
An Asymptotic Numerical Method for Inverse Elastic Shape Design

Xiang Chen∗ Changxi Zheng† Weiwei Xu‡ Kun Zhou∗§

∗State Key Lab of CAD&CG, Zhejiang University †Columbia University ‡Hangzhou Normal University

Abstract

Inverse shape design for elastic objects greatly eases the design ef-
forts by letting users focus on desired target shapes without thinking
about elastic deformations. Solving this problem using classic it-
erative methods (e.g., Newton-Raphson methods), however, often
suffers from slow convergence toward a desired solution. In this
paper, we propose an asymptotic numerical method that exploits
the underlying mathematical structure of specific nonlinear material
models, and thus runs orders of magnitude faster than traditional
Newton-type methods. We apply this method to compute rest shapes
for elastic fabrication, where the rest shape of an elastic object is
computed such that after physical fabrication the real object deforms
into a desired shape. We illustrate the performance and robustness
of our method through a series of elastic fabrication experiments.

CR Categories: I.3.5 [Computer Graphics]: Computational Geom-
etry and Object Modeling—Physically based modeling;

Keywords: elastic fabrication, 3D printing, finite element methods,
nonlinear optimization

Links: DL PDF VIDEO CODE

1 Introduction

Elastic objects are ubiquitous in computer animation and video
games [Nealen et al. 2006], and have received increasing attention in
3D fabrication of real-world objects [Skouras et al. 2013]. However,
designing a desired static equilibrium shape of an elastic object is
counterintuitive, because it deforms in various ways under external
forces. When designing the static shapes of elastic objects, one
wishes to focus on desired target shapes directly without thinking
about possible deformations. This motivates the development of an
inverse shape design tool automatically computing a rest shape that
deforms into a desired target shape under given external forces (see
Figure 1(a-c)).

In general, the inverse shape design problem amounts to solving a
static equilibrium equation,

f(x,X) + g = 0, (1)

∗xchen.cs@gmail.com, kunzhou@acm.org
†cxz@cs.columbia.edu
‡weiwei.xu.g@gmail.com
§Corresponding author

(a) (b) (c)

3754 seconds 7 seconds

(d) (e)

Figure 1: Plant: Top: Our method computes the rest shape of a
plant model (a), given its desired target shape (b) under gravity.
The fabricated object according to the computed rest shape deforms
under gravity into a shape (c) that is nearly identical to the desired
design shape (b). Bottom: Compared with the Newton-type methods
such as the Levenberg-Marquardt solver (d), our ANM method (e)
runs orders of magnitude faster.

where f describes the internal elastic force determined by the ma-
terial’s constitutive model; the deformed shape x and the external
force g are the inputs, andX is the rest shape to be found. For in-
ternal force models typically encountered in realistic simulation and
predictive computational design tasks, the relationship between the
rest shape and the deformed shape can be very complex, exhibiting
a high degree of nonlinearity.

A number of works have recently investigated this problem to control
the shape and motion of elastic materials. For applications of ani-
mation control, initial shapes are often computed using fast models
such as spring-mass systems [Twigg and Kačić-Alesić 2011], which
are efficient but less accurate, and thus not applicable to predictive
computational design tasks such as those in 3D fabrication. For
rod-like geometries, solutions can be efficiently found using reduced
kinematic models (e.g., [Hadap 2006; Derouet-Jourdan et al. 2010;
Derouet-Jourdan et al. 2013]), yet no such method exists for general
volumetric elastic objects. Thus existing methods for computational
design and 3D fabrication (e.g., [Bickel et al. 2012; Skouras et al.
2012]) typically formulate the rest shape computation as a nonlinear
(constraint) optimization problem solved by a Newton-type iterative
solver. Newton-type methods are known to converge quadratically in
the vicinity of a minimum. However, they suffer from slow conver-
gence toward a desired solution, if the problem is highly nonlinear
and the initial guess is far away from the solution. Our work is
also motivated by applications of 3D elastic fabrication, in which
a nonlinear material model is needed for accurate prediction and a
good initial guess of the rest shape is often infeasible. We therefore
desire a method that is fast, robust and accurate for the computation
of elastic rest shapes.

In this paper, we propose to solve the problem of inverse elastic

http://doi.acm.org/10.1145/2601097.2601189
http://portal.acm.org/ft_gateway.cfm?id=2601189&type=pdf
http://gaps-zju.org/ANMdesign
http://gaps-zju.org/ANMdesign


shape design using the Asymptotic Numerical Method (ANM), first
introduced in the 1990s [Damil and Potier-Ferry 1990; Cochelin
1994]. ANMs are fundamentally different from traditional Newton-
type methods. In a nutshell, the ANM follows a nonlinear solution
branch in a stepwise manner: in our case, it continuously changes
the external force from 0 to g, while tracking the nonlinear solution.
However, to harness the idea of ANM for inverse elastic design,
a critical mathematical ingredient is lacking. We need to explore
the underlying nonlinear structure of the inverse internal force func-
tion f to develop a local asymptotic expansion, which is critical to
enable the ANM to converge quickly and robustly. Unfortunately,
for the inverse static equilibrium problem, no such mathematical
derivation has yet been developed. As a primary contribution of
this paper, we fully develop an asymptotic expansion form for the
hyperelastic neo-Hookean model, an accurate model that has been
widely used in elastic fabrication applications (e.g., [Bickel et al.
2010; Skouras et al. 2013]). The resulting algorithm is highly effi-
cient (see Figure 1(e)), resulting in roughly two orders of magnitude
speedups over a traditional Newton-type solver for all our examples
(see Figure 1(d)).

We apply our method to compute rest shapes for elastic fabrication.
Our design tool computes a rest shape ready for physical fabrication,
allowing an end-to-end integration between the shape design step
and the fabrication process. We conducted a series of inverse design
experiments. The simulation and fabrication results demonstrate the
high performance and robustness of our ANM method.

In summary, the main contributions of our work include:

• We derive an asymptotic local expansion for the inverse elastic
force of the nonlinear neo-Hookean material model, which allows
us to build a fast and robust numerical method to solve the inverse
static equilibrium problem.

• We analyze the performance of ANM and compare it to Newton-
type methods. Relying on its performance of nonlinear solves, we
develop an interactive tool for inverse shape design tasks. And
we fabricate the designed shapes to demonstrate its accuracy for
realizing desired target shapes.

• We further extend our method to support interactive force adjust-
ment, multi-target inverse shape design as well as forward static
equilibrium solves.

2 Related Work

Inverse Shape Design for Computer Animation. There have been
many works on designing and optimizing the initial shapes of vari-
ous deformable models. Twigg and Kačić-Alesić [2011] estimated
rest length parameters of a spring-mass system to approximately
compensate the mesh sagging effect under gravity. They also con-
sidered the contact forces as penalty terms in their optimization.
Hadap [2006] computed zero-gravity rest shapes of strands using a
multi-body reduced model. Derouet-Jourdan et al. [2010] proposed
an inverse design method for 2D dynamic curves to convert a user-
input sketch into a dynamic rod model and then optimize the natural
curvatures to achieve certain equilibrium states. Derouet-Jourdan et
al. [2013] proposed a constrained optimization method for solving
the inverse static equilibrium problem of hairs subject to gravity
and frictional contacts. These methods were specifically designed
for slender structures. In contrast, in our work we are interested in
general volumetric objects. Furthermore, as our main target is for
fabrication and not mere simulation, we consider not only geometric
nonlinearities in the model, but also nonlinearities coming from the
hyperelastic properties of fabrication materials. To tackle a fully
nonlinear problem, we exploit the mathematical structure of the
hyperelastic neo-Hookean model to build a fast and robust inverse

shape solver based on the asymptotic numerical method. Thus our
method differs fundamentally from the Newton-type methods used
in most of previous works.

