The AdaBoost algorithm Input to AdaBoost: m labelled examples $S = (x_1, y_1), \dots, (x_m, y_m)$ where each label $y_i \in \pm 1$ Notation: - \mathcal{D}_t denotes the t-th distribution Adaboost constructs over the m examples. $\mathcal{D}_t(i)$ denotes $\Pr_{\mathcal{D}_t}(x_i)$. - h_t is the t-th hypothesis. - ϵ_t denotes $\Pr_{i \in \mathcal{D}_t}[h_t(x_i) \neq y_i]$ the error of h_t w.r.t. \mathcal{D}_t ## The algorithm: - 1. Initialize $\mathcal{D}_1(i) = \frac{1}{m}$ for each $i = 1, \dots, m$. - 2. For t = 1 to T do: - (a) Run weak learner L on \mathcal{D}_t to get hypothesis h_t which has error ϵ_t w.r.t. \mathcal{D}_t . - (b) Let $\alpha_t = \frac{1}{2} \ln \left(\frac{1 \epsilon_t}{\epsilon_t} \right)$ - (c) Update $$\mathcal{D}_{t+1}(i) = \frac{\mathcal{D}_t(i) \cdot \exp(-\alpha_t y_i h_t(x_i))}{Z_t}$$ where Z_t is a normalization factor so that $\sum_{i=1}^{m} \mathcal{D}_{t+1}(i) = 1$. 3. Final hypothesis is H(x) = sign(f(x)) where $f(x) = \sum_{t=1}^{T} \alpha_t h_t(x)$.