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1 Introduction

Recently, Simchi-Levi and Bramel (1990) analyzed an interesting probability model of the fol-
lowing routing problem. Consider a set of points p; = (2;,9;), 0 < 7 < n, in the plane, where pg
denotes the location of a depot containing goods/material to be delivered to the n > 1 customers
located at the remaining points. At the depot there is a fleet of delivery vehicles, all having the
same capacity. The demand of the customer at p; is given by a number p; = p(p;), 0 < p; < 1 that

denotes the fraction of a vehicle’s capacity needed by the delivery to this customer.

A routing for a given problem instance is a partition of the n customer locations such that for

all blocks B in the partition, Z #(p;) < 1. The partition has the interpretation that all customers

pi€EB
with locations in the same block are served by the same vehicle. We assume that a vehicle serves its

customers by following a minimum-length tour (roundtrip) from the depot. The length of a routing
is the sum of its constituent tour lengths. Assuming that the supply of vehicles is unlimited, the

problem is to find a minimum-length routing.

Let H denote a heuristic that generates approximate solutions to this NP-complete routing
problem. Then for a given depot location pg, H, = H({pi, pti }7—) denotes the length of the routing
produced by H. Assume that the locations (#;,3;), 1 < ¢ < n, are i.i.d. random variables with
compact support in Rz, and with an expected distance F(d) < oo from the depot. Simchi-Levi and
Bramel (1990) give a constructive argument based on classical matching theory which shows that, if
the y; are n independent samples of a uniform random variable on [0, 1], then there exists a heuristic
H such that with probability 1

lim Hn = E(d).

n—oo N

This paper shows that much stronger results are possible if a uniform distribution also applies
to the customer locations. For example, suppose the p;, 1 < i < n, are chosen independently and

uniformly at random throughout some rectangular region of the plane. Then as shown in Section 3,

E[OPT,] = nE[d] + ©(n*/?),
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where OPT denotes an optimal routing policy. Moreover, an efficient heuristic H is defined which

achieves this bound and hence is optimal up to a constant factor in the expected absolute error

E[H,] — nE[d].

2 Preliminaries

We begin by stating a well-known result that will be useful in proving a lower bound. Classical

estimates of the binomial distribution prove

Theorem 2.1 Let n points be chosen independently and uniformly at random in the unit cube [0, 1]3.

The expected distance between a point and its nearest neighbor is @(n_l/?’).

Remarks. This result holds under several standard generalizations of the assumptions. For exam-
ple, the number of points can be an for any fixed o > 0; the expectation can be limited to a fixed,
positive fraction of the points; and the unit cube can be replaced by any cuboid of fixed dimensions
a,b,c > 0. Also, the number of points can be Poisson distributed with mean n. In all cases, only

the hidden multiplicative constant in @(n=1/3) is affected. M

We put instances of the routing problem within the setting of Theorem 2.1 as follows. A customer
is represented by a labeled point in 3 dimensions, with the first two coordinates (x,y) giving the
customer’s location. If the customer’s demand is g < 1/2 then the point’s third coordinate is z = p

and 1ts label is a minus; otherwise, the third coordinate is z = 1 — g and the point’s label is a plus.

We assume that demand is uniformly distributed on [0, 1], so the z coordinate is uniform on
[0,1/2] and the sign of a point is equally likely to be a plus or minus. For convenience, we take the
unit square 0 < z, y < 1 as the normalized, square area containing customer locations. Thus in our
probability model, to be called the uniform model, the n customer points are i.1.d. uniform random

samples from [0, 1]% x [0, 1/2], with labels being independent and equally likely to be plus or minus.

In the above setting, matching algorithms in 3 dimensions can be proposed as routing heuristics
that limit tours to at most two customer locations. For example, the Upward Matching (UM)
heuristic determines a maximum matching of plus points to minus points such that in each matched
pair the minus point is below the plus point, i.e., has a smaller z coordinate. UM then assigns a
vehicle (tour) to each matched pair of customers and one to each unmatched customer. The resulting
routing is valid because if a plus point (z;, y;, 2;) is matched to a minus point (2, y;, z;) then z; < z

ensures that the capacity demands 1 — z; and z; sum to at most one.
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The ordered matching (OM) heuristic! is like UM except that a plus point (z;,y;, z;) matched
to a minus point (z;,y;, 2;) is above the minus point in all coordinates, i.e., ; > x;, y; > y;, and
z; > z;. OM may have limited practical use, because the ordering on the x and y coordinates may
not be needed for a valid routing. However, the following result on ordered matching will be useful

in proving an upper bound.

