Optimal Carrier Sharing in Wireless TDMA

S.C. Borst! E.G. Coffman, E.N. Gilbert, P.A. Whiting, and P.M. Winkler
Bell Labs, Lucent Technologies
700 Mountain Avenue
Murray Hill, NJ 07974
USA

June 19, 1999

Abstract

To improve efficiency, we allow a carrier in a TDMA (Time Division Multiple
Access) network to be shared by adjacent cells. This sharing of time slots is
seriously hampered by the lack of synchronization in distinct cells. We study
packing algorithms that overcome this obstacle by clustering calls. The results
suggest that even simple greedy algorithms are nearly optimal, and that little
extra performance can be gained either by allowing the rejection of calls or by
repacking.

1 Introduction

Consider a carrier (frequency band) allocated to a cell, say cell A, in a TDMA wireless
network. The carrier is slotted and up to n calls can be time-multiplexed at one time,
where n is given; values of 3 and 8 can be found in existing technologies [2, 3, 4]. When
n calls are active, call requests are turned away; there is no queueing of call requests.
Typically, a carrier assigned to cell A will not also be assigned to a cell close enough to
cell A to interfere with its calls. But this leads to an inefficient use of the carrier when the
call traffic is low in cell A and idle time slots can be used by an adjacent cell in relatively
high traffic. This paper studies a more efficient scheme whereby a neighboring cell, cell
B say, is allowed to time-share the carrier with cell A. The sharing mechanism must
account for the fact that the time slots in cells A and B are not perfectly synchronized.

*Current affiliation: Center for Mathematics and Computer Science, Amsterdam

To avoid the interference caused by overlapping time slots, the slots assigned to cell-A
calls are not allowed to overlap slots assigned to cell-B calls.

To maximize the acceptance rate of calls, time-slot allocation should attempt to
cluster separately the calls from cell A and those from cell B. For example, if the A calls
in Figure 1 were clustered in adjacent slots, there would be 3 rather than 2 available
slots for new B calls. This paper presents several clustering algorithms in Sections 2 and
3, and compares them in Section 4.

We distinguish classes of algorithms based on

1. the property that a new call must always be accepted if there is an available slot
for it, and

2. the property that, in one or more states, calls in progress are repacked in new slots
to make room for a new call.

Algorithms with the first property are said to be greedy and algorithms with the second
property are said to be repacking algorithms. An algorithm in a given class is optimal
if it maximizes the acceptance rate of calls among all algorithms in the class. This
notion will be more precise after we define the stochastic model in which algorithms are
compared. But first, we need some notation.

Whether the time slotting in cell A lags that in cell B or vice versa is not important,
so a convenient graphic for the carrier state is the ring illustrated in Figure 2 for n = 8.
The outside of the ring gives the time slots generated at the base station of cell A and
the inside of the ring gives the time slots generated at the base station of cell B. These
are called the A and B slots, respectively. The relative displacement has been fixed, as
shown, at half a slot duration. This loses no generality, as the existence but not the
extent of the overlap is significant. Segments shaded black and gray indicate the time
slots assigned to calls in cells A and B, respectively. Any shading, such as any of those
shown, that does not have overlapping slots carrying an A in the outer ring and a B in
the inner ring, is a valid shading.

The linear representation of Figure 2 is obtained by moving clockwise around the
ring and writing A’s, B’s, and dots as dark shadings, light shadings, and unoccupied half
slots are encountered. The sequence is enclosed in angle brackets and the first character
is an A, B, or dot according as the first half slot clockwise from the top of the ring
overlaps an A call, overlaps a B call, or is unoccupied. The notation is cyclic in that
the first and last positions are adjacent. The time slots assigned to an A and a B can
not overlap, so in moving from an A to a B in either direction (cyclically) at least one
intervening dot will be encountered. Since every A and B call occupies two half-slots,
twice the total number of A’s and B’s plus the number of dots must be 2n.

In our stochastic model, calls arrive in independent Poisson streams at rates A4 and
Apin cells A and B. Call interarrival and holding times are independent, the latter being

Figure 1: The nonoverlapping-slot constraint, n = 6. The upper and lower
time lines apply to the time slotting at the base stations of cells A and B,
respectively. The hatched intervals indicate the unused time slots in cell B
that are not available to cell-B calls because of overlap with slots already
assigned to cell-A calls.

independent exponentials with rate parameter p in both cells. (Our results are easily
extended to the case of different rates.) These assumptions yield a continuous-time,
finite-state stochastic process Y on the set of carrier states defined above. A transition
of the process occurs at an arrival or departure, the latter entailing the removal of a
call from the current state. An arrival transition is determined by the call admission
algorithm; the current state remains unchanged if the new call is not admitted; other-
wise, the next state reflects the packing of the new call in some available slot of the
current state. The admission algorithms studied here are defined by mappings from the
current-state, new-call pair to an available slot, assuming the new call is to be admitted.
Thus, because of the exponential assumptions, ¥ will be a Markov process for all of the
algorithms presented in the next section.