Deformation Control. Controlling desired deformation behaviors
has been an active topic in computer animation. For example, to
ease the animation production, many algorithms generate output ani-
mations with prescribed shape deformations at key frames [Barbič
et al. 2009; Barbič et al. 2012b; Hildebrandt et al. 2012]. These
methods often rely on reduced models to approximate the dynamics
and improve the performance, because they aim to generate plausible
rather than physically predictive animations, and need to control a
whole sequence of the resulting animation. In addition, Martin et
al. [2011] compute an intermediate rest configuration based on pro-
vided examples to control object deformations. Coros et al. [2012]
control the motion of active deformable characters by computing
appropriate rest poses to drive an object’s motion. In this paper,
we desire a method that computes a physically reproducible elastic
shape. We are particularly interested in the deformed target shape,
and thus focus on the static equilibrium problem.

Fabrication-aware Design. There have been numerous computa-
tional tools for designing geometric shapes and materials in appli-
cations of 3D printing. Their goal is to produce geometries, me-
chanical structures and material distributions satisfying fabrication
constraints and desired physical properties such as shape balance
in a desired pose [Prévost et al. 2013], stress distributions [Stava
et al. 2012], articulated characters [Bächer et al. 2012; Calı̀ et al.
2012], and motion sequences [Coros et al. 2013; Ceylan et al. 2013].
Closely related to our work, Skouras et al. [2012] presented a com-
putational design tool for rubber balloons, which estimates a rest
shape to be inflated into a given target shape. While they also for-
mulate a static equilibrium problem, their method considers forces
due to an elastic membrane model and pressure, whereas we focus
on forces due to volumetric elasticity and gravity. Moreover, they
use a standard Newton-type method to minimize an energy function,
but we introduce a new numerical solver using the ANM.

Bickel et al. [2010] developed a branch-and-bounding algorithm to
combine basis materials such as to produce desired elastic proper-
ties. Physical face cloning [Bickel et al. 2012] optimizes geometric,
physical and actuation parameters to produce skins with prescribed
deformation behavior. Chen et al. [2013] proposed a reducer-tuner
model to tune the material nodes for 3D printing. And Skouras et
al. [2013] optimized both actuator positions and material distribu-
tion to control the shapes of deformable characters. Most of these
methods use neo-Hookean materials for elastic simulation. While
our method also uses the neo-Hookean model to predict the defor-
mation of fabricated objects, we focus on the inverse shape design
with a fixed material. The undeformed rest shape is unknown in
our problem, while the deformed target shape is given. Moreover,
many of these methods formulate an optimization problem with a
customized energy function. Our method, in contrast, simply solves
a nonlinear equation (1) in an efficient and robust way.

Numerical Continuation Methods. Our proposed asymptotic nu-
merical method follows the basic idea of path following as widely
used in traditional numerical continuation methods (see an introduc-
tion in [Allgower and Georg 1990]). Classic methods include the
Predictor-Corrector method and the Piecewise-Linear method. Both
types of methods follow a nonlinear solution branch in a stepwise
manner. Although widely used now, these methods have difficulties
to determine the iteration step size, which is usually fixed a priori.
A small step size leads to a slow convergence, while a large step
size compromises the accuracy of the results. Our method is similar
to [Cochelin 1994], which adaptively selects the step size as large
as possible while retaining sufficient accuracy to ensure quadratic
convergence at each step. Our key contribution is the development



of asymptotic expansions for the inverse neo-Hookean model.

3 Background

We start our technical presentation from a formal problem formula-
tion. Consider a deformable object represented using a finite element
(FE) model, in which a closed surface mesh is discretized into a
tetrahedral mesh. We describe the position of the tetrahedral mesh
using a vector x that stacks the positions of all the tetrahedral nodes.
For a model with N nodes, x has a length of 3N . Following the
notations in continuum mechanics, we use lowercase x to describe
the deformed shape (i.e., the input shape) and the uppercaseX to
denote the undeformed shape (i.e., the output shape). Moreover, we
denote a node of the tetrahedral mesh as xi, where i = 1...N is its
index.

Static Equilibrium Problem and its Inverse. Given a rest state
X of an elastic object, the traditional static equilibrium problem
seeks a deformed state x under external forces g to satisfy the static
equilibrium equation,

f(x,X) + g = 0, (2)

where g is a vector of length 3N , stacking the external forces applied
on all the tetrahedral nodes; provided the rest and deformed states,
f computes the internal force, whose specific form depends on the
considered material model.

The inverse problem of Eq. (2) is to solve for the rest stateX , given
the user-specified target state x under external force vector g (see
Figure 2 for an example).

Neo-Hookean Constitutive Model. We use the neo-Hookean
model [Bonet and Wood 1997; Ogden 1997], a hyperelastic ma-
terial model, to compute the internal force function f . It has been
widely used in continuum mechanics to predict nonlinear elastic be-
havior of materials undergoing large deformations as encountered in
our case, and has proven a plausible prediction of elastic fabrication
in previous works (e.g., [Skouras et al. 2013]).

The neo-Hookean model describes the relationship between geomet-
ric deformation and internal strain force in a highly nonlinear way.
In particular, the strain energy density function is modeled using the
function,

W (x,X) =
(µ

2
(J−

2
3 Ic − 3) +

κ

2
(J − 1)2

)
. (3)

Here µ and κ are coefficients describing the material’s resistance to
shearing and volume change respectively. J and Ic are deformation
related quantities: let F denote the deformation gradient [Bonet and
Wood 1997] (i.e., F = dx

dX
), and let C = F TF denote the right

Cauchy-Green deformation tensor. J = det(F ) is the determinant
of F , and Ic = Tr(C), the so-called first invariant of the Cauchy-
Green tensor, is the trace ofC.

The constitutive model defines the internal force function f . We
refer the reader to the textbook [Bonet and Wood 1997] for a detailed
derivation, and only sketch the basic steps here. We first derive the
second Piola-Kirchhoff stress tensor,

S = 2
∂W

∂C
= µJ−

2
3 I − µ

3
J−

2
3 IcC

−1 + κ(J − 1)JC−1, (4)

where I is the 3 × 3 identity matrix. We then compute the first
Piola-Kirchhoff tensor, P = FS. Finally, using a piece-wise
constant FE approximation, the internal force fi of a nodexi is fi =∑
t∈adj(xi)

Ptn̄
t
i , where t ∈ adj(xi) denotes tetrahedra incident to

the node xi;Pt is the piece-wise constant first Piola-Kirchhoff stress

Target Shape Force Setting Computed Shape

x g X

Figure 2: Overview: The input to inverse elastic shape design
includes a desired shape (left) and a set of external forces (middle)
to realize the shape. The output is a rest shape (right) that deforms
under the given forces into the desired shape.

tensor at t; and n̄ti is the effective outward normal of the node xi at
the undeformed tetrahedron t.

Assumptions. Throughout this paper, we assume the user-specified
external force always keeps the object deformation in its elastic
region. In other words, the object would never reach its yield thresh-
old, and thus our method neglects any plastic and tearing behavior.
We also assume the object deformation would not lead to any self-
collision.

4 ANM for Inverse Elastic Shape Design

ANM has been successfully applied to many problems from non-
linear structural analysis. In particular, it has been demonstrated
that ANM can offer superior performance and robustness over tra-
ditional Newton-type methods for highly nonlinear material mod-
els [Zahrouni et al. 1999; Lazarus et al. 2013]. ANM in essence is
a multi-step iterative method, but very often converges much faster
than the Newton-type methods (see Figure 1). In this section, we
present our core algorithm to solve the inverse problem. The same
algorithm can be applied to solve the static equilibrium problem
using a slightly different derivation. We therefore defer the details
of the static equilibrium solve to §5.3.

