Computer Science 4252: Introduction to Computational Learning Theory Problem Set #4 Fall 2023

Due 11:59pm Wednesday, November 15, 2023

See the course Web page for instructions on how to submit homework. Important: To make life easier for the TAs, please start each problem on a new page.

<u>**Problem 1**</u> The "Chernoff bounds" we presented in class were bounds on the tail probability for a random variable $\mathbf{X} = \mathbf{X}_1 + \cdots + \mathbf{X}_m$ where the \mathbf{X}_i 's are independent $\{0, 1\}$ -valued random variables, each of which takes value 1 with probability p. This bound is just the tip of a large iceberg — similar bounds are known under a much broader range of conditions. The point of the current problem is to explore (a little bit of) this.

Let's have some fun, and prove a related tail bound for sums of independent random variables X_1, \ldots, X_n that are *not* restricted to have values all in the set $\{0, 1\}$. (a) Show that if Z is any real-valued random variable, then for every r > 0 we have $\Pr[Z > z] \le e^{-rz} \mathbb{E}[e^{rZ}]$.

(b) Let Y_1, \ldots, Y_n be independent random variables that have $\Pr[Y_i = 1] = \Pr[Y_i = -1] = 1/2$, let $X_i = w_i Y_i$ for some real values w_1, \ldots, w_n , and let $X = X_1 + \cdots + X_n$.

let $X_i = w_i Y_i$ for some real values w_1, \ldots, w_n , and let $X = X_1 + \cdots + X_n$. Show that for any real value r, we have $\mathbf{E}[e^{rX}] \leq e^{r^2 ||w||^2/2}$, where $||w||^2 = w_1^2 + \cdots + w_n^2$. (Hint: Use (and justify if you can) the fact that $\cosh(x)$, which we recall is $\frac{1}{2}(e^x + e^{-x})$, is at most $e^{x^2/2}$.)

(c) Combine parts (a) and (b) to infer that for any t > 0, we have $\mathbf{Pr}[\mathbf{X} \ge t] \le e^{-rt + r^2 ||w||^2/2}$.

(d) Use (c) to obtain the following tail bound on X: $\Pr[X \ge t] \le e^{-t^2/(2||w||^2)}$.

Problem 2 In class we saw an algorithm for PAC learning monotone disjunctions which had the following property: if the algorithm is run on a target concept that is a monotone disjunction of length at most k, it outputs a hypothesis which is a monotone disjunction of length at most only only slightly longer than k. In this problem you'll show that that it is a computationally hard problem to PAC learn using a hypothesis whose length is at most *exactly* k.

More precisely, suppose that there is a PAC learning algorithm \mathcal{A} for monotone disjunctions that runs in time $poly(n, 1/\varepsilon, 1/\delta)$ and has the following property: for all k, if \mathcal{A} is run on a monotone disjunction of length k, it outputs a hypothesis that is a monotone disjunction of length at most k. Show that then there is a randomized poly(n)-time algorithm which optimally solves any instance of SET COVER with high probability. (Since SET COVER is NP-complete, this would mean that NP is contained in RP, which is viewed as being very unlikely.) **Problem 3** Let C be a concept class whose VC dimension is d, and for $s \ge 1$ denote by C_s the class $C_s = \{c = c_1 \cup \ldots \cup c_s \mid c_i \in C\}$. Show that for all $s \ge 1$, the VC dimension of C_s is at most $2ds \log(3s)$. (Hint: Think about the growth function $\Pi_C(m)$.)

Problem 4

(a) Let $X = \mathbb{N} = \{0, 1, 2, 3, ...\}$ and let \mathcal{C}_+ be the concept class over X defined as follows:

$$\mathcal{C}_{+} = \{c_{+0}, c_{+1}, c_{+2}, c_{+3}, \dots\} \text{ where } c_{+i} = \{i+j: j \in \mathbb{N}\}$$

(so, for example, the concept c_{+4} is the subset of X defined as $c_{+4} = \{4, 5, 6, 7, ...\}$). Give an efficient PAC learning algorithm for C_+ and explain why your algorithm is correct (analyze its sample complexity and running time).

(b) As in part (a), let $X = \mathbb{N} = \{0, 1, 2, 3, ...\}$ but now let \mathcal{C}_{\times} be the concept class over X defined as follows:

$$\mathcal{C}_{\times} = \{c_{\times 0}, c_{\times 1}, c_{\times 2}, c_{\times 3}, \dots\} \text{ where } c_{\times i} = \{i \times j : j \in \mathbb{N}\}$$

(so, for example, the concept $c_{\times 4}$ is the subset of X defined as $c_{\times 4} = \{0, 4, 8, 12, ...\}$). Argue that there is no PAC learning algorithm for \mathcal{C}_{\times} (if you are not sure exactly what this means, see the next problem for clarification).

Problem 5 Part (b) of the previous problem implies that there is no *a priori* fixed sample size which suffices for PAC learning the concept class C_{\times} for all distributions. To be more precise, it tells us that there is no function $m(1/\varepsilon, 1/\delta)$ such that the following holds: There is an algorithm which, given ε, δ and access to $EX(c, \mathcal{D})$ where \mathcal{D} is any distribution over \mathbb{N} and c is an unknown target concept $c_{\times i}$ in \mathcal{C}_{\times} , draws $m(1/\varepsilon, 1/\delta)$ samples from $EX(c, \mathcal{D})$ and with probability $1 - \delta$ outputs an ε -accurate hypothesis for c.

However, while there is no fixed sample size $m(1/\varepsilon, 1/\delta)$ that suffices for every distribution, in fact for every distribution there is some finite sample size that suffices for it. Establishing this, for the concept class C_{\times} , is the point of the current problem.

Show that for every distribution \mathcal{D} over \mathbb{N} , there is a function $m_{\mathcal{D}}(1/\varepsilon, 1/\delta)$ (which may depend on \mathcal{D}) and an algorithm $A_{\mathcal{D}}$ (which also may depend on \mathcal{D}) such that the following holds: If $A_{\mathcal{D}}$ is given ε, δ and access to $EX(c_{\times i}, \mathcal{D})$ where $c_{\times i}$ is an unknown element of $\mathcal{C}_{\times i}$, it draws $m_{\mathcal{D}}(1/\varepsilon, 1/\delta)$ samples from $EX(c, \mathcal{D})$ and with probability $1 - \delta$ outputs an ε -accurate hypothesis for c.