
Instructor: Rocco A. Servedio

Computer Science 4252: Introduction to Computational Learning Theory
Problem Set #4 Fall 2023

Due 11:59pm Wednesday, November 15, 2023

See the course Web page for instructions on how to submit homework. Important: To make life
easier for the TAs, please start each problem on a new page.

Problem 1 The “Chernoff bounds” we presented in class were bounds on the tail probability
for a random variable X = X1 + · · · +Xm where the Xi’s are independent {0, 1}-valued random
variables, each of which takes value 1 with probability p. This bound is just the tip of a large
iceberg — similar bounds are known under a much broader range of conditions. The point of the
current problem is to explore (a little bit of) this.

Let’s have some fun, and prove a related tail bound for sums of independent random variables
X1, . . . ,Xn that are not restricted to have values all in the set {0, 1}.
(a) Show that if Z is any real-valued random variable, then for every r > 0 we have Pr[Z > z] ≤
e−rz E[erZ ].

(b) Let Y1, . . . ,Yn be independent random variables that have Pr[Yi = 1] = Pr[Yi = −1] = 1/2,
let Xi = wiYi for some real values w1, . . . , wn, and let X = X1 + · · ·+Xn.

Show that for any real value r, we have E[erX ] ≤ er
2∥w∥2/2, where ∥w∥2 = w2

1+ · · ·+w2
n. (Hint:

Use (and justify if you can) the fact that cosh(x), which we recall is 1
2(e

x + e−x), is at most ex
2/2.)

(c) Combine parts (a) and (b) to infer that for any t > 0, we have Pr[X ≥ t] ≤ e−rt+r2∥w∥2/2.

(d) Use (c) to obtain the following tail bound on X: Pr[X ≥ t] ≤ e−t2/(2∥w∥2).

Problem 2 In class we saw an algorithm for PAC learning monotone disjunctions which had the
following property: if the algorithm is run on a target concept that is a monotone disjunction of
length at most k, it outputs a hypothesis which is a monotone disjunction of length at most only
only slightly longer than k. In this problem you’ll show that that it is a computationally hard
problem to PAC learn using a hypothesis whose length is at most exactly k.

More precisely, suppose that there is a PAC learning algorithm A for monotone disjunctions
that runs in time poly(n, 1/ε, 1/δ) and has the following property: for all k, if A is run on a
monotone disjunction of length k, it outputs a hypothesis that is a monotone disjunction of length
at most k. Show that then there is a randomized poly(n)-time algorithm which optimally solves
any instance of SET COVER with high probability. (Since SET COVER is NP-complete, this would
mean that NP is contained in RP, which is viewed as being very unlikely.)
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Problem 3 Let C be a concept class whose VC dimension is d, and for s ≥ 1 denote by Cs the
class Cs = {c = c1 ∪ . . . ∪ cs | ci ∈ C}. Show that for all s ≥ 1, the VC dimension of Cs is at most
2ds log(3s). (Hint: Think about the growth function ΠC(m).)

Problem 4
(a) Let X = N = {0, 1, 2, 3, . . . } and let C+ be the concept class over X defined as follows:

C+ = {c+0, c+1, c+2, c+3, . . . } where c+i = {i+ j : j ∈ N}

(so, for example, the concept c+4 is the subset of X defined as c+4 = {4, 5, 6, 7, . . . }). Give an
efficient PAC learning algorithm for C+ and explain why your algorithm is correct (analyze its
sample complexity and running time).
(b) As in part (a), let X = N = {0, 1, 2, 3, . . . } but now let C× be the concept class over X defined
as follows:

C× = {c×0, c×1, c×2, c×3, . . . } where c×i = {i× j : j ∈ N}

(so, for example, the concept c×4 is the subset of X defined as c×4 = {0, 4, 8, 12, . . . }). Argue that
there is no PAC learning algorithm for C× (if you are not sure exactly what this means, see the
next problem for clarification).

Problem 5 Part (b) of the previous problem implies that there is no a priori fixed sample size
which suffices for PAC learning the concept class C× for all distributions. To be more precise, it
tells us that there is no function m(1/ε, 1/δ) such that the following holds: There is an algorithm
which, given ε, δ and access to EX(c,D) where D is any distribution over N and c is an unknown
target concept c×i in C×, draws m(1/ε, 1/δ) samples from EX(c,D) and with probability 1 − δ
outputs an ε-accurate hypothesis for c.

However, while there is no fixed sample size m(1/ε, 1/δ) that suffices for every distribution, in
fact for every distribution there is some finite sample size that suffices for it. Establishing this, for
the concept class C×, is the point of the current problem.

Show that for every distribution D over N, there is a function mD(1/ε, 1/δ) (which may depend
on D) and an algorithm AD (which also may depend on D) such that the following holds: If AD is
given ε, δ and access to EX(c×i,D) where c×i is an unknown element of C×i, it draws mD(1/ε, 1/δ)
samples from EX(c,D) and with probability 1− δ outputs an ε-accurate hypothesis for c.
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