
Instructor: Rocco A. Servedio

Computer Science 4252: Introduction to Computational Learning Theory
Problem Set #3 Fall 2023

Due 11:59pm Wednesday, November 1, 2023

See the course Web page for instructions on how to submit homework. Important: To make life
easier for the TAs, please start each problem on a new page.

Problem 1 Show that the following two variants on the definition of PAC learnability for a
concept class C are equivalent (i.e. show that any concept class which satisfies the first definition
also satisfies the second, and vice versa).

[1] The learning algorithm is given access to a single oracle EX(c,D) for random examples of
the target concept c. Each time EX(c,D) is called it independently selects an instance x at
random according to the distribution D, and returns (x, c(x)). For all 0 < δ, ε < 1, for all
distributions D, for all target concepts c ∈ C, the algorithm must (in time polynomial in all
the relevant parameters) output a hypothesis h that with probability at least 1− δ has error
less than ε on random examples drawn according to D. (This is just the usual definition of
PAC learning.)

[2] The learning algorithm is given access to two oracles POS(c,D+) and NEG(c,D−). These
return random positive and negative examples (respectively) for the target concept drawn
independently according to the distributions D+ (a distribution over positive examples of
c) and D− (a distribution over negative examples of c). For all 0 < δ, ε < 1, for all target
concepts c ∈ C, for all distributions D+ over the positive examples for c, for all distributions
D− over the negative examples for c, the algorithm must in time polynomial in all the relevant
parameters output a hypothesis that with probability at least 1− δ has error less than ε on
both random positive examples drawn according to D+ and random negative examples drawn
according to D−.

Problem 2 Suppose that algorithm A is a PAC learning algorithm for concept class C which has
running time and sample complexity poly(1/ε, 1/δ). Show that there is a PAC learning algorithm
A′ for concept class C which has running time and sample complexity poly(1/ε, log(1/δ)). (You
may assume that any hypothesis h that A outputs when run with parameters ε, δ can be evaluated
on any example x in time poly(1/ε, 1/δ).)

Problem 3 You are given a coin which has an unknown probability p ∈ (0, 1) of coming up
“heads” when it is tossed. You would like to get a coarse estimate of the value of p.
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(a) Consider the following simple procedure: Toss the coin until you get “heads” for the first time
and output “p̂ = 1/k” where k is the number of tosses you made. Show that this procedure is
indeed a somewhat-decent coarse estimator in the following sense: with probability at least 89%,
your procedure outputs a value p̂ such that

p̂

10
≤ p ≤ 10p̂.

(b) Explain how the procedure from part (a) can be used to obtain an improved procedure that
with probability at least 1− δ outputs a value p̂ with p̂

10 ≤ p ≤ 10p̂.

Problem 4 Let S be a subset of {1, . . . , n}. The parity function corresponding to S is the Boolean
function PARS : {0, 1}n → {0, 1},

PARS(x1, . . . , xn) =
∑
i∈S

xi mod 2

which counts whether the number of input bits in coordinates indexed by S is odd or even. Parity is
sometimes written “⊕” to denote exclusive-Or. For example, for the set S = {1, 3, 4} the function
PARS(x) = x1 +x3 +x4 mod 2 = x1⊕x3⊕x4 computes the parity of the subset S = {x1, x3, x4},
and we have PARS(0010) = 1, PARS(1010) = 0.

The class of parity functions P includes all functions that can be described in this way. Formally,

P = {f | f(x) = PARS(x), where S ⊆ [n]}.

Show that the concept class of parity functions P is PAC learnable by describing an algorithm and
proving that it PAC learns this class. Your algorithm should have sample complexity and running
time poly(n, 1/ε, log(1/δ)).

Problem 5 In this problem you’ll consider a weakening of the notion of a “consistent hypothesis
finder” and show that it is still strong enough for PAC learning. (As in the theorems about
consistent hypothesis finders proved in class, you should assume in this problem that H is a finite
hypothesis class.)

Let us say that an algorithm B is an “sort-of-decent hypothesis finder” for C using H if it has
the following performance guarantee: Given any sample of m examples (x1, c(x1)), . . . (xm, c(xm))
labeled according to some c ∈ C, B outputs a hypothesis h ∈ H that is correct on at least m−m1/4

of the m examples.
Show that a sort-of-decent hypothesis finder can be used to construct a PAC learning algorithm

for C that uses poly(1ε , ln |H|, ln(1/δ)) samples. Justify your answer; you need not try for the best
possible bound, any poly(1ε , ln |H|, ln(1/δ)) bound is fine.

2