Theorem 2.2 (Karp, Luby, and Marchetti-Spaccamela (1984)). Let n points be chosen indepen-
dently and uniformly at random in [0,1]3, and suppose that each point is labeled a plus point or
minus point with equal probability, independently of the remaining points. In a mazimum ordered

matching of plus points to minus points, the expected number of unmatched points is @(nz/?’).

3 Asymptotic Bounds

The following notation is needed. For a given depot location pg, Py denotes a set of n labeled
customer points (#;,y;,2), 1 < i < n. The distance in the (x,y) plane between the customer
locations corresponding to points p,p’ € Py is denoted by d(p,p’). If one of these points, say p’, is
the depot, then the notation is abbreviated to d(p). The functional notation z(p), y(p), and z(p)

denotes the corresponding coordinate values of p.

The main result follows.

Theorem 3.1 In the uniform model of the routing problem,

E[OPT,] = nE[d] + ©(n*3).

Proof. We prove the upper and lower bounds separately, starting with the comparatively easy

upper bound.

Upper bound: We prove E[OPT,] = nE[d]+ O(n*/?). Tn what follows, pt and p~ denote generic

plus and minus points in instances Py of the routing problem.

Recall the ordered-matching routing heuristic defined in Section 2. We need only prove that
E[OM,] = nE[d]+ O(n*/?) .
Consider an ordered matching of an instance Py of the routing problem. Let M = M (n) denote the
set of matched pairs (p*,p~) and let U = U(n) denote the set of unmatched points that remain.
The length of the OM routing can be expressed as

OM, = > dp) + > dptp7) + Y dp). (3.1)

p€EPo (pt.p—)EM peU

tIn two dimensions, ordered matching is called up-right matching.
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The expected value of the first sum is nF[d]. By Theorem 2.2, we have E|U| = O(n?*/?), so for the

third sum,
> Eld(p)] = O(n*?).
peU
Tt remains to verify that E[X] = O(n?*/?), where X is the second sum in (3.1). By the triangle
inequality,
X< Y EEH-z@eN + >, et —ue)]- (3.2)
(ptp=)eM (pT.p=)EM

By symmetry,

E| Y M-zl = E| Y 2(7)| - E| Y 2(")

(ptp=)eM p~€U lpteU

o BN —u)] = B w7 - E| Y uh)

(ptp—)EM lpteU ] lpteU

By Theorem 2.2 again, E|U| = O(n*/3), so after substituting (3.3) into (3.2), we obtain the desired
result, F[X] = O(n*?). W

Lower Bound: To prove

E[OPT,] = nE(d) + Q(n*?) (3.4)

the following notation will be useful. Tet S denote the unit square in the (z,y) plane. For any
given sample, the arguments below often focus on the set P = P(n) of locations in S with customers
having demands in (1/3,2/3). Note that at most two points from P can be visited in the same tour.
Let M = M(n) denote the set of pairs (p*,p™), p™,p~ € P, such that p* and p~ are in the same
tour, along with perhaps other points not in P. The remaining minus and plus points of P that are
not in any pair of M make up the set U = U(n). The subsets of plus and minus points are denoted

respectively by Ut and U~, Ut YU~ =U.

The location of the depot is arbitrary (either inside or outside ), but we will frequently need to
consider subsets of points whose distances from the depot satisfy some strictly positive lower bound.
To this end, it is convenient to define a vertical third, S, of S such that d(p) > 1/6 for all p € S,.
In particular, define S, =[0,1] x [0,1/3]if g > 1/2 and S, =[0,1] x [2/3,1] if o < 1/2, as shown
in Fig. 1. P, denotes the subset of points in S,. Replacing P by P, in the definitions of M and U
yields sets denoted by M, and U.. U} and U_ are defined in analogy with UT and U~. Note that

every minus point in P, is accounted for either in U or in some pair of M,. The following simple

lower bounds will prove useful.
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Figure 1: Examples of S,; pp is the depot location.

For a given instance Py, the lower bound

E[OPT,) > E | Y 2d(p")| = nE[d] (3.5)
pteP

is obvious, since there are at least as many tours as there are plus points, and since the length of a

tour is at least twice the distance from the depot to any point on the tour.

A tour visiting no plus points has a length at least the sum of the distances p~ € Py in the tour.
This follows because each such p~ has a demand exceeding 1/3, so at most two such p~ can appear
in the same tour. Then, since (3.5) does not account for tours without plus points, (3.5) can be
tightened to

E[OPT,) > nE[d+ E | Y d(p") (3.6)
p=€U-

Finally, note that the length of any tour visiting a p* € Py and a p~ € Py is at least d(pT) +
d(p™) = 2d(pT) + d(p~) — d(p™). Thus, if the sum of d(p~) — d(p™) over some random set of such

tours is positive on average, then (3.5) can be improved to

E[OPT, > nE[d+E| Y dp™)—dp)| , (3.7)
(pt.p7)EQ

where () is the random set containing the pairs (p*,p™) in the given set of tours.
The proof now proceeds by analyzing two cases, depending on whether or not E|M.| is a constant

fraction of |Py| = 2E|M.| + E|U.| = n/9 for all n sufficiently large.