4.1 Asymptotic Numerical Method

Our goal is to solve Eq. (2), in which x is provided by the user,
and X is the unknown rest shape. First, consider a parameterized
version (a so-called homotopy) of Eq. (2),

f(x,X) + λg = 0, (5)

where λ is a loading parameter in the range [0, 1]. When λ = 0,
the solution of Eq. (5) is clearly X = x up to a rigid transforma-
tion, since only an undeformed shape produces a vanishing internal
force. When λ = 1, its solution is what we desired, i.e., the solution
of Eq. (2). The basic idea of ANM is derived from numerical contin-
uation methods [Allgower and Georg 1990]: in a step-wise manner,
it changes the parameter λ by following an implicitly defined curve
λ(a) starting from λ(0) = 0. At each step, a new a is selected and
a solutionX(a) that solves f(x,X(a)) + λ(a)g = 0 is computed.
With a carefully optimized way of selecting a at each step, it changes
λ using as few steps as possible until λ(a) = 1 is reached, and at
every step the computation is very efficient.

We note the importance of introducing the variable a to parameterize
a curve traveling through the (X, λ) space. The reason is that
directly increasing λ from 0 to 1 and solving X at each step has
proven numerically unstable for nonlinear equations. In proximity of
bifurcation points (i.e., the turning points onX-λmanifold), a small
increase of λ can lead to a dramatic change of the corresponding



Reference

Current Step

Traced Step
Traced Point

Current Point

Target Point
STEP-1 STEP-2 STEP-3 END

Figure 3: Visualization of ANM Steps: The x-axis indicates the norm of ‖X(a)− x‖2, while the y-axis indicates the corresponding λ(a)
such that X(a) solves f(x,X(a)) + λ(a)g = 0. Given a target cactus shape named as bifur3 (in the inset), the ANM first computes an
asymptotic expansion of (X(a), λ(a)) (green curve in the first figure) at a = 0 to track the solution branch locally. It then changes the value
of a along the expansion branch as far as possible, until the convergence radius is reached. From there, it refines the solution and creates a
new expansion (green curve in the second figure). This process is repeated, until λ(a) = 1 is reached.

solution X , causing slow convergence or even instability in the
iterative solver. We refer the reader to [Allgower and Georg 1990]
for a detailed explanation of the motivation of introducing a.

Tracking Solution using Asymptotic Expansions. Consider a sin-
gle step of ANM. Let a0 denote the current parameter value of a
step. We have λ0 = λ(a0) and the corresponding solutionX0 that
satisfies f(x,X0) + λ0g = 0. Without an explicit definition of
λ(a), ANM expresses λ(a) and its corresponding solution using a
power series expansion around a0[

X(a)
λ(a)

]
≈
[
X0

λ0

]
+

n∑
k=1

(a− a0)k
[
Xk

λk

]
, (6)

where n is the truncation order; the set of coefficients,
{Xk, λk}, k = 1...n, are what we need to compute at the current
step. After establishing this local power series, we start to change a
toward the value satisfying λ(a) = 1. Inevitably, as we move a away
from a0, the asymptotic expansion ofX(a) deviates away from the
true solution. Once an estimated residual of the approximatedX(a)
exceeds a given threshold (detailed in §4.3), we stop the a value there
and refine the solutionX using a few Newton-Raphson steps (less
than 3 in our experiments) initialized withX(a). It is well-known
that Newton’s method converges quadratically if the initial guess is
close enough to a solution. In fact, that is always the case here, since
the initial X(a) resulting from the evaluation of the power series
is already quite close to the true solution. After finding an accurate
solution X(a), we move on to a new step, and use a0 = a there.
We repeat these steps until λ(a) = 1 is reached. At that point, the
solutionX(a) solves our original Eq. (2). An outline of our ANM
algorithm is listed in Algorithm 1, and an example is illustrated
in Figure 3.

To complete the details of the ANM process, we need to address
two questions: (i) how do we solve for the expansion coefficients
efficiently? And (ii) how do we estimate the residual of X(a) in
order to decide when to proceed to the next step? We address these
questions in the next two subsections.

4.2 Computation of Asymptotic Coefficients

Algorithm 1 ANM Tracing

SetX0 = x, λ0 = 0, a0 = 0; {initial starting point}
while λ < 1 do

Solve the polynomial coefficients {Xk, λk}, k = 1...n;
Calculate reliable change of a based on residual estimation;
RefineX(a) by Newton-Raphson method;
SetX0 = X(a), λ0 = λ(a), a0 = a;

end while

4.2.1. Mathematical Insights Before diving into our derivation
details of computing the coefficients {Xk, λk} for Eq. (6), we first
present the critical insights that lead to fast solves for the coefficients.
Suppose for a moment the force function f has a quadratic form of
X . Namely,

f(x,X) = L0 +L[X] +Q[X,X], (7)

where L[?] andQ[?, ?] are respectively a linear and bilinear vector
valued operators of vector inputs. Substituting the expansion (6) of
X(a) into this expression yields a quadratic series,

f(x,X(a)) = L0 +L[X0] +Q[X0,X0]

+ (a− a0) (L[X1] + 2Q[X0,X1])

+

n∑
k=2

(a− a0)k
(
L[Xk] + 2Q[X0,Xk] +

k−1∑
t=1

Q[Xt,Xk−t]

)
.

(8)

Here we only keep the resulting expansion terms whose order is no
greater than n, since the truncation order of Eq. (6) is n. Recall
that we also have an nth-order expansion of λ(a) in Eq. (6). Fol-
lowing Cochelin’s method [1994], we substitute both expansions in
the equation f(x,X(a)) + λ(a)g = 0, and establish a group of
equations by matching the coefficients of every order of (a− a0).
The zeroth-order coefficients match already, since X0 is the solu-
tion at λ0, satisfying L0 +L[X0] +Q[X0,X0] + λ0g = 0. The
first-order coefficients need to satisfy the equation,

L[X1] + 2Q[X0,X1] + λ1g = 0. (9)

This is a linear system for X1, because when X0 is known, the
bilinear form Q[X0,X1] becomes linear with respect to X1, i.e.,
Q[X0,X1] = AX1, where A is a matrix computed by reducing the
bilinear operatorQwithX0. For any order k > 1, if the coefficients
(Xj , λj) for lower order j = 1...k − 1 are solved, we then have a
linear system forXk,

L[Xk] + 2Q[X0,Xk] +

k−1∑
t=1

Q[Xt,Xk−t] + λkg = 0. (10)

However, both Xk and λk are unknowns, yielding an under-
constrained linear system with 3N + 1 unknowns and 3N equations
in (10). To get a full-rank system, we introduce one more constraint
as suggested by Cochelin et al. [1994],

(X(a)−X0)TX1 + (λ(a)− λ0)λ1 = a. (11)

Essentially, this constraint requires that the parameter a measures
the projection of state increment (X −X0, λ − λ0) on the local
tangent vector (X1, λ1). After substituting the power series ofX(a)



and λ(a) into Eq. (11), and equating the coefficients of powers of
(a− a0), we have one more equation for every (Xk, λk),

XT
kX1 + λkλ1 = δk1, k = 1...n, (12)

where δk1 is the Kronecker delta: δk1 = 1 if k = 1, and zero
otherwise. When k = 1, Eq. (12) requires [X1, λ1] to have a
unit 2-norm. We therefore simply normalize one solution of the
under-constrained linear system (9). When k > 1, putting the
constraint (12) together with Eq. (10) yields a full-rank linear system
of (Xk, λk) (see details in Appendix A).