By means of dynamic programming, optimal algorithms can be computed for given
traffic parameters A4, Ap, and p; the class of algorithms can but need not be restricted
to greedy algorithms or to algorithms not allowed to repack calls. Section 2 works out
the details for the latter class of algorithms. These solutions are useful for comparisons,
but they are unrealistic, since traffic parameters are not known in practice. Thus, the
remainder of the paper focuses on greedy algorithms that make decisions not depending
on offered traffic.

To see that greedy decisions are not always best, it is only necessary to consider the
system with sufficiently heavy traffic in cell A. In these circumstances, it is optimal
to reserve the carrier for the exclusive use of base station A; the unavoidable wasted
time created by a state that mixes even one B with A’s would decrease the overall call
acceptance rate. Section 3 will give an example that helps to clarify the term ‘sufficiently
large traffic’.

In the class of greedy repacking algorithms, it is trivial to find an optimal algorithm
that is insensitive to offered traffic; any algorithm that keeps the A calls and B calls
in separate sequences of consecutive slots will do. Section 2 analyzes algorithms of this
type. However, if greedy algorithms are not allowed to do repacking, then the problem
of finding an optimal algorithm that makes decisions independent of the offered traffic is
more difficult. Section 3 proposes two such clustering algorithms, one of first-fit type and
the other of best-fit type, and compares them in Section 4 with the optimal algorithms of
Section 2. The first-fit algorithm is denoted by F'F,, and performs quite well even when
compared to optimal repacking algorithms; and it has the advantage of simplicity. At
the cost of somewhat more mechanism, the best-fit algorithm BF,, does better; indeed,
it is optimal or very nearly optimal over a wide range of realistic values for the traffic
parameters.

The paper concludes with two sections that bring out useful properties of BF,.
The first deals with symmetries. If a state x is carried into a state z’ by rotations or
reflections, then x and 2’ are said to be in the same dihedral class; such states are treated
alike by the BF,, algorithm, i.e., BF packing decisions preserve dihedral symmetries.

4

For example, BFg packs an arriving A into the second A slot of (A..AA.....B.), so it
will pack an arriving A into the gap between the A’s in state (.B.A..AA....), which
is obtained by a rotation, and into the corresponding gap of (.B.....AA..A) which is
obtained by reflection. BF), also preserves exchange symmetries; two states are in the
same exchange class if one can be obtained from the other by interchanging A’s and B’s.
Combining all three symmetries gives the dihedral exchange symmetry classes. Thus,
we can analyze BF,, by analyzing the smaller Markov process Y whose states are the
dihedral exchange classes of the states of Y. The size of Vs state space is computed
in Section 5; explicit functions of n are obtained for the count of rotational symmetry
classes. A procedure for enumerating representatives of the dihedral exchange classes is
also discussed.

Section 6, the last section, proves that BF), is optimal for all n < 6 under the condi-
tion that, in the class of algorithms not allowed to repack calls, all optimal algorithms
are greedy. Section 6 also illustrates that if n > 7, then optimal decisions depend in
general on the offered traffic. On the other hand, we verify in the case of n = 8 that there
are only a few states where optimal decisions depend on offered traffic; this accounts for
the very small differences found in Section 4 between the performance of BFy and that
of an optimal algorithm.

2 Optimal Algorithms

This section first shows how to compute optimal algorithms from dynamic programs,
and then analyzes optimal greedy repacking algorithms.

Dynamic programming. Our stochastic setup is standard for the application of dy-
namic programming, since the arrival streams are independent and Poisson, call holding
times are independently and exponentially distributed, and there are a finite number
of states and a finite action space. In the class of algorithms studied here, the process
Y induces a Markov decision process in which non-null actions can be represented by
the available slot of the current state where a new arrival is placed. The rate at which
reward is accumulated in a given state x is given by n(x), the total number of calls car-
ried. For given traffic parameters, we want to determine an algorithm that maximizes
this quantity.