Case 1: F|M,| = o(n) as n — oo. Clearly, in this case F|U.| = Q(n) and hence F|U;| = Q(n).
Let S« be the vertical half of S, farthest from the depot, as illustrated in Fig. 2, and let P, be the
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set of points in S,.. Now F|M.| = o(n) also implies that the expected number of minus points in
P, sharing tours with plus points in P. is o(n). But the expected number of minus points in P, is

Q(n), so we must have an average of Q(n) minus points p~ € Py, with one of the properties:

1. p~ is in a tour with no plus points,

2. p~ isin a tour with a plus point not in Py, i.e.,in P — P,.

4

Po

0 1/3 2/3 5/6 1
Figure 2: Example of S, and a tour visiting a p¥ € P — P, and a p~ € P...

Let Uz, be the set of minus points in P,. with property 1, and let M., be the set of pairs (p~, p*),
p~ € Pus, pt € P— P,, with p~ and p* in the same tour. Then one or both of F|U_,| = Q(n) and
F|M.| = Q(n) must hold. Now U, C U™, so if E|U_,| = Q(n), then (3.4) follows from (3.6) and
the bound d(p) > 1/3, p € P.i. Thus, assume that F|M,.| = Q(n). In a tour visiting a minus point
in P, and a plus point in P — P,., the minus point is a distance at least 1/3 from the depot and 1/6
from the plus point (see Fig. 2). Tt is easy to see that there is then an « > 0 such that the length of
any such tour is at least 2d(p*) + o, where pt € P — P, is the plus point in the tour. Terms 2d(p*)

are already accounted for in (3.5), so adding the lower bound « for each pair in M,, yields

E[OPT,) > E | Y 2d(p™)| + aE|M..| .
pteP,

Then F|M..| = Q(n) proves (3.4).

Case 2: Assume now that F|M,| = Q(n). The distance between p*, p~ € M, in the 3 dimensions

of the problem instance is denoted by d(?’)(p‘l',p_). By the triangle inequality, we have
dP(pt,p7) <z(pF) = 2(p7) + d(pt,p7)

where we have used the fact that z(pt) > z(p™) for all p*, p= € M,, since u(p™) + p(p~) =
1—z(pt)+ 2(p7) < 1. By F|M.| = Q(n) and Theorem 2.1 (see also the remarks following the
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theorem), it is easily verified that

Bl > M- +E| D dwtp)| >
(pt,p~)EM. (p*,p=)EM,
(3.8)

) Z d®(pt,p)| = Q(n??) .
(ptp7)EM.

Then one or both of the first two expectations in (3.8) is Q(n?/3). Consider each separately.

Case 2.1: Suppose that

E| Y N -z =) (3.9)

(pt p7)EM.
Enumerate the pairs in M, and let y;(t) = 1, for z(p;) <t < z(p{) and y;(t) = 0, otherwise, where

(pf,p;) is the i pair of M.. Then fll/; xi(t)dt = z(p}) — 2(p] ), so a summation on i yields

1/2 1/2
> [Z(P+)—Z(p‘)]=/1 > xi(lt)dt:/1 m.(t)dt | (3.10)

(p+,p=)EM. 13 1 <i<|My /3
where m,(t) is the number of pairs (p*,p~) € M. such that z(p7) < ¢ < z(p*). In the uniform
model it is easy to see that (3.9) and (3.10) imply

Proposition 3.1 There exists a 5, 1/3 < 3 < 1/2, such that there is an average of F[m.(3)] =
Q(n*/3) tours visiting a pt € P, and a p= € Py with u(pt) < 1— 5 and p(p~) < B.

For a (@ satisfying Proposition 3.1, let Ps C P, be the set of points p with demands satisfying
B < p(p) < 1— 3. Define Mg as the set of pairs (p*,p~) € M with both p* € Ps and p~ € Pj.
The remaining points in Pg form the set Ug, with the subsets U;’ and Us of plus and minus points,
respectively. Note that points in U@_ cannot share a tour with a plus point; either a plus point has
a demand in [1 — 3, 2/3], which is too large, or it is excluded by definition because its demand is in

[1/2,1— 3]. Hence, Uy CU™.

