Theorem 1. Let Y_1, \ldots, Y_m be m independent random variables that take on values in [0, 1], where $\mathbb{E}[Y_i] = p_i$, and $\sum_{i=1}^m p_i = P$. For any $\gamma \in (0,1]$ we have

$$(additive \ bound) \quad \Pr\left[\sum_{i=1}^{m} Y_i > P + \gamma m\right], \ \Pr\left[\sum_{i=1}^{m} Y_i < P - \gamma m\right] \le \exp(-2\gamma^2 m) \qquad (1)$$
$$iplicative \ bound) \qquad \qquad \Pr\left[\sum_{i=1}^{m} Y_i > (1+\gamma)P\right] < \exp(-\gamma^2 P/3) \qquad (2)$$

(multiplicative bound)

and

(multiplicative bound)

$$\Pr\left[\sum_{i=1}^{m} Y_i < (1-\gamma)P\right] < \exp(-\gamma^2 P/2). \quad (3)$$

(2)

The bound in Equation (2) is derived from the following more general bound, which holds from any $\gamma > 0$:

$$\Pr\left[\sum_{i=1}^{m} Y_i > (1+\gamma)P\right] \le \left(\frac{e^{\gamma}}{(1+\gamma)^{1+\gamma}}\right)^P , \qquad (4)$$

and which also implies that for any B > 2eP,

$$\Pr\left[\sum_{i=1}^{m} Y_i > B\right] \le 2^{-B} .$$
(5)

Remark. Additive bound is better when $p \stackrel{\text{def}}{=} \frac{P}{m} = \Omega(1)$:

p	Multiplicative (Chernoff)	Additive (Hoeffding)
$<\frac{1}{6}$	\checkmark	
$\simeq \frac{1}{6}$	\checkmark	\checkmark
$>\frac{1}{6}$		\checkmark

The following extension of the multiplicative bound is useful when we only have upper and/or lower bounds on P

Corollary 2. In the setting of Theorem 1 suppose that $P_L \leq P \leq P_H$. Then for any $\gamma \in (0, 1]$, we have

$$\Pr\left[\sum_{i=1}^{m} Y_i > (1+\gamma)P_H\right] < \exp(-\gamma^2 P_H/3)$$
(6)

$$\Pr\left[\sum_{i=1}^{m} Y_i < (1-\gamma)P_L\right] < \exp(-\gamma^2 P_L/2)$$
(7)

.

We will also use the following corollary of Theorem 1:

Corollary 3. Let $0 \leq w_1, \ldots, w_m \in \mathbb{R}$ be such that $w_i \leq \kappa$ for all $i \in [m]$ where $\kappa \in (0, 1]$. Let X_1, \ldots, X_m be i.i.d. Bernoulli random variables with $\Pr[X_i = 1] = 1/2$ for all *i*, and let $X = \sum_{i=1}^{m} w_i X_i$ and $W = \sum_{i=1}^{m} w_i$. For any $\gamma \in (0, 1]$,

$$\Pr\left[X > (1+\gamma)\frac{W}{2}\right] < \exp\left(-\gamma^2 \frac{W}{6\kappa}\right) \text{ and } \Pr\left[X < (1-\gamma)\frac{W}{2}\right] < \exp\left(-\gamma^2 \frac{W}{4\kappa}\right) ,$$

and for any $B > e \cdot W$,

$$\Pr[X > B] < 2^{-B/\kappa}$$