In the usual way, to bring the problem into the theory based on a discrete time
parameter, we replace Y by a uniformized version Y* in which events take place at a
constant rate. It is convenient to take this rate v = v(n) as the rate in Y maximized
over all states. The maximum departure rate in any state is nu, so v = As+Ag+np. In
order that the relative rates of arrivals and departures remain unchanged, we introduce
an artificial, or dummy, event in Y* as follows. In a state with j active calls, the next

event in Y* is an arrival in cell A, an arrival in cell B, a departure from an occupied
slot, or a dummy event which may be associated with a departure from some unoccupied
slot. The probabilities of these events are, in the order given, A4/v, Ag/v, ju/v, and
(n— j)efv =1 — (Ot +Ap +) v,

Now let X denote the set of feasible states defined in Section 1, i.e., those states in
which A and B calls are separated by at least one dot and are assigned to slots (z,74 1)
with 7 odd and even, respectively. Let A, and B, denote the sets of states that can be
reached from z in a single cell-A and cell- B arrival event, respectively. To this point, we
have tacitly assumed that the class of policies of interest can contain nongreedy policies.
To limit the optimization to the subset of greedy policies, we simply require that A, not
contain x whenever = has a slot available for an A call. If z is a blocking state for A
calls, then z is the only state in A,. Similar restrictions apply to B,.

Finally, let D, contain just those states which can be reached from z via a single
departure from either cell. For a given offered-traffic pair, the maximum steady-state
reward rate is achieved by an algorithm satisfying the Bellman equation,

— A4 — A —n(z)p
v

f(z),
(1)

where n(x) is the number of calls in state x, v is the long-term average reward rate,

A A v
T+ f(w) = n(@)+ = max fly)+ E max ()45 3 flw)+

14 Z/GAE weD,

and f(x) denotes the usual differential cost or potential associated with state = [8]. As
shown in [1], the decisions of an optimal algorithm satisfying (1) can be determined by
solving the recursion,

PO () = n(z) + “2max fP(y) + 2 o () 2)

vV yEAz UV zEB:

b S 0y g PR A O

WED, v

with fE+tD(2) = FEED(2) — FEED(0) and f©(2) = 0 for all states x. We have that
F®(0) — v and fF(z) — f(z) as k — oco. The application of (2) to specific cases is
illustrated in Section 4.

Repacking algorithm. Consider the greedy repacking algorithms mentioned in Sec-
tion 1 which maintain the A and B calls in separate consecutive sequences of A and B
slots. An analysis of any such algorithm leads to explicit results. Let a(t),b(t) be the
respective numbers of A and B calls in the system at time ¢. We note immediately that
{(a(t),b(t)),t > 0} is a Markov process on the set of states {(0,n),(n,0)} U{(¢,7):0 <
i, 7504+ 7 < n—1}. Were it not for the states (0,n),(n,0), the process would be the
classical one of an Erlang queue with two classes of customers, a process that has local

balance, as is easily verified. In spite of the added peculiarity of states (0,n), (n,0), the
process continues to have local balance and a product form stationary distribution

a(i.3) = Jim Pr{(a(t), 1)) = (i.1))

If welet pa = As/p and pp = Ag/u denote the cell-A and cell- B traffic intensities, then

i
- —1PaP
g(i,j) = G == (3)
! gt
where the normalization constant G = 37, . %pjif is a sum over all states. Blocking

probabilities are computed over the states
o (n —1,0) which blocks only B calls,
o (0,1 — 1) which blocks only A calls, and
o (n,0),(n—2,1),...(1,n —2),(0,n), which block both A and B calls.

Thus, the nonblocking states are just those states (z,7) with ¢ + 7 <n — 1.

3 First Fit and Best Fit

Under F'F,, a call arriving at a time when the current state has no slot available to the
call’s cell is rejected. Otherwise, with reference to Figure 2, F'F, packs the call in the
first available slot found in a scan of the current state clockwise from the topmost A
slot, if the call is in cell A, and counterclockwise from the topmost B slot, if the call is
in cell B.

The best-fit algorithm BF,, is chosen from the class of weighting algorithms defined
as follows. First, we augment the state so that each slot carries a weight. According to
a weighting algorithm, a new call is packed in a slot of the same type with maximum
non-negative weight, if one exists; otherwise, if all slots of the same type as the new call
have negative weights, the call is rejected.