We note that all the linear systems for (Xk, λk) are very fast to
solve. Indeed, as detailed in Appendix A, all the linear systems,

A

[
Xk

λk

]
= bk,

share the same matrix A, which is exactly the Jacobian of the non-
linear function f(x,X) + λg at (X0, λ0). Namely,

A =
∂

∂(X, λ)
(f(x,X) + λg)

∣∣∣∣
(X0,λ0)

. (13)

Recall that as described in §4.1, after we change a to a new value,
we refine the solution X(a) using the Newton-Raphson method,
in which we compute exactly the Jacobian (13) and solve a linear
system to advance a Newton’s step. We can therefore cache the
factorization of A and reuse it for solving the coefficients (Xk, λk)
using fast back substitution.

4.2.2. Construction of Quadratic Form So far, a critical assump-
tion we have relied on is the quadratic force function (7) for con-
structing linear systems of (Xk, λk). Unfortunately, the force func-
tion f resulting from the neo-Hookean model is not as simple as a
quadratic form. However, as a key contribution of this paper, we
show below that f can be transformed into a quadratic form by
introducing auxiliary variables.

A Simple Example. We illustrate the basic idea using a simple
non-quadratic function f(x) = x3/2. Suppose x is expressed as
a polynomial of a, i.e., x(a) =

∑n
k=0 xka

k. Our goal here is to
express f(x) also as a polynomial of a. While f is not a quadratic
function, we can rewrite it as a quadratic form by introducing a new
variable y such that

f(x, y) = xy and x = y2.

This transformation is not an ad-hoc approximation; it is precisely
equivalent to the original f . Now if y is also expressed as a poly-
nomial of a (i.e., y(a) =

∑n
k=0 yka

k), then substituting the expan-
sions of x(a) and y(a) into f(x, y) yields a power series,

f(x, y) =

n∑
k=0

fia
k, where fk = x0yk + xky0 +

k−1∑
r=1

xryk−r.

(14)
Here again we discard the expansion terms whose orders are greater
than n. To establish the relationships between the coefficients xi
and yi, i = 0...k, we substitute both x(a) and y(a) into x = y2.
Equating the coefficients of every order of a, we obtain an equation
of yk,

xk = 2y0yk +

k−1∑
r=1

yryk−r.

This equation allows us to express yk as a linear function of xk,
because the relationship between x and y is quadratic (i.e., x = y2).

Consequently, after substituting yk into the expansion coefficient fk
in (14), fk is still linear with respect to xk. Therefore we can estab-
lish order-by-order linear equations for xk as described in §4.2.1. In
summary, this simple example demonstrates that for any nonlinear
function f , we can introduce auxiliary variables to transform f into
a quadratic form. As long as the auxiliary variables have quadratic
relationships, we can express f as a power series of a, such that
the kth-order coefficient is linear with respect to xk. Thus we can
compute xk via a linear solve.

Computing Coefficients (Xk, λk). Harnessing the same idea, we
now compute (Xk, λk). Here we only sketch the computational
steps for a practical implementation, and provide the detailed formu-
las in Appendix A.

First, since in our inverse problem the deformed state x is given, it is
convenient to express the stress tensor in the deformed configuration.
In particular, we compute the Cauchy stress tensor based on the
expression of the second Piola-Kirchhoff tensor (4):

σ = J−1FSF T = µJ−
5
3 b− µ

3
J−

5
3 IcI + κ(J − 1)I. (15)

With a piece-wise constant FE approximation, the internal force fi
at a node xi is

fi =
∑

t∈adj(xi)

σtnti,

where t ∈ adj(xi) again indicates a tetrahedron incident to the node
xi; σt is the piece-wise constant Cauchy stress tensor at t; and nti
is the outward normal of the node xi at the deformed tetrahedron t.

Our goal now is to construct an asymptotic expansion of fi at every
node xi, and apply the expansion in ANM to balance the external
force g scaled by λ. Namely,∑
t∈adj(xi)

(σt0 +

n∑
k=1

akσtk)nti + (λ0 +

n∑
k=1

akλk)gi = 0, (16)

where {σtk, k = 0...n} are the coefficients of the ANM expansion
of the Cauchy Stress tenor at a tetrahedron t.

The stress tensor σ has a highly nonlinear relationship with X
through the constitutive model (15). Following the same idea as in
§4.2.2, we introduce a number of auxiliary variables, and eventually
compute the k-th order expansion coefficient of σ as

σk = µ

(
s
(5)
k b0 + s

(5)
0 bk +

k−1∑
r=1

s
(5)
r bk−r

)

−
µ

3
I

(
s
(5)
k (Ic)0 + s

(5)
0 (Ic)k +

k−1∑
r=1

s
(5)
r (Ic)k−r

)
+ κJkI,

(17)
where Jk, (Ic)k and bk are the k-th order expansion coefficients

of expansion of J , Ic and b respectively; and s(5)k is the k-th order
coefficient of the auxiliary variable s(5) = J−

5
3 . Here we omit t

for the sake of simplicity. For the inverse problem of neo-Hookean
elasticity, we introduced 12 auxiliary variables to transform the
nonlinear internal force function into a quadratic form (See detailed
formulas in Appendix A). Eventually, σk is linear with respect to
Xk, the kth-order expansion coefficient ofX(a). We note that these
auxiliary variables serve for “chaining” the asymptotic expansions
from X(a) to σt. They will not increase the system’s DoFs, i.e.,
they are never involved in the linear solves.

Since we have an asymptotic form to express f(x,X(a)) now, we
follow exactly the process introduced in §4.2.1 and construct linear
equations for solving (Xk, λk), k = 1...n,

AXk = −λkg + fnl(k), (18)



Reference
Curve

8-order 
Polynomial

7-order 
Polynomial

Starting Point

Critical Point

Figure 4: Convergence radius of path parameter a: We plot
‖X(a)−x‖2 as the parameter a changes using an accurate solution
curve in red, an 8-order expansion curve in green, and a 7-order
expansion curve in orange. Both expansion curves closely track the
accurate solution within the convergence radius. Once a critical
point is reached, they diverge rapidly.

where fnl(k) assembles all terms not related toXk. Again, please refer
Appendix A for the details of computing A and fnl(k). As introduced
in §4.2.1, assembling Eq. (18) together with the linear constraint (12)
on curve parameter a leads to a full-rank linear system for (Xk, λk).
Again, A has to be factorized only once to solve Eq. (18) for all k.

4.3 Residual Estimation of X(a)

Once a local expansion ofX(a) is computed, we can proceed along
the curve of X(a) until the approximation error exceeds a given
threshold. To this end, we need to quickly estimate the residual
of X(a). As suggested by [Cochelin 1994], a simple estimation
is motivated by the observation that when a − a0 is within the
convergence radius of the power series, the difference between two
consecutive approximation orders remains small. However, when
a − a0 reaches the convergence radius, they separate rapidly (see
Figure 4). Therefore, we estimate the residual as

r =
‖X(a)order n −X(a)order n−1‖
‖X(a)order n −X(0)‖

=
‖Xn(a− a0)n‖∥∥∑n
k=1Xk(a− a0)k

∥∥ .
(19)

As described in §4.1, r serves as an indication to decide how far we
move away from a0 before starting a new step. In practice, we use
r ≤ 1E − 6 and estimate the convergence radius ar as

ar =

(
r
‖X1‖
‖Xn‖

) 1
n−1

. (20)

If the power series λ(a) reaches the value 1 for a ∈ [a0, a0+ar], the
ANM terminates with the solutionX(a). Evaluating this condition
amounts to a polynomial root finding of λ(a) = 1, for which we
use Brent’s method [Brent 2013].

