2)

3 , which are the

child regions of R(1), with new coming segments.
As stated before, in the hierarchical prefetching scheme,

L(k) = λ(L(k−1)) is used to determine the number of seg-
ments from one hierarchy level to the next, mainly for stor-
age reasons. Given the maximum hierarchy depth, K, the
total number of segments that are to be prefetched is at
most, we have

S =L(0) + L(1) + · · ·+ L(K)

=L(0) + λ(L(0)) + · · ·+ λ(K−1)(L(0)) (8)

where L(0) = L is the system parameter that controls the
number of segments to be prefetched initially. Obviously,
the required local storage is completely controlled by the
parameters K and L(0). Specifically, if L(k) = L(k−1)/2, we
have

S < lim
K→∞

2K − 1

2K−1
L(0) = 2L

Finally, we want to point out that the hierarchical prefetch-
ing scheme is independent of the proposed prefetching schedul-
ing algorithm. It can be combined with any other scheduling
algorithm.

5. EXPERIMENTAL RESULTS
In this section, we show some simulation results to demon-

strate the advantages of our prefetching scheduling algo-
rithm and the hierarchical prefetching scheme for both the
seeking accuracy and the network utilization.

5.1 Evaluation Methodology
Unlike the simulations in others’ work, we use the real

user viewing behavior logs to drive the simulations, which
we believe will reveal more realistic insights. Specifically, we
divide the user viewing logs into two separate set, namely
training set and testing set. The logs in the training set
is used to mine the user viewing patterns as described in
Section 3. The logs in the test set are used to generate new
user seeking requests.

We choose some popular movies from the video server as
our research objects. In the one-month collection, we get
more than 8000 logs for each of these movies. We randomly
assign around 60% of them into the training set and the rest
is grouped into testing set.

5.2 Prefetched segments distribution
We choose the movie that lasts about one and a half hours.

Each segment lasts 10 seconds. The initial number of parti-
tion regions is 10. We use the Lloyd algorithm to determine
the prefetched segments on the top-level prefetching. The
results are shown in Figure 5. We overlay the distribution
of the prefetched segments onto the synthetic seeking prob-
ability function p(x) according to equation (2). The serif
thin dotted lines represent the boundary of each partition
region, and the serif dashed lines represent the segments to
be prefetched.
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Figure 5: Distribution of prefetched segments us-
ing proposed quantization theory based prefetching
scheduling algorithm.

As expected, we can see that: (1) Not only the segments
with highest seeking probability are prefetched, but the sub-
popular segments are also prefetched. This prevents the
shortage of the greedy inverse water filling algorithm in sec-
tion 3.3.1. (2) The distances between the prefetched seg-
ments are not uniform and reveals the underlying user view-
ing pattern. This is in sharp contrast to the intuitive uni-
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Figure 6: Comparison of seeking distance of two typical users using different prefetching schemes.
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Figure 7: Average seeking distance cross sessions

form prefetching scheme which is not shown in the figure.
We are prefetching more segments around the more popular
portion in the movie.

5.3 Seeking Distortion
In this section, we show the experimental results of users’

seeking. The movie used in this experiment lasts about one
and a half hours. Each segment lasts 10 seconds. The initial
number of partition region is eight, and hence it has at most
three hierarchy levels (due to our bisection strategy in the
hierarchical prefetching scheme).

We use the seeking distance that is defined previously in
section 3.2 as the metric to evaluate the effectiveness of our
prefetching scheme. If any of the prefetched segments cover
the seeking destination, then the seeking distance is zero. If
we take into account the guidance on users’ behavior of the
prefetched segments, the effort would be much more remark-
able. In order to demonstrate the advantage of our scheme,
we compare it with the two intuitive schemes: One is the

inverse water-filling scheme and the other one is the uniform
scheme that selects the prefetching segments uniformly dur-
ing the region, as stated in section 3.3.1.

Firstly, we randomly select some sessions from the logs
and track their seeking operations to measure the delay. The
results of the seeking distance are shown in Figure 6 for two
users. Clearly, the seeking distance of our scheme is much
smaller than the uniform prefetching scheme. That implies
that it indeed provides meaningful guidance and helps to
prevent blind seeking. Although the inverse water-filling
scheme can also significantly shorten the seeking distortion
for some seeking destinations, it results in large seeking dis-
tortion at some other positions. This is because the inverse
water-filling scheme only benefits the seeking to most popu-
lar positions, while complete neglect the seeking request to
a less popular destinations. As a result, the seeking distance
fluctuates violently.