A specific weighting algorithm is defined by two weight-increment vectors (dg, ..., d|,,/2])
and (67, ..., 5/Ln/2J)‘ Weights are changed at arrival and departure events as follows. Sup-
pose we have just assigned a new A call to an available slot; the case for B calls is entirely
symmetric. The weight of the slot where the new call is assigned is incremented by 6o,
the slots to each side of that slot have their weights incremented by é;, the slots at
distance 2 have their weights incremented by 62, and so on with the slots a distance
|n/2] incremented by 6|,/2). If n is even, the slots encountered going a distance |n/2]
clockwise and counterclockwise are one and the same antipodal slot.

7

The two B slots straddled by the A slot just assigned have their weights incremented
by 61; the weights of the B slots at equal distance are then incremented by 65, . .., 5/Ln/2J
as one moves away from the new A call. Finally, whenever a call departs, the increments
made at the call’s arrival time become decrements of the same magnitude.

The system can be set up to begin with fractional weights associated with its slots,
which we assume are all initially empty. These weights will break ties in symmetric
situations. However, without these fractional values (all weights are initially 0), the
increments are designed so that there will never be a tie between two slots of the same
type unless those slots are in the same dihedral class. Thus, the assignment algorithm
preserves symmetry classes.

Since weighting algorithms are greedy, the increment vectors must be such that in
every reachable state with an available slot, the weight of some available slot must be
non-negative. Moreover, there can be no reachable state in which the slot with maximum
non-negative weight is unavailable. An example for n = 8 that we shall analyze in detail
has

g =—41, 6 =12, 62 =6, 63=2, 0, =0

§ =41, & =0, §=2 & =3

Figure 3 illustrates BFg in action with a four-state sample path in which there are
two arrivals and a departure. Note that a ; sequence decreasing for + > 1 and a 6!
sequence increasing for ¢« > 1 promote clustering and an antipodal positioning of the
clusters.

As A’s, say, build up to the left and right of an empty slot, the slot’s weight can
increase by at most 212+ 2 -6 + 2 -2 = 40, so setting o = 6] = —41 guarantees
that an unavailable slot must always have negative weight. Section 4 will show that the
algorithm always makes a reasonable choice for the slot to be assigned a new call. In
most cases, it is obvious which slot (or equivalence class of slots) should be selected, and
in those cases the algorithm chooses correctly. In a few states the correct slot choice
depends on traffic intensities, but in all such states, the algorithm opts to make a large
contiguous block of ongoing calls of the same type, which is reasonable and consistent
behavior even under those circumstances when it may not be optimal.

For example, in the state (\AA..A..A.B) it is unclear whether an arriving A call
should be placed in the slot to the left or right of the isolated A (a calculation shows
that these slots have weights 32 and 26, respectively). Similarly, when in the state
(....AAA.B.A) the question is whether to put a new A call into the available slot (of
weight 29) next to the string of 3 A’s or into the available slot (of weight 22) next to
the remaining A. The dynamic programming solution can be used to investigate these
states. For example, a computation based on (2) shows that, if traffic is equal and there

is an A call arriving to the state (.AA..A..A.B), then adding the call to the left of the

Figure 3: A sample path under algorithm BFs. The negative weights of
unavailable slots are not shown.

third A is optimal for py = pp > 2.4, approximately, and adding it to the right is
optimal otherwise.

4 Comparisons

For our purposes, i.e., for small n, numerical comparisons of the various algorithms
can be obtained by computational as well as simulation methods. Computations are
based on routine numerical solutions of finite Markov chains and are only feasible for n
up to about 12. Simulations were easily implemented and gave insights into transient
behavior as well as the stationary regime. The loss in accuracy was small enough to be
of no concern, so we used simulation results except in those cases where explicit formulas
were available. However, we did use numerical solutions of Markov chains to verify the
(probable) correctness of our simulation program for algorithm BFg; the results of the
computations matched very closely the simulation results (in particular, those in Table
1 below).

Our first comparison is between F'F, and BF, for n = 8. The simulation results
appear in Table 1, where p4, pp are the blocking probabilities for cell-A and cell- B calls,
respectively; the overall fraction of lost calls is then

_ Aapa + ABpB
M+

Results are given for all integer traffic intensities summing to 6, and range from about
1 rejection out of every 200 calls to about 1 out of every 5.

As expected, uniformly over all parameter values, B Fy gives lower overall lost traffic
than does F'Fg3. Note, however, that the same can not be said of the individual blocking
probabilities p4 and pg, when the difference between traffic intensities is sufficiently
large. In these cases, the lower overall blocking probability is being achieved at the
expense of larger blocking probabilities for the cell with higher traffic. On the other
hand, it can also be seen that the differences in all cases are rather small.