4.4 Discussion

We close this section by remarking the performance of our method.
ANM is a multi-step method, similar to Newton-type methods. How-
ever, as shown in our experiments (see Table 2), it significantly
outperforms Newton-type methods for the problems in our work.
The reasons are threefold: (i) it requires no user-provided initial
guess; when a = 0, the solution X(a) = x is always guaran-
teed. (ii) The asymptotic local expansion at a point a0 essentially
constructs a high-order “tangential” space similar to the gradient
computed in Newton’s methods. Therefore, even with a relatively
large change, a− a0, the expansionX(a) remains close to the true
solution, thus allowing for large steps. (iii) Our method ensures that
X(a) stays close to the true solution at all times. Consequently, the

Newton iterations for refining the approximation at each step con-
verge rapidly. Moreover, the linear system factorization computed
during the Newton steps can be reused for quick computation of
expansion coefficients (Xk, λk).

5 Extensions

After laying out our core algorithm for the inverse elastic shape
solves, we now proceed to extend it to an interactive tool for the
tasks of inverse shape design.

5.1 Interactive Force Adjustment

An additional attractive feature of ANM is that once the solution
is found, it allows the user to interactively adjust the external force
and update the solution instantly. Our basic idea here is to use an
asymptotic expansion to quickly update the rest shapeX resulting
from different force scale λ.

In particular, recall that at the end of our ANM steps, we find a
rest shape X that solves f(x,X) + g = 0. We repeat one more
step, and compute the expansion coefficients of Eq. (6) at (X, 1) as
presented in §4.2. With this asymptotic expansion at (X, 1), our
system allows the user to adjust the external force scale by changing
the λ value. Suppose that the updated force is λ̄g. We first solve the
parameter a using the second equation of Eq. (6),

λ̄ = 1 +

n∑
k=1

(a− a1)kλk,

where λ(a1) = 1. This amounts to solving a polynomial root finding
problem. Among the multiple roots, we use the one closest to a1.
Lastly, we substitute the resulting value of a into the first equation
of Eq. (6) to update the rest shape X . The entire computation
involves only a polynomial root finding for a and a subsequent
evaluation of expansion series, both of which can be performed
interactively.

As the user-adjusted λ̄ deviates from λ = 1, the estimation of X
using the expansion degrades. Using the same residual estimation
as in §4.3, we start a new ANM step to updateX when the residual
estimation exceeds a threshold ε = 1E − 6.

One limitation of this scheme is that it allows only the change of
the force scale λ but not its direction. Our system allows the user to
adjust the force direction with slightly higher computational expense.
When the user updates the force direction, changing the force from
g to g1, we start a new ANM process to track the solution with a
parameterized inverse equilibrium equation,

f(x,X) + λ(g1 − g) + g = 0.

When λ = 0, the solution that solves f(x,X) + g = 0 is known.
And we use ANM to track the solution until λ = 1 using the method
in §4. If the updated force g1 is sufficiently close to g, we can still
provide interactive feedbacks. Otherwise, the user needs to wait for
a few seconds to see the shape update.

5.2 Multi-Target Inverse Shape Design

Our inverse design system thus far takes as the input a single target
shape x and applied force g. However, in practice, as a fabricated
object may function in multiple ways, it is often desirable to apply
different forces on an object to get different deformed shapes (see
Figure 9). Formally, given T target shapes xt, t = 1...T along with
the corresponding external forces gt, t = 1...T , we seek a single
rest pose X̄ for physical fabrication such that with each force gt,



it deforms into a shape xt. Now we have a system of equations
f(xt, X̄) + gt = 0, t = 1...T , which is over-constrained and thus
may have no solution. In other words, the rest shape X̄ satisfying
all equations does generally not exist.

We therefore seek to find a rest shape X̄ that deforms to every target
shape xt as close as possible. One straightforward formulation of
this task is an optimization problem: find a shape X̄ that minimizes
the sum of some residual measurement,

X̄ = arg min
X

T∑
t=1

‖f(xt,X) + gt‖. (21)

However, this is a nonlinear optimization problem suffering from
many challenges of performance and convergence (see Table 2), and
it can also be problematic since small residual forces can mean large
differences in geometry.

To enable a responsive design tool, we desire a fast estimation of
X̄ . We notice that in the expansion Eq. (6), the coefficientsXi, i =
0...n are individual vectors, forming a local reduced subspace to
represent X̄ . While in Eq. (6) the magnitude of each spanning vector
Xi is computed as a monomial (a− a0)i, here we relax it further
to allow any value for the estimation of X̄ .

Concretely, for every target shape xt and related external force gt,
we solve a rest shape X̄t individually. At every solution X̄t, we also
compute the expansion coefficients denoted asXt,i. We assemble
all these coefficients into a basis matrix

U = [X1,0 . . . X1,n X2,0 . . . X2,n . . . XT,0 . . . XT,n],

and then find a shape X̄ represented by this basis matrix to approx-
imate the individual solution X̄t in a least-squares sense:

q = arg min
q

T∑
t=1

‖Uq − X̄t‖22,

and compute X̄ = Uq. This computation involves only a small
scale least-squares solve with the reduced basis U , which is much
faster than solving the nonlinear problem Eq. (21) (see the video).

The rest shape X̄ computed in this way will generally not result in
the deformed shape agreeing with xt for every target shape. We
therefore solve the static equilibrium shapes x∗t from the rest shape
X̄ to present the user their differences from the desired shape xt.
We present the details of our fast static equilibrium solver in the next
subsection.

5.3 ANM for Static Equilibrium Problem

While we primarily target inverse elastic design problems, ANM
can also be used to solve the forward problem which computes
the deformed shapes of elastic objects in static equilibrium. In
particular, we apply ANM to solve f(x,X) + g = 0, in which
the rest shapeX and external force g are known, and the deformed
shape x is unknown. In our inverse design system the benefit of a
fast static equilibrium solver is twofold: it accelerates our calibration
process to identify simulation material parameters that match the
fabrication material, and provides quick feedback to the user about
the difference between the resulting deformed shape x∗t and the
desired shape xt in a multi-target design pipeline. More broadly, as
the static equilibrium problem appears in many computational design
(e.g., [Umetani et al. 2011]) and parameter selection (e.g. [Miguel
et al. 2012]) problems, a fast solver can potentially improve the
performance of those methods.

The ANM approach to solving the static equilibrium problem follows
exactly the same steps presented in §4. Here we only highlight the

important formulas different from the ones in §4, and refer the reader
to the supplemental material for detailed formulas. First, since
we are solving for x now, the expansion corresponding to Eq. (6)
becomes [

x(a)
λ(a)

]
=

[
x0

λ0

]
+

n∑
k=1

(a− a0)k
[
xk
λk

]
. (22)

Next, we need to compute the internal force f using the first Piola-
Kirchhoff tensor, P = FS, that expresses the internal force fi at a
node xi based on the undeformed nodal normal in material space,

fi =
∑

t∈adj(xi)

P tn̄ti,

where again t ∈ adj(xi) indicates a tetrahedron incident to the
node xi; P t is the piece-wise constant first Piola-Kirchhoff stress
tensor at t; and n̄ti is the outward normal of the node xi of an
undeformed tetrahedra t. Lastly, similar to Eq. (16), we construct
an expansion of P and use it to solve for the expansion coefficients
{xk, λk}, k = 1...n at every ANM step.

The ANM provides fast performance for the static equilibrium solve.
As shown in Table 3, compared to the static equilibrium solver with
kinetic damping used in Umetani et al. [2011], the ANM offers 7×
speedup on average for all the examples. We note that in [Umetani
et al. 2011] the authors explicitly coarsen a simulated cloth (2D)
mesh to achieve interactivity in their solver. For 3D deformable
objects designed for physical fabrication, however, it is necessary
to use a high-resolution tetrahedral mesh for accurate prediction.
Therefore, a direct application of the method in [Umetani et al.
2011] is not practical.

