Theorem 1. Let Y_{1}, \ldots, Y_{m} be m independent random variables that take on values in $[0,1]$, where $\mathbb{E}\left[Y_{i}\right]=p_{i}$, and $\sum_{i=1}^{m} p_{i}=P$. For any $\gamma \in(0,1]$ we have

$$
\begin{array}{lll}
\begin{aligned}
\text { (additive bound) } & \operatorname{Pr}\left[\sum_{i=1}^{m} Y_{i}>P+\gamma m\right]
\end{aligned} & \operatorname{Pr}\left[\sum_{i=1}^{m} Y_{i}<P-\gamma m\right] & \leq \exp \left(-2 \gamma^{2} m\right) \\
\text { (multiplicative bound) } & \operatorname{Pr}\left[\sum_{i=1}^{m} Y_{i}>(1+\gamma) P\right]<\exp \left(-\gamma^{2} P / 3\right) \\
\text { (multiplicative bound) } & & \operatorname{Pr}\left[\sum_{i=1}^{m} Y_{i}<(1-\gamma) P\right]<\exp \left(-\gamma^{2} P / 2\right) .
\end{array}
$$

The bound in Equation (2) is derived from the following more general bound, which holds from any $\gamma>0$:

$$
\begin{equation*}
\operatorname{Pr}\left[\sum_{i=1}^{m} Y_{i}>(1+\gamma) P\right] \leq\left(\frac{e^{\gamma}}{(1+\gamma)^{1+\gamma}}\right)^{P} \tag{4}
\end{equation*}
$$

and which also implies that for any $B>2 e P$,

$$
\begin{equation*}
\operatorname{Pr}\left[\sum_{i=1}^{m} Y_{i}>B\right] \leq 2^{-B} \tag{5}
\end{equation*}
$$

Remark. Additive bound is better when $p \stackrel{\text { def }}{=} \frac{P}{m}=\Omega(1)$:

p	Multiplicative (Chernoff)	Additive (Hoeffding)
$<\frac{1}{6}$	$\sqrt{ }$	
$\simeq \frac{1}{6}$	$\sqrt{ }$	$\sqrt{ }$
$>\frac{1}{6}$		$\sqrt{ }$

The following extension of the multiplicative bound is useful when we only have upper and/or lower bounds on P
Corollary 2. In the setting of Theorem 1 suppose that $P_{L} \leq P \leq P_{H}$. Then for any $\gamma \in(0,1]$, we have

$$
\begin{align*}
& \operatorname{Pr}\left[\sum_{i=1}^{m} Y_{i}>(1+\gamma) P_{H}\right]<\exp \left(-\gamma^{2} P_{H} / 3\right) \tag{6}\\
& \operatorname{Pr}\left[\sum_{i=1}^{m} Y_{i}<(1-\gamma) P_{L}\right]<\exp \left(-\gamma^{2} P_{L} / 2\right) \tag{7}
\end{align*}
$$

We will also use the following corollary of Theorem 1:
Corollary 3. Let $0 \leq w_{1}, \ldots, w_{m} \in \mathbb{R}$ be such that $w_{i} \leq \kappa$ for all $i \in[m]$ where $\kappa \in(0,1]$. Let X_{1}, \ldots, X_{m} be i.i.d. Bernoulli random variables with $\operatorname{Pr}\left[X_{i}=1\right]=1 / 2$ for all i, and let $X=\sum_{i=1}^{m} w_{i} X_{i}$ and $W=\sum_{i=1}^{m} w_{i}$. For any $\gamma \in(0,1]$,

$$
\operatorname{Pr}\left[X>(1+\gamma) \frac{W}{2}\right]<\exp \left(-\gamma^{2} \frac{W}{6 \kappa}\right) \text { and } \operatorname{Pr}\left[X<(1-\gamma) \frac{W}{2}\right]<\exp \left(-\gamma^{2} \frac{W}{4 \kappa}\right)
$$

and for any $B>e \cdot W$,

$$
\operatorname{Pr}[X>B]<2^{-B / \kappa}
$$