The results from the dynamic programming algorithm D Py are for the greedy case
with repacking disallowed, and indicate that BFy is for all practical purposes optimal
for the cases tabulated. The very slight discrepancies between the D Py and BFy result
from variability in the simulation results. The close agreement between the two reflects
the noncritical nature of the choice in the few cases where the choice for B Fy is unclear.
We also tested the benefits of nongreedy decisions; the results for the dynamic program
in which call rejection was allowed gave very slight improvements over the greedy case.

A property supported by our numerical studies, one that could have been anticipated,
is that for a fixed total intensity ps + pp, the lost traffic decreases as the difference

10

Table 1: Blocking probabilities for F'Fy, BFg and DP,.

Algorithm FFy Algorithm B Fy DPsq

P4 PB | P4 PB p PA PB p PA PB P

1 1].0048 .0047 .0048 | .0043 .0042 .0043 | .0045 .0045 .0045
12 1.0353 .0234 .0274 | .0333 .0226 .0262 | .0319 .0227 .0257
13 |.1060 .0572 .0694 | .0950 .0574 .0668 | .0954 .0567 .0664
1 4 |.2107 .1003 .1224 | .1871 .1012 .1184 |.1890 .1010 .1186
1 5 |.3233 .1473 1766 | .2978 .1493 .1741 | .2968 .1495 .1740
2 2 1.0772 .0784 .0778 | .0743 .0744 .0744 | .0737 .0737 .0737
2 3 |.1605 .1297 .1420 | .1495 .1250 .1348 | .1502 .1242 .1346
2 4 |.2381 1771 .2041 | .2411 1753 .1972 | .2408 1755 .1972
3 3 |.2103 .2113 .2108 | .2028 .2034 .2031 | .2034 .2034 .2034

|pa — pB| increases, i.e., as more and more traffic is being concentrated in one of the
cells. (For example, see the (1,5), (2,4), and (3,3) rows of Table 1.)

Algorithm BFs and the optimal greedy repacking algorithm Rs are compared in
Table 2, where the results for Rg are computed from (3) applied to the appropriate
aggregates of blocking states. The table verifies that, in terms of the overall blocking
probability, Rg is uniformly better than BFs. On the other hand, it can be seen that
the table shows the same effects that appeared in Table 1: When the difference in the
traffic intensities is large enough, the lower overall blocking probability is balanced by a
greater blocking probability for the calls in the cell with higher traffic. And for a fixed
total traffic intensity, the equal-intensity case ps = pp maximizes the overall blocking
probability.

We observed earlier that, with traffic intensities sufficiently large, a non-sharing
algorithm (i.e., non-greedy algorithm confined to the calls of just one of the cells) becomes
optimal. To get some idea of what ‘sufficiently large’” means, we computed the overall
blocking probability p in the equal-intensity case and found that freezing out one of the
cells completely gives lower p only for p4 = pp > 10. But in this case, over 2/3 of the
calls are rejected on average. In a regime where p4 and pg are nearly the same, only
non-sharing or greedy sharing algorithms are likely to be of practical interest. With
the two loads very different, non-greedy algorithms might be superior to non-sharing
algorithms, but probably not by much.

Figure 4 brings out relative performance graphically for n = 8; the curves are for the
balanced case ps = pp, but they are typical of other choices as well. A curve for D Py
is not shown, as it is not distinguishable from the BF curve. Note that the repacking
algorithm gives only marginal improvements. We conclude that other issues, e.g., ease of

11

Table 2: Blocking probabilities for Rg and BFj

Algorithm Rg Algorithm BFj

PA_ PB | PA PB p ba PB p

11 |.0034 .0034 .0034 | .0043 .0042 .0043
12 .0221 .0209 .0213 | .0333 .0226 .0262
13 |.0657 .0573 .0596 | .0950 .0574 .0668
1 4 | 1315 1065 1115 | .1871 .1012 .1184
15 |.2105 .1605 .1688 | .2978 .1493 .1741
22 1.0625 .0625 .0625 | .0743 .0744 .0744
2 3 |.1215 1183 .1196 | .1495 .1250 .1348
24 | .1894 1787 1823 | .2411 .1753 .1972
3 3 |.1845 1845 1845 |.2028 .2034 .2031

implementation, will likely determine whether repacking algorithms are preferable, and
if not, whether the better performance of BFy relative to FFg is worth the additional
mechanism.

The U curve for unrestricted carrier sharing (no adjacency constraints among the A’s
and B’s in a state) shows the potential performance gains under perfect synchronization.