6 Experimental Results

We have implemented the described method in an inverse shape
design system based on the Vega FEM Library [Barbič et al. 2012a],
and evaluated it with 7 models, whose statistics are summarized in
Table 1. From the output of our algorithm, we first creates molds
using 3D printed rigid models, and then cast elastomer material of
type PU8400 (see [SunPe ] for the detailed material parameters) to
form final elastic objects.

Inverse Shape Design System. As depicted in the supplemental
video, a typical shape design session with our system begins with
loading a desired target shape x. While the user can manually
specify the fabrication material parameters (e.g., the shear and bulk
modulus and density), we usually calibrate the parameters against
specific fabrication materials a priori. The user only needs to specify
what kind of materials will be used in the final fabrication. Next, the

Model #Vertices #Elements #Targets Gravity (N) External (N)

bar 4552 19552 1 0.045 n/a
plant 14842 47077 1 2.283 n/a
holder 18753 72355 1 6.276 8.467
hanger 24323 98131 2 0.988 0.8
eagle 19307 71235 1 0.501 n/a
dinosaur 10673 32953 4 0.474 0.25/0.3/0.08
bifur3 5093 24478 1 122 1111

Table 1: Statistics of experimental models. From left to right: Num-
ber of vertices, number of elements, number of design targets, and
the magnitude of gravity and external forces. The external forces
listed here are the total amount of forces applied on the objects, and
their individual directions, positions and magnitudes are labeled in
Figure 7-9.



Model LevMar solver ANM solver SpeedupTime #Iter. Time #Iter.
bar 25m18s 5402 2.38s 2 638×

8m23s 1750 211×
plant 1h2m34s 7594 7.07s 3 531×

28m13s 3455 239×
holder 4m25s 95 12.82s 3 21×

9m20s 216 43×
hanger 16m22s 629 26.83s 1/3 37×

17m21s 675 38×
eagle 1h50m2s 4691 4.49s 1 1470×

40m24s 780 539×
dinosaur 22m51s 993 28.17s 1/2/4/2 49×

23m39s 1036 50×
bifur3 18m15s 1996 5.22s 3 210×

14m53s 1613 171×

Table 2: Statistics for inverse problem solves (with 6-threads
OpenMP). Note that we report the timings of the LevMar solver
with two kinds of initial guesses. For eagle and dinosaur, LevMar
solver does not converge to the desired solution.

(b)(a)

Figure 5: Simple Test Case: (a) Our method computes a bending
rest shape of an elastic bar holding in plane. (b) Under gravity, the
bar restores into a straight bar.

user specifies the external forces: gravity force is determined by the
shape and density, but the user needs to indicate its direction (i.e., the
downward direction); one also needs to fix certain parts of the shape
to impose constraint force; and optionally the user can also specify
the position, direction and magnitude of any additional forces to
reflect the intended use of the physical object. For example, the user
can constrain the base of a fish-shape cellphone holder, and specify
two opposite forces that open its mouth to clamp the cellphone (see
Figure 7).

Our system computes the resulting shape X , typically within 10
seconds, and presents it to the user. After finding the rest shapeX ,
it allows the user to adjust the external forces (in addition to gravity)
to explore other similar output shapes interactively.

Inverse Static Equilibrium Solver. We measured computation
times of our ANM on a desktop PC with Intel i7-3770K CPU. Ta-
ble 2 lists the timings and the number of ANM steps used in our
experiments. We use a truncation order n = 20 for all examples. For
simple shapes such as the elastic bar (Figure 5), the ANM took only
2.38 seconds to find the solution. It spent more time on the phone
holder (Figure 7), because it undergoes a large deformation with
the given force (g = 40N), and thus the ANM costs more to reach
from g = 0 to g = 40. For multi-target shape design, including the
hanger (Figure 8) and the dinosaur (Figure 9), we compute the rest
shapes using individual targets and estimate the final rest shape as
introduced in §5.2. The timings in Table 2 are measured as the total
amount of time spent on the entire solves.

In Table 2, we also compare the performance of our method to a
standard Netwon-type method for solving the inverse static equilib-
rium problem. Our implementation of the Newton-type solver is

Model Forward simulation ANM solver SpeedupTime #Iter. Time #Iter.
bar 21.07s 216 3.25s 3 6×
plant 1m18s 454 9.27s 4 8×
holder 45.34s 110 17.99s 4 3×
hanger 51.71s 78 15.93s 3 3×

72.45s 102 16.13s 3 4×
eagle 59.11s 214 8.11s 2 7×
dinosaur 1m3s 300 5.84s 4 11×

1m5s 304 5.81s 4 11×
1m15s 356 6.99s 5 11×
1m9s 330 5.83s 4 12×

bifur3 51.57s 302 6.31s 4 8×

Table 3: Statistics for forward problem solves (with 6-threads
OpenMP). For forward simulation, we use Implicit-Newmark with
kinetic damping [Umetani et al. 2011].

(b) (c) (d) (e)(a)

Figure 6: We compute a rest shape of the eagle model (a) given
its target shape under gravity (b), and fabricate the rest shape (d),
which fails to be horizontal as it should be. The fabrication of the
design target directly is shown in (e), while its simulation is (c).

based on the Levenberg-Marquardt (LM) method [Levenberg 1944],
because the multi-target inverse problem may not have an accurate
solution, and can only be solved in a nonlinear least-squares sense.
In practice, we use the widely used LM library [Lourakis Jul. 2004].
As shown in Table 2, our method is 2-3 orders of magnitude faster
than the LM solver for all our examples. Since the performance of
the Newton-type methods varies with different initial guesses, we
explored different initial guess strategies and report the timings of
the LM solver with two kinds of initial guesses. The first strategy
uses the target shapes as the initial guess, while the second strat-
egy computes an initial guess using a static equilibrium solver: let
x denote the target shape; we first use it as a rest shape, inverse
the external force g into −g, and solve the static equilibrium state
x′ satisfying f(x,x′) − g = 0. We use x′ as the initial guess
and benchmark the performance. This strategy improves the LM
solves most of the time, but it requires extra time to compute x′.
More importantly, even without taking into account the overhead of
computing x′, our method still runs 1-2 orders of magnitude faster.

Forward Static Equilibrium Solver. Table 3 summarizes the tim-
ings of static equilibrium solver and compares against a kinetic
damping solver as used in [Umetani et al. 2011]. Even though
kinetic damping was reported to be faster than the conventional
Newton-type method, our ANM solver still performs about 3-10
times faster over the kinetic damping method for all our examples.

Physical Validation. We first evaluate our algorithm with a simple
bar model. We require that the deformed shape of the bar be hori-
zontal under gravity. Figure 5(a) shows a photo of the rest shape of
a fabricated bar based on our computation, while Figure 5(b) shows
that the fabricated rest shape deforms into the expected horizontal
shape with little approximation error. The robustness of our solver
with respect to external forces is demonstrated in Figure 7. In the
design stage, external forces with a magnitude of 40N, are exerted
at two sides of the fish mouth to open it as a holder (Figure 7(b)).
The real deformation under the external force is demonstrated in
Figure 7(d), while the rest shape is shown in Figure 7(c).



40 N

40 N

(a) (b) (c) (d)

Figure 7: Phone Holder: We compute a rest shape of a phone holder (a) based on its target shape under working forces (b) for clamping a
cell phone. We then fabricate the computed rest shape (c). As shown in (d), its mouth clamps a cell phone tightly as predicted.

0.4 N 0.4 N

weight = 90 g

(b) (c) (d) (e)(a) (f)

Figure 8: Hanger: We compute a rest shape of hanger model (a) given its target shape under gravity (b) and target shape under working
forces (c). The fabrication of the rest shape has a horizontal bottom bar under gravity (d). The shape under the target work load (e) is visually
similar to the designed target shape. The weight of cloth is shown in (f).

