Computer Science 4252: Introduction to Computational Learning Theory Problem Set \#4 Fall 2023

Due 11:59pm Wednesday, November 15, 2023

See the course Web page for instructions on how to submit homework. Important: To make life easier for the TAs, please start each problem on a new page.

Problem 1 The "Chernoff bounds" we presented in class were bounds on the tail probability for a random variable $\boldsymbol{X}=\boldsymbol{X}_{1}+\cdots+\boldsymbol{X}_{m}$ where the \boldsymbol{X}_{i} 's are independent $\{0,1\}$-valued random variables, each of which takes value 1 with probability p. This bound is just the tip of a large iceberg - similar bounds are known under a much broader range of conditions. The point of the current problem is to explore (a little bit of) this.

Let's have some fun, and prove a related tail bound for sums of independent random variables $\boldsymbol{X}_{1}, \ldots, \boldsymbol{X}_{n}$ that are not restricted to have values all in the set $\{0,1\}$.
(a) Show that if \boldsymbol{Z} is any real-valued random variable, then for every $r>0$ we have $\operatorname{Pr}[\boldsymbol{Z}>z] \leq$ $e^{-r z} \mathbf{E}\left[e^{r \boldsymbol{Z}}\right]$.
(b) Let $\boldsymbol{Y}_{1}, \ldots, \boldsymbol{Y}_{n}$ be independent random variables that have $\operatorname{Pr}\left[\boldsymbol{Y}_{i}=1\right]=\operatorname{Pr}\left[\boldsymbol{Y}_{i}=-1\right]=1 / 2$, let $\boldsymbol{X}_{i}=w_{i} \boldsymbol{Y}_{i}$ for some real values w_{1}, \ldots, w_{n}, and let $\boldsymbol{X}=\boldsymbol{X}_{1}+\cdots+\boldsymbol{X}_{n}$.

Show that for any real value r, we have $\mathbf{E}\left[e^{r \boldsymbol{X}}\right] \leq e^{r^{2}\|w\|^{2} / 2}$, where $\|w\|^{2}=w_{1}^{2}+\cdots+w_{n}^{2}$. (Hint: Use (and justify if you can) the fact that $\cosh (x)$, which we recall is $\frac{1}{2}\left(e^{x}+e^{-x}\right)$, is at most $e^{x^{2} / 2}$.)
(c) Combine parts (a) and (b) to infer that for any $t>0$, we have $\operatorname{Pr}[\boldsymbol{X} \geq t] \leq e^{-r t+r^{2}\|w\|^{2} / 2}$.
(d) Use (c) to obtain the following tail bound on $\boldsymbol{X}: \operatorname{Pr}[\boldsymbol{X} \geq t] \leq e^{-t^{2} /\left(2\|w\|^{2}\right)}$.

Problem 2 In class we saw an algorithm for PAC learning monotone disjunctions which had the following property: if the algorithm is run on a target concept that is a monotone disjunction of length at most k, it outputs a hypothesis which is a monotone disjunction of length at most only only slightly longer than k. In this problem you'll show that that it is a computationally hard problem to PAC learn using a hypothesis whose length is at most exactly k.

More precisely, suppose that there is a PAC learning algorithm \mathcal{A} for monotone disjunctions that runs in time $\operatorname{poly}(n, 1 / \varepsilon, 1 / \delta)$ and has the following property: for all k, if \mathcal{A} is run on a monotone disjunction of length k, it outputs a hypothesis that is a monotone disjunction of length at most k. Show that then there is a randomized poly (n)-time algorithm which optimally solves any instance of SET COVER with high probability. (Since SET COVER is NP-complete, this would mean that NP is contained in RP, which is viewed as being very unlikely.)

Problem 3 Let C be a concept class whose VC dimension is d, and for $s \geq 1$ denote by C_{s} the class $C_{s}=\left\{c=c_{1} \cup \ldots \cup c_{s} \mid c_{i} \in C\right\}$. Show that for all $s \geq 1$, the VC dimension of C_{s} is at most $2 d s \log (3 s)$. (Hint: Think about the growth function $\Pi_{C}(m)$.)

Problem 4

(a) Let $X=\mathbb{N}=\{0,1,2,3, \ldots\}$ and let \mathcal{C}_{+}be the concept class over X defined as follows:

$$
\mathcal{C}_{+}=\left\{c_{+0}, c_{+1}, c_{+2}, c_{+3}, \ldots\right\} \quad \text { where } \quad c_{+i}=\{i+j: j \in \mathbb{N}\}
$$

(so, for example, the concept c_{+4} is the subset of X defined as $c_{+4}=\{4,5,6,7, \ldots\}$). Give an efficient PAC learning algorithm for \mathcal{C}_{+}and explain why your algorithm is correct (analyze its sample complexity and running time).
(b) As in part (a), let $X=\mathbb{N}=\{0,1,2,3, \ldots\}$ but now let \mathcal{C}_{\times}be the concept class over X defined as follows:

$$
\mathcal{C}_{\times}=\left\{c_{\times 0}, c_{\times 1}, c_{\times 2}, c_{\times 3}, \ldots\right\} \quad \text { where } \quad c_{\times i}=\{i \times j: j \in \mathbb{N}\}
$$

(so, for example, the concept $c_{\times 4}$ is the subset of X defined as $c_{\times 4}=\{0,4,8,12, \ldots\}$). Argue that there is no PAC learning algorithm for \mathcal{C}_{\times}(if you are not sure exactly what this means, see the next problem for clarification).

Problem 5 Part (b) of the previous problem implies that there is no a priori fixed sample size which suffices for PAC learning the concept class \mathcal{C}_{\times}for all distributions. To be more precise, it tells us that there is no function $m(1 / \varepsilon, 1 / \delta)$ such that the following holds: There is an algorithm which, given ε, δ and access to $E X(c, \mathcal{D})$ where \mathcal{D} is any distribution over \mathbb{N} and c is an unknown target concept $c_{\times i}$ in \mathcal{C}_{\times}, draws $m(1 / \varepsilon, 1 / \delta)$ samples from $E X(c, \mathcal{D})$ and with probability $1-\delta$ outputs an ε-accurate hypothesis for c.

However, while there is no fixed sample size $m(1 / \varepsilon, 1 / \delta)$ that suffices for every distribution, in fact for every distribution there is some finite sample size that suffices for it. Establishing this, for the concept class \mathcal{C}_{\times}, is the point of the current problem.

Show that for every distribution \mathcal{D} over \mathbb{N}, there is a function $m_{\mathcal{D}}(1 / \varepsilon, 1 / \delta)$ (which may depend on \mathcal{D}) and an algorithm $A_{\mathcal{D}}$ (which also may depend on \mathcal{D}) such that the following holds: If $A_{\mathcal{D}}$ is given ε, δ and access to $E X\left(c_{\times i}, \mathcal{D}\right)$ where $c_{\times i}$ is an unknown element of $\mathcal{C}_{\times i}$, it draws $m_{\mathcal{D}}(1 / \varepsilon, 1 / \delta)$ samples from $E X(c, \mathcal{D})$ and with probability $1-\delta$ outputs an ε-accurate hypothesis for c.

