
Instructor: Rocco A. Servedio

Computer Science 4252: Introduction to Computational Learning Theory
Problem Set #5 Fall 2023

Due 11:59pm Wednesday, December 6, 2023

See the course Web page for instructions on how to submit homework. Important: To make life
easier for the TAs, please start each problem on a new page.

Problem 1 Let’s consider (a slight generalization of) the simple-three-stage boosting scenario
that we analyzed in class. Suppose that h1 : X → {0, 1} is such that under distribution D1 = D,
the weak hypothesis h1 achieves error p := Prx∼D1 [h(x) 6= c(x)] < 1/2 (in class we fixed p = 0.4).

(a) In class we described a way to simulate a draw from EX(c,D2) given h1 and access to EX(c,D1).
Using that approach, what is the expected number of calls to EX(c,D1) that need to be performed
in order to simulate a single draw from EX(c,D2) in our current general-value-of-p setting?

(b) The approach of part (a) can be carried out without knowing the value of p. Suppose now that
the value of p is known to you. Describe another way to simulate a draw from EX(c,D2) given h1

and access to EX(c,D1), and analyze the efficiency of your approach (the expected number of calls
to EX(c,D1) needed to simulate a single draw from EX(c,D2)). Compare the relative efficiency
of the two approaches.

(For both parts of the problem you may use standard facts about the geometric distribution as can
be found in many sources, for example on Wikipedia.)

Problem 2 Let us say that an algorithm A is a FNO weak learner with advantage γ for con-
cept class C (for “False Negative Only”) if it has the following property: for any c ∈ C and any
distribution D, given access to EX(c,D), algorithm A outputs a hypothesis h such that

• If c(x) = 0 then h(x) = 0; and

• Prx∼D1 [h(x) = 1] ≥ 1
2 + γ. Here D1 is the distribution D restricted to {x : c(x) = 1}.

(For simplicity we do not consider the confidence parameter δ, i.e. we assume that an FNO weak
learner always outputs a hypothesis as described above.)

Suppose you are given an FNO weak learner with advantage γ = 1/10 which in fact always
(when run on EX(c,D)) outputs a hypothesis h such that Prx∼D1 [h(x) = 1] = 0.6. Analogous to
what we did in class, describe and analyze a simple two-stage booster for such a weak learner; i.e.
your boosting algorithm should run the weak learner twice to produce its final hypothesis.
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Problem 3 Let C be any concept class over {0, 1}n. Show that if C is efficiently PAC learnable,
then there is an efficient algorithm that, given 0 < δ < 1 and a sample S of m examples labeled
according to some concept c in C, outputs with probability at least 1− δ a hypothesis h such that

(i) h is consistent with S, and

(ii) size(h) ≤ p(n, size(c), logm, 1/δ) for some polynomial p.

(Hint: Use the AdaBoost algorithm together with the efficient PAC learning algorithm for C. You
may define the size of a hypothesis h as you wish for this problem, provided that your definition
is reasonable, and you may assume, for the purposes of this problem, that each real number which
occurs in the representation of h contributes 1 to its size.)

(A cultural note unrelated to solving the problem: recall that the Occam’s Razor theorem can
be viewed as showing that “compression implies learnability.” This problem essentially shows a
converse in a very strong sense – note that the hypothesis h which encodes all m of the correct
labels for the examples in S is of size only poly-logarithmic in m (ignoring other parameters).)

Problem 4 Let C be any concept class. Suppose that algorithm A is an efficient proper PAC
learning algorithm for C in the noise-free setting (i.e. given access to an example oracle EX(c,D),
algorithm A outputs a hypothesis h which belongs to C and satisfies the PAC criteria). Suppose
that moreover there is an efficient PAC learning algorithm B for concept class C in the presence
of random classification noise, but B is not a proper PAC learning algorithm (i.e. the hypotheses
which B outputs belong not to C, but to some other hypothesis class H). Show that then there
must exist an efficient proper PAC learning algorithm for C in the presence of random classification
noise.

Problem 5 Two functions f, g : X → {0, 1} are said to be uncorrelated with respect to distribution
D over X if

Prx∼D[f(x) = g(x)] = Prx∼D[f(x) 6= g(x)].

(a) Recall from the third problem set that for S a subset of {1, . . . , n}, the parity function corre-
sponding to S is the Boolean function χS : {0, 1}n → {0, 1},

χS(x1, . . . , xn) =
∑
i∈S

xi mod 2

which counts whether the number of input bits in coordinates indexed by S is odd or even. The
concept class of parity functions P over {0, 1}n includes all 2n functions that can be described in
this way. Formally,

P = {χS : S ⊆ [n]}.

Show that any two distinct parity functions χS1 , χS2 over {0, 1}n are uncorrelated with respect
to the uniform distribution over {0, 1}n. (By results that we will discuss in class, this means that
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the class P of all parity functions over {0, 1}n takes exponential time to learn in the Statistical
Query model. Note that you don’t need to know what the Statistical Query model is in order to
solve this entire problem.)

(b) Let CDNF be the class of n-term DNF formulas over {0, 1}n. Show that there is a distribution
D over {0, 1}n such that there are N = nΩ(logn) many pairwise uncorrelated concepts in CDNF .
By the results we will discuss in class, this means that the class CDNF does not have an efficient
(polynomial in n time) learning algorithm in the Statistical Query model.

(c) Now let CDT be the class of n-leaf decision trees over {0, 1}n (decision trees with at most n
leaves; see the Oct 4 lecture for a refresher on decision trees). Show that there is a distribution D
over {0, 1}n such that there are N = nΩ(logn) many pairwise uncorrelated concepts in CDT . By the
results we will discuss in class, this means that the class CDT does not have an efficient (polynomial
in n time) learning algorithm in the Statistical Query model.
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