0.125 N
0.125 N 0.3 N

0.08 N

Figure 9: Multi-target Dinosaur: We compute a rest shape for the dinosaur model given multiple designed target shapes (top row). When
applying the forces to the fabricated shape, we observe deformations that are visually similar to the corresponding target shapes (bottom row).

We verify the multi-target optimization algorithm as shown in Fig-
ure 8. The two target shapes under gravity and an additional ex-
ternal force (0.4N at both sides of the clothes stand) are shown in
Figure 8(b) and 8(c), respectively. The rest shape obtained from
optimization is shown in Figure 8(a). To validate the accuracy of
our simulation, we hang a piece of cloth with a weight of 90 grams
on the fabricated object. The resulting deformed shape is visually
very similar to the designed shape.

We demonstrate the second example of multi-target shape design
in Figure 9, in which we specify four targeted poses deformed by
forces exerted on the dinosaur’s hands, neck, and head respectively
in addition to gravity.

Failure Cases and Limitations. Although our method works well
under various scenarios, among all our examples we observed one
failure case (shown in Figure 6(d)), for which the deformation of the
fabricated shape is still visually different from the desired shape. We

believe the major reason is the insufficient accuracy of the fabrication
technology using elastomer material. In addition, the use of finite
element approximation is less predictive for thin structures such as
the wings of the eagle, for which a large number of tetrahedra are
needed to well resolve the thin features. Moreover, the inaccuracy
of the neo-Hookean model is another possible reason. We also note
that for the same test case, Levenberg-Marquardt solver even fails to
find a solution.

Given an arbitrary user input, it is possible that no feasible inverse
shape exists. Currently our method stops when a solution is found
or the maximum number of iterations is reached. For the latter case,
we check whether the resulting shape satisfies the static equilibrium
equation and report failure cases to the user.

To successfully apply ANM in other constitutive models, the crucial
part is to derive the appropriate transformation in order to obtain
a quadratic formulation of the internal force function. The trans-



formations presented in this work were derived manually, and it is
unclear to what extent these derivations can be automated. Neverth-
less, symbolic differentiation software may be used to automate the
computation of derivatives.

7 Conclusion

We have introduced an asymptotic numerical method for solving
inverse static equilibrium problems for nonlinear neo-Hookean elas-
ticity. We have applied this method to compute rest shapes for elastic
fabrication. Our method runs orders of magnitude faster than tra-
ditional Newton-type methods for all the examples considered in
this work. We demonstrate the performance and robustness of our
method by designing and fabricating various elastic objects.

While ANM offers promising performance to solve nonlinear equa-
tions in our inverse design problem, future work should investigate
its further applications in elastic fabrication. For example, while our
method is applicable to anisotropic materials, it needs an extension
of the derived formulas to incorporate anisotropy. In addition, apply-
ing ANM in design problems with shape constraints is an interesting
direction, and might lead to new computational elastic design tools.
Moreover, incorporating the support of partially deformed targets
could benefit users in specific design situations. We are also inter-
ested in the simulation and fabrication of different kinds of elastic
materials. For instance, it is of much interest to investigate whether
we can fabricate elastic human skin, which can go beyond graphics
and find applications in robotics and other areas.

Acknowledgements

We would like to thank the anonymous reviewers for their con-
structive comments; Timothy Sun for dubbing the video; and Meng
Zhang for the rendering efforts. This work is partially supported
by NSFC (No. 61272305, No. 61303136 and No. 61322204), the
National Program for Special Support of Eminent Professionals of
China, Columbia Junior Faculty startup fund, Lenovo’s Program for
Young Scientists as well as generous gifts from Intel.

A Derivation Details of the Inverse Problem

For the inverse problem of neo-Hookean elasticity, we introduce a
set of auxiliary variables to establish quadratic relationships between
σ andX as described in §4.2.2:

σ = µJ−
5
3 b− µ

3
J−

5
3 IcI + κ(J − 1)I

s(5) = s(2)J inv

s(2) = s(1)s(1)

J inv = s(2)s(1)

JJ inv = 1

J = εlmnF̃lmFn3

F̃lm = Fl1Fm2

Ic = I : b

b = FF T

F = [x][X]inv

[X][X]inv = I

where s(5) = J−
5
3 , s(2) = J−

2
3 , s(1) = J−

1
3 , and Fij indicates

the element (i, j) of the deformation gradientF . [x] and [X] denote

two matrices for each tetrahedron in the deformed and material space
respectively. Namely,

[x] = [x1 − x0 x2 − x0 x3 − x0],

[X] = [X1 −X0 X2 −X0 X3 −X0].

Here xi and Xi, i = 0...3 are vertex positions of a tetrahedron in
the deformed and material space.

Based on these relationships, the recurrence formula for computing
k-th order polynomial coefficients has the following expansions:

σk = µ

(
s
(5)
k b0 + s

(5)
0 bk +

k−1∑
r=1

s
(5)
r bk−r

)

−
µ

3
I

(
s
(5)
k (Ic)0 + s

(5)
0 (Ic)k +

k−1∑
r=1

s
(5)
r (Ic)k−r

)
+ κJkI

s
(5)
k = s

(2)
0 Jinvk + s

(2)
k Jinv0 +

k−1∑
r=1

s
(2)
r Jinvk−r

s
(2)
k = s

(1)
0 s

(1)
k + s

(1)
k s

(1)
0 +

k−1∑
r=1

s
(1)
r s

(1)
k−r = 2s

(1)
0 s

(1)
k +

k−1∑
r=1

s
(1)
r s

(1)
k−r

Jinvk = s
(2)
0 s

(1)
k + s

(2)
k s

(1)
0 +

k−1∑
r=1

s
(2)
r s

(1)
k−r

Jinvk = −Jinv0 JkJ
inv
0 − Jinv0

k−1∑
r=1

JrJ
inv
k−r

Jk = εlmn

[
(F̃lm)k(Fn3)0 + (F̃lm)0(Fn3)k +

k−1∑
r=1

(F̃lm)r(Fn3)k−r

]

(F̃lm)k = (Fl1)k(Fm2)0 + (Fl1)0(Fm2)k +

k−1∑
r=1

(Fl1)r(Fm2)k−r

(Ic)k = I : bk

bk = FkF
T
0 + F0F

T
k +

k−1∑
r=1

FrF
T
k−r

Fk = [x][X]invk

[X]invk = −[X]inv0 [X]k[X]inv0 − [X]inv0

(
k−1∑
r=1

[X]r[X]invk−r

)
Here [X]k is the expansion coefficient of [X]. Because all elements
of [X] are linear with respect to the vector X , [X]k is also linear
with respect toXk in Eq. (6). Using these expansions, one can see
that σk is linear with respect toXk. Therefore, the computation of
matrix A in (18) merely depends on the zeroth-order terms of the
auxiliary variables, and the vector fnl(k) can be assembled from all
r-th order terms where 1 ≤ r < k. After computing A and fnl(k), we
solve for (Xk, λk) using Eq. (12) and Eq. (18) as follows:

For the first order, we have

X∗1 = A−1g, λ1 =
(
‖X∗1 ‖2 + 1

)− 1
2 , X1 =

(
‖X∗1 ‖2 + 1

)− 1
2 X∗1 .

For order k > 1, we solve the linear equation for (Xnl
(k), λk) using{

AXnl
(k) = fnl(k)

λk = −λ1X
T
1 X

nl
(k)

,

followed byXk =
λk
λ1
X1 +Xnl

(k).