Secondly, we evaluate the average seeking distance across
different viewing sessions of the same movie, which reflects
the overall user experiences for random seeking. As shown
in Figure 7, the average seeking distance in our scheme is
clearly smaller than the uniform prefetching scheme.

With above two experiments, we conclude that our pro-
posed quantization theory based prefetching algorithm can
shorten the seeking delay remarkably for all the individuals
and therefore is quite beneficial to the overall user experi-
ence.

5.4 Utilization Ratio
In this section, we show that our scheme shorten the seek-

ing distortion without much extra expense of bandwidth or
local storage. It is quite possible that some segments are
prefetched but are not played since the user may seek away
prior to the prefetched point. In this case, these segments
would not be utilized and is considered a waste of resources.
In order to evaluate that, we define a metric utilization ra-
tio, which is the ratio of the amount of played data to the
amount of download data. As shown in Figure 8(a), the ra-
tio is typically around 0.96 with an average value of 0.918.

We further compare the utilization ration of our scheme
with the traditional prefetching scheme that prefetches the
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Figure 8: Utilization ratio and comparison: (a) The utilization ratio for the proposed hierarchical prefetching
scheme; (b) The ratio of the utilization ratio for the successive prefetching scheme and the proposed one.

future segments successively. To be more intuitive, we plot
the ratio between the two utilization ratios in Figure 8(b).
Most of the samples are concentrated near or under the
line y = 1. This indicates that the utilization ratio of our
scheme is slightly better. This in partial confirms that the
proposed prefetching scheduling algorithm indeed provides
more meaningful seeking guidance since users are more sat-
isfied with the prefetched content. Moreover, we are measur-
ing the utilization ratio for the whole viewing session where
typically around ten seek operations would happen. The
advantage of our scheme will be significantly exaggerated if
we only measure around the seeking points. However, con-
sidering the traditional successive prefetching scheme does
not aim at supporting random seek, we feel it is unfair to
make such a comparison.

5.5 Impact on the overall network
As stated before, even though the ultimate target is to

shorten the user seeking delay, instead of studying it explic-
itly, we study the number of concurrent users which has an
implicit impact on shortening the seeking delay. Specifically,
we show the distribution of the peers that have prefetched or
scheduled to prefetch for all the segments of a typical movie.

Assume peers arriving to the network following a Poisson
Distribution with a density of 5 peers per second. Once a
peer arrives to the network, it starts to playing according to
the real user-behavior logs. The movie length, the segment
length, the initial number of partition regions and the hier-
archy level are all consistent with the above experiments.

We record the number of peers in the each of the par-
tition regions at a moment. According to our prefetching
algorithm, all the peers in the same partition region would
try to prefetch the same segment. Therefore, on a p2p-
network, the more peers in a partition region, the easier it
is to find the more peers to prefetch from or to collaborate
with. We plot the peer number distribution in Figure 9 for
the top-level and second-level partition regions in our hier-
archical prefetching scheme and for both the popular and
the sub-popular segments as well. We can observe that the
higher the partition region is, the more peers this region is
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Figure 9: Distribution the number of prefetching
peers on a Peer-to-Peer Network

containing. And naturally, there are more peers in a popu-
lar region than that in a sub-popular region. An interesting
conclusion that can be drawn from the figure is that our
hierarchical prefetching scheme actually favors coarse seek-
ing, which achieve one of our initial design goal to provide
browse-like functionality.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we performed thorough examination of the

large amount of user viewing behavior logs and extract a
user viewing pattern. Our analysis reveals that random seek
is a pervasive phenomenon. We then propose to use effi-
cient prefetching to better support random seek functional-
ity. We argue that the pattern should be used as a guidance
to random seek since the user is in general ignorant to the
movie content and the pattern is a statistical summariza-



tion of other users view experiences. We propose an optimal
prefetching scheduling algorithm, which is based on the opti-
mal scalar quantization theory, and a hierarchical prefetch-
ing scheme for efficient and effective prefetching. Exten-
sive simulation experiments were conducted where real user
viewing logs are used to drive the simulations. Experimental
results demonstrates that the proposed prefetching schedul-
ing algorithm and the hierarchical prefetching scheme can
significantly improve the seeking performance.

In the paper, we are using the user viewing behavior logs
extensively. It is generally easy to collect such logs when a
central streaming server exist. How to collect the logs in a
pure peer-to-peer system is a challenging topic. Moreover,
how to efficient publish/discover the prefetched content is
also an interesting topic. Finally, the prefetching schedul-
ing algorithm developed in this paper only considered user
viewing logs and is content agnostic. How to combine the
user viewing pattern and the results of content analysis is
also a topic worth further pursuing. All these three topics
are our future works.
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