By symmetry, [Zp—ePﬂ d(p_)] —F [ZerePﬂ d(p‘l')] = 0. It is convenient to break down the

sums and rearrange as follows:

El >0 dpT)y—dpt)| - E| D dph)—dp)
(rF,p=)eMg (rF.,p=)eMg
a(p~)>d(pt) La(pt)2d(»™)

(3.11)

+ B D deT)| —E| Y] dpt)| =0.

- +
[P €U pTeU]
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By Proposition 3.1 and d(p) > 1/6, p € P,, the expected value of the last of the four sums is Q(n?/3).
Then either the first or third expected value must be Q(n?/3). Tf the first were Q(n?/3), then (3.4)
would follow from (3.7), with @ defined as {(p™,p~) € Mgld(p~) > d(p*)}; and if the third were
Q(n?/3), then since Us CU™, (3.4) would follow from (3.6).

Case 2.2: Suppose that the second expected value in (3.8) is Q(n?/3), and hence

El > dptp)| =em?). (3.12)

(ptp=)eM
Let V be the subset of pairs (p*,p™) in M such that

d(p*,p”) (3.13)

N | —

dp7) +d(p*,p7) —d(pT) >

or

d(p*,p7) .

N | —

d(p*) —d(p™) <

The remaining pairs (p*,p~) of M form the set W = M — V with

1
d(p*) = d(p™) > 5d(p*,p7) - (3.14)
Then (3.12) becomes
E| Y det )| +E| Y deteT)| =em?) . (3.15)
(pTp7)EV (pt.p7)EW

At least one of the two expected values in (3.15) must be Q(n?/3); each is considered independently

below.

Case 2.2.1: Assume that
E [ > d<p+,p->] = Q%) . (3.16)
(ptp=)EV

By (3.13), the length of a tour containing a pair in V' is bounded by
- _ 1 _
d(p™) +d(p™) + d(p*,p7) 2 2d(p") + 5d(PT,p7) .
The distances 2d(p™) are already accounted for in (3.5), so adding the distances $d(p*,p~), (p*,p™) €
V, to (3.5) gives

1
E[OPT, ) > nE[d+E | Y 5d(er,p—) : (3.17)
(ptp7)EV

Then the lower bound (3.4) follows from (3.16) and (3.17).
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Case 2.2.2: Assume that

El Y dptp)| =), (3.18)
(ptp=)eW
Recall that Ut and U~ are the sets of plus and minus points, respectively, not in any pair of
M. Let V1t and V~ be the respective sets of plus and minus points in pairs of V; W+ and W~ are
defined analogously with respect to W. Note that all of the plus points and minus points in P are
accounted for in U+, VT, W+t and U~, V=, W, respectively. Trivially,

EL > dpr)| + E| D dp0)| + E| D dp)

IE[ > d(f)] + By d(f)] + E[ > d(f)] :

SO

EL > dp)|+E] > dp)—dph)| >E Soodpt)—dpT)| - (3.19)

pT €U (pt.p=)EV i (ptp—)eW

Then by (3.14) and (3.18), the right-hand side of (3.19) gives the estimate
Pl dp)| 8| S de)—det)| = o) (3.20)
p€U" (pt.pm)EV

At least one of these expected values must be Q(n?/3). But if the first is Q(n?/3), then (3.4) follows
from (3.6); and if the second is Q(n?/?), then (3.4) follows from (3.7) with Q =V. H
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ABSTRACT

Consider a set of points p; = (24, ¥;), 0 < i < n, in the plane, where py denotes the location of
a depot containing goods/material to be delivered to the n > 1 customers located at the remaining
points. An unlimited number of vehicles, all having the same capacity, 1s located at the depot. The
demand at p; is given by a number 0 < p; < 1 that denotes the fraction of a vehicle’s capacity
needed by the delivery to the customer at p;. A routing for a given problem instance is a partition
of the n customer locations such that for all blocks B in the partition the demands at points in B
can be satisfied by a single vehicle, 1.e., Zp,EB i < 1. All customers with locations in the same
block are served by the same vehicle following a minimum-length tour (roundtrip) from the depot.
The problem is to find a partition that minimizes the total length of the routing, i.e., the sum of

the constituent tour lengths.

For a given depot location pg, let OPT, = OPT({p;, pi }'—;) denote the length of an optimal
routing for this NP-complete problem. Assume that the p;’s are independently and uniformly
distributed on [0, 1] and that the p; are independently and uniformly distributed in the unit square.

We prove that, under this uniform model,
E[OPT,] = nE[d] + ©(n*?)

where E[d] is the expected distance from the depot to the customers. In addition, we present an
efficient heuristic H that achieves this bound and hence is optimal up to a constant factor in the

expected absolute error E[H,] — nFE[d].