Finally, we use a simple example to illustrate why A is equivalent

to
∂f

∂X

∣∣∣∣
X0

. Consider a quadratic form f(x) = a(x)b(x), suppose



the precondition
∂a

∂x

∣∣∣∣
x0

= α,
∂b

∂x

∣∣∣∣
x0

= β and ak = αxk +

anl(k), bk = βxk+bnl(k) is true, we can simply get fk = a0bk+akb0+∑k−1
r=1 arbk−r = (a0β + b0α)xk + fnl(k), in which a0β + b0α =

a(x0)
∂b

∂x

∣∣∣∣
x0

+ b(x0)
∂a

∂x

∣∣∣∣
x0

=
∂f

∂x

∣∣∣∣
x0

. The precondition is always

true for linear functions of x.

References

ALLGOWER, E. L., AND GEORG, K. 1990. Numerical continuation
methods, vol. 13. Springer-Verlag Berlin.

BÄCHER, M., BICKEL, B., JAMES, D. L., AND PFISTER, H. 2012.
Fabricating articulated characters from skinned meshes. ACM
Trans. Graph. 31, 4, 47.

BARBIČ, J., DA SILVA, M., AND POPOVIĆ, J. 2009. Deformable
object animation using reduced optimal control. ACM Trans.
Graph. 28, 3, 53.

BARBIČ, J., SIN, F. S., AND SCHROEDER, D., 2012. Vega FEM
Library. http://www.jernejbarbic.com/vega.

BARBIČ, J., SIN, F., AND GRINSPUN, E. 2012. Interactive Editing
of Deformable Simulations. ACM Trans. Graph. 31, 4, 70.

BICKEL, B., BÄCHER, M., OTADUY, M. A., LEE, H. R., PFIS-
TER, H., GROSS, M., AND MATUSIK, W. 2010. Design and
fabrication of materials with desired deformation behavior. ACM
Trans. Graph. 29, 4, 63.

BICKEL, B., KAUFMANN, P., SKOURAS, M., THOMASZEWSKI,
B., BRADLEY, D., BEELER, T., JACKSON, P., MARSCHNER,
S., MATUSIK, W., AND GROSS, M. 2012. Physical face cloning.
ACM Trans. Graph. 31, 4, 118.

BONET, J., AND WOOD, R. D. 1997. Nonlinear Continuum
Mechanics for Finite Element Analysis. Cambridge University.

BRENT, R. P. 2013. Algorithms for minimization without derivatives.
Courier Dover Publications.

CALÌ, J., CALIAN, D. A., AMATI, C., KLEINBERGER, R., STEED,
A., KAUTZ, J., AND WEYRICH, T. 2012. 3d-printing of non-
assembly, articulated models. ACM Trans. Graph. 31, 6, 130.

CEYLAN, D., LI, W., MITRA, N. J., AGRAWALA, M., AND PAULY,
M. 2013. Designing and fabricating mechanical automata from
mocap sequences. ACM Trans. Graph. 32, 6, 186.

CHEN, D., LEVIN, D. I. W., DIDYK, P., SITTHI-AMORN, P.,
AND MATUSIK, W. 2013. Spec2fab: A reducer-tuner model for
translating specifications to 3d prints. ACM Trans. Graph. 32, 4.

COCHELIN, B. 1994. A path-following technique via an asymptotic-
numerical method. Computers & structures 53, 5, 1181–1192.

COROS, S., MARTIN, S., THOMASZEWSKI, B., SCHUMACHER,
C., SUMNER, R., AND GROSS, M. 2012. Deformable objects
alive! ACM Trans. Graph. 31, 4, 69.

COROS, S., THOMASZEWSKI, B., NORIS, G., SUEDA, S., FOR-
BERG, M., SUMNER, R. W., MATUSIK, W., AND BICKEL, B.
2013. Computational design of mechanical characters. ACM
Trans. Graph. 32, 4, 83.

DAMIL, N., AND POTIER-FERRY, M. 1990. A new method to
compute perturbed bifurcations: Application to the buckling of
imperfect elastic structures. International Journal of Engineering
Science 28, 9, 943–957.

DEROUET-JOURDAN, A., BERTAILS-DESCOUBES, F., AND THOL-
LOT, J. 2010. Stable inverse dynamic curves. ACM Trans. Graph.
29, 6, 137.

DEROUET-JOURDAN, A., BERTAILS-DESCOUBES, F., DAVIET,
G., AND THOLLOT, J. 2013. Inverse dynamic hair modeling
with frictional contact. ACM Trans. Graph. 32, 6, 159.

HADAP, S. 2006. Oriented strands: dynamics of stiff multi-body
system. In Proceedings of SCA, 91–100.

HILDEBRANDT, K., SCHULZ, C., VON TYCOWICZ, C., AND
POLTHIER, K. 2012. Interactive spacetime control of deformable
objects. ACM Trans. Graph. 31, 4, 71.

LAZARUS, A., MILLER, J., AND REIS, P. 2013. Continuation of
equilibria and stability of slender elastic rods using an asymptotic
numerical method. J. Mech. Phys. Solids 61, 8, 1712–1736.

LEVENBERG, K. 1944. A method for the solution of certain non-
linear problems in least squares. Quart. J. Appl. Maths. II, 2.

LOURAKIS, M. I. A., Jul. 2004. levmar: Levenberg-marquardt
nonlinear least squares algorithms in C/C++. [web page]
http://www.ics.forth.gr/˜lourakis/levmar.

MARTIN, S., THOMASZEWSKI, B., GRINSPUN, E., AND GROSS,
M. 2011. Example-based elastic materials. ACM Trans. Graph.
30, 4, 72.

MIGUEL, E., BRADLEY, D., THOMASZEWSKI, B., BICKEL, B.,
MATUSIK, W., OTADUY, M. A., AND MARSCHNER, S. 2012.
Data-driven estimation of cloth simulation models. Computer
Graphics Forum 31, 2, 519–528.

NEALEN, A., MÜLLER, M., KEISER, R., BOXERMAN, E., AND
CARLSON, M. 2006. Physically based deformable models in
computer graphics. Computer Graphics Forum 25, 4, 809–836.

OGDEN, R. W. 1997. Non-linear elastic deformations. Courier
Dover Publications.

PRÉVOST, R., WHITING, E., LEFEBVRE, S., AND SORKINE-
HORNUNG, O. 2013. Make it stand: balancing shapes for
3d fabrication. ACM Trans. Graph. 32, 4, 81.

SKOURAS, M., THOMASZEWSKI, B., BICKEL, B., AND GROSS,
M. 2012. Computational design of rubber balloons. Computer
Graphics Forum 31, 2, 835–844.

SKOURAS, M., THOMASZEWSKI, B., COROS, S., BICKEL, B.,
AND GROSS, M. 2013. Computational design of actuated de-
formable characters. ACM Trans. Graph. 32, 4, 82.

STAVA, O., VANEK, J., BENES, B., CARR, N., AND MĚCH, R.
2012. Stress relief: Improving structural strength of 3d printable
objects. ACM Trans. Graph. 31, 4, 48.

SUNPE, P. Professional Rapid Prototyping & Manufacturing.
http://www.sunpe.com/types-34.html, SunPe PROTOTYPE.

TWIGG, C. D., AND KAČIĆ-ALESIĆ, Z. 2011. Optimization for
sag-free simulations. In Proceedings of SCA, 225–236.

UMETANI, N., KAUFMAN, D. M., IGARASHI, T., AND GRINSPUN,
E. 2011. Sensitive couture for interactive garment modeling and
editing. ACM Trans. Graph. 30, 4, 90.

ZAHROUNI, H., COCHELIN, B., AND POTIER-FERRY, M. 1999.
Computing finite rotations of shells by an asymptotic-numerical
method. Comput. Methods Appl. Mech. Eng. 175, 1, 71–85.


