
Instructor: Rocco A. Servedio

Computer Science 4252: Introduction to Computational Learning Theory
Problem Set #1 Fall 2023

Due 11:59pm Wednesday, September 27, 2023

See the course Web page for instructions on how to submit homework. Important: To make life
easier for the TAs, please start each problem on a new page.

Problem 1 In this problem you’ll play around with some of the concept classes we discussed in
class (and some of their close friends).

(i) True or false: Every (log n)-DNF over {0, 1}n is equivalent to a poly(n)-term DNF. (Justify
your answer.)

(ii) True or false: every k-term DNF is equivalent to some k-CNF. (Prove your answer; i.e. if you
answer “yes” you must give a proof, and if you answer “no” you should give a counterexample.)

(iii) True or false: every k-CNF is equivalent to some k-term DNF. (Prove your answer.)

Problem 2 Let us say that an online mistake-bound algorithm takes it easy if it changes its
hypothesis only when a mistake is made.

All of the online mistake-bound algorithms we’ve seen in class (the elimination algorithm, the
decision list algorithm, Winnow, etc.) are ones which take it easy. In this problem you’ll show that
this is not a coincidence:

Let C be any concept class, and let A be any online learning algorithm (not necessarily one
which takes it easy) which has a finite mistake bound M for C. Prove that there must exist a
learning algorithm A′ for C which takes it easy and which also has mistake bound M.

Problem 3
(i) Let the domain X be {0, 1, 2, . . . , 2n−1} and let the concept class C be the class of all intervals,
where an interval is a set of consecutive elements of X, i.e. an interval c ∈ C is

c = {a, a + 1, . . . , b− 1, b} for some a, b ∈ X with a ≤ b.

(Note that this concept class is different from the concept class of “initial intervals” we discussed
in class because the left endpoint of the interval need not be 0.)

Give a computationally efficient algorithm with a good mistake bound in the OLMB model for
learning C. Justify your claimed mistake bound (just a paragraph or two should be sufficient; and
it’s okay to use big-Oh notation in describing the mistake bound of your algorithm.)

1



(ii) Consider the same domain X as in part (i), but now let C be the class of “wrap-around intervals”,
(alternately intervals mod 2n) — now an interval is allowed to “wrap around”, i.e. we consider the
number 2n − 1 as being consecutive with 0. In more detail, a wrap-around interval is either of the
form

c = {a, a + 1, . . . , b− 1, b} for some a, b ∈ X with a ≤ b

or of the form

c = {0, 1, . . . , a} ∪ {b, b + 1, . . . , 2n − 1} for some a, b ∈ X with a ≤ b.

Give a computationally efficient algorithm with a good mistake bound in the OLMB model for
learning C. Justify your claimed mistake bound (just a paragraph or two should be sufficient; and
it’s okay to use big-Oh notation in describing the mistake bound of your algorithm.)

(It’s possible that your solution for this problem will also solve part (a); if so that’s fine and
you don’t need to do part (a) separately.)

Problem 4
Consider the decision list “if x3 = 1 then output 1, else if x2 = 1 then output 0, else if x1 = 1 then
output 1, else output 0.” Since this is a length-r-decision list where r is a constant (it’s 3), the
analysis of the decision list learning algorithm which we gave in class gives us that the algorithm
has a mistake bound of at most O(n) mistakes for the instance space X = {0, 1}n.

(i) Show that the algorithm from class can sometimes make Ω(n) mistakes when it is used to learn
the above length-3 decision list.

(ii) Describe a slight modification of the algorithm from class and argue that your modified algo-
rithm has a mistake bound which improves on the mistake bound of the algorithm from class by
an additive Ω(n) (i.e., you should argue that your algorithm makes, say, at least n/2, or n/100,
many fewer mistakes than the mistake bound of the algorithm from class, when used to learn any
length-r decision list).

Problem 5 In this problem we’ll consider the domain X = {1, 2, . . . , N}d. A d-dimensional
hyper-rectangle over this domain X is a subset c ⊆ X defined by 2d values 1 ≤ ai ≤ bi ≤ N for
i = 1, . . . , d; the subset is

c = {(x1, . . . , xd) ∈ X : ai ≤ xi ≤ bi for all i = 1, . . . , d}.

Let RECT denote the class of all d-dimensional hyper-rectangles over X.

(i) Explain how Winnow1 can be used to learn the concept class RECT. What is the mistake bound
of your algorithm? What is the running time of the algorithm per trial? (Hint: Consider variables
corresponding to inequalities over a single variable xi, and aim for a running time of O(dN) per
trial.)
(ii) Now make your solution exponentially more efficient, by explaining how Winnow1 can be used
to learn RECT with the same mistake bound you achieved in (i) but with a running time of only
poly(d, logN) per trial.

2


