Instructor: Rocco A. Servedio

Computer Science 4252: Introduction to Computational Learning Theory
Problem Set #4 Fall 2023

Due 11:59pm Wednesday, November 15, 2023

See the course Web page for instructions on how to submit homework. Important: To make life
easier for the TAs, please start each problem on a new page.

Problem 1 The “Chernoff bounds” we presented in class were bounds on the tail probability
for a random variable X = X + -+ + X, where the X;’s are independent {0, 1}-valued random
variables, each of which takes value 1 with probability p. This bound is just the tip of a large
iceberg — similar bounds are known under a much broader range of conditions. The point of the
current problem is to explore (a little bit of) this.

Let’s have some fun, and prove a related tail bound for sums of independent random variables
X1,..., X, that are not restricted to have values all in the set {0, 1}.

(a) Show that if Z is any real-valued random variable, then for every r > 0 we have Pr[Z > z| <
e T E[eT‘Z] .
(b) Let Y3,...,Y, be independent random variables that have Pr[Y; = 1] = Pr[Y; = —1] = 1/2,
let X; = w;Y; for some real values wq,...,w,, and let X = X7 +--- + X,,.

Show that for any real value 7, we have E[e"X] < " I*I?/2 where ||w||? = w2+ - -+ w?. (Hint:
Use (and justify if you can) the fact that cosh(z), which we recall is §(e® 4+ e~%), is at most e/2)

(¢) Combine parts (a) and (b) to infer that for any ¢t > 0, we have Pr[X > ] < et lwl*/2,
(d) Use (c) to obtain the following tail bound on X: Pr[X > t] < e~#*/Clwl?),

Problem 2 In class we saw an algorithm for PAC learning monotone disjunctions which had the
following property: if the algorithm is run on a target concept that is a monotone disjunction of
length at most k, it outputs a hypothesis which is a monotone disjunction of length at most only
only slightly longer than k. In this problem you’ll show that that it is a computationally hard
problem to PAC learn using a hypothesis whose length is at most ezxactly k.

More precisely, suppose that there is a PAC learning algorithm A for monotone disjunctions
that runs in time poly(n,1/e,1/d) and has the following property: for all k, if A is run on a
monotone disjunction of length k, it outputs a hypothesis that is a monotone disjunction of length
at most k. Show that then there is a randomized poly(n)-time algorithm which optimally solves
any instance of SET COVER with high probability. (Since SET COVER is NP-complete, this would
mean that NP is contained in RP, which is viewed as being very unlikely.)



Problem 3 Let C be a concept class whose VC dimension is d, and for s > 1 denote by Cs the
class Cs ={c=c1 U...Ucs | ¢; € C}. Show that for all s > 1, the VC dimension of Cj is at most
2dslog(3s). (Hint: Think about the growth function IIx(m).)

Problem 4
(a) Let X =IN=1{0,1,2,3,...} and let C4 be the concept class over X defined as follows:

Ct+ ={ct0,¢41,C42,C43,...+ where cyy={i+j:j5€ N}

(so, for example, the concept ci4 is the subset of X defined as c;4 = {4,5,6,7,...}). Give an
efficient PAC learning algorithm for C; and explain why your algorithm is correct (analyze its
sample complexity and running time).
(b) As in part (a), let X = IN ={0,1,2,3,...} but now let Cx be the concept class over X defined
as follows:

Cx = {Cx0,Cx1,Cx2,Cx3,...} where cy;={ixj:je N}

(so, for example, the concept cx4 is the subset of X defined as cxq4 = {0,4,8,12,...}). Argue that
there is no PAC learning algorithm for Cx (if you are not sure exactly what this means, see the
next problem for clarification).

Problem 5 Part (b) of the previous problem implies that there is no a priori fixed sample size
which suffices for PAC learning the concept class Cx for all distributions. To be more precise, it
tells us that there is no function m(1/e,1/9) such that the following holds: There is an algorithm
which, given ¢, and access to EX (¢, D) where D is any distribution over N and ¢ is an unknown
target concept cx; in Cx, draws m(1/e,1/§) samples from EX (c,D) and with probability 1 — ¢
outputs an e-accurate hypothesis for c.

However, while there is no fixed sample size m(1/e,1/6) that suffices for every distribution, in
fact for every distribution there is some finite sample size that suffices for it. Establishing this, for
the concept class Cx, is the point of the current problem.

Show that for every distribution D over N, there is a function mp(1/e,1/6) (which may depend
on D) and an algorithm Ap (which also may depend on D) such that the following holds: If Ap is
given €, 0 and access to FX (cx;, D) where cy; is an unknown element of Cy;, it draws mp(1/e,1/9)
samples from EX(c,D) and with probability 1 — § outputs an e-accurate hypothesis for c.