5 State Space

This section begins by counting states and then counts their symmetry classes; the
procedure will be useful in the enumeration of symmetry classes that we require in the
optimality proof of Section 6. Further motivation is provided by the fact that, for the
analysis of symmetry preserving algorithms like B Fg and B Fg, the Markov process Y can
be reduced to a Markov process Y on the set of dihedral exchange symmetry classes, thus
giving a substantial reduction in complexity, as this section shows. General background
for the combinatorics below can be found in Riordan [5] and Stanley [7].

The number S, of states has an interesting relation to the Fibonacci numbers. Al-
though S,, can be computed in various ways, we choose a technique that brings out this
relation explicitly.

Theorem 1 Let F,, denote the m'™ Fibonacci number, where Iy = 0, Fy = 1, and
Foyo=Fo+ Fu, m>0. Then

Sn = Foppr + Fonq, n > 1.

12

0.25

0.15

0.1

0.05

8Ioad

Figure 4: Blocking probabilities p vs. load p = p4 + pp for the case p4 = pp
(n = 8). The curve labels denote the FF = FF3z and BF = BFy clustering
algorithms, the R = Rs repacking algorithm, and the unrestricted sharing
algorithm U = Ug which operates free from any adjacency constraints. Under
U,, each of the 2" possible length-n sequences of A’s and B’s is a valid state,
and the system becomes a two-class Erlang queue.

Proof: We start by considering linear arrangements of half-slots numbered ..., 0,1,2, ..
where A’s and B’s can be inserted into pairs of half-slots of the form (odd,even) and
(even,odd), respectively. Thus, half-slot 1 is either empty or it contains the right half of
a B or the left half of an A. Suppose that half-slot 1 does not contain the right half of
a B. Under this condition, S/ counts the number of possible arrangements in half-slots
2,3...,m with half-slot m either empty or containing the right half of a packed call.
The packed call is an A call if m is even and a B call if m > 1 is odd. A single half-slot
can only be empty so 57 = 1. Next, S5 = 2, since a single full slot (m = 2) can only be

13

°9

an A call or two empty half-slots. For larger m, there are S/ _, ways that half-slot m
can be empty and S/, _, ways that it can be the right half-slot of a call. Then

S;n = S;n—l + S;n—?

from which we conclude that S! is the (m + 1)“ Fibonacci number.

There are Fy,1q linear arrangements of half slots 1,...,2n that end in an empty
half-slot or the right half of a packed call, necessarily an A call since 2n is even. Each of
these arrangements can be folded into a cycle of 2n slots with the contents of half-slot
2n compatible with the contents of half-slot 1. Thus, it remains to determine S the
number of arrangements with the right half of a B in half-slot 1, since

Sn = Sén + Séln = F2n+1 + Séln :

But consider the Fy,_1 states with an A call in slot (1,2) that we just counted. Rotate
each a half slot and exchange A’s with B’s and we get the SY = Fy,_; states with a B
in slot (2n,1). Then SY = Fy,_1 and we are done. [|

Table 3 gives the first 12 values of S,,.

12 3 4 5 6 7 8 9 10 11 12
Spt 307 18 47 123 322 843 2207 5778 15127 39603 103682

S

Table 3: Number of states.

We now derive the number T), of rotational symmetry classes of states for a ring of n
slots. The clockwise rotations of a ring of n slots form the cyclic group of order n. Since
n rotations transform a given state into states of the same class, we might expect classes
to contain n states and 7T, to be S,/n. That would not be quite right because some
classes have fewer than n members. Thus, with n = 8, the state @ = (A.B.AA.B.A)
has “period” 4, i.e., a rotation through 4 slots carries = back to itself; x belongs to a
class of only 4 states. Polya’s Theorem (Riordan [5, Chap. 6]), as applied to rotational
symmetries, can be expressed in the form

12
To==> I (4)
nk:l

where [, is the number of states that a clockwise rotation by & slots leaves unchanged.
These unchanged states are the states that have a period d = ged(n, k), i.e., states of

14

the form x = 2’2’ - - - 2’ repeating n/d copies of a state 2’ for the ring of size d. Then (4)
is

17
Tn = - Z Sgcd(n,k)- (5)
[yt

For any divisor d of n, the k-th term of (5) is Sy for each k with ged(n, k) = d. There
are ¢(n/d) such terms, where ¢(¢) := |{j <1 :ged(i,7) = 1}] is Euler’s totient function.
Collecting terms Sy of (5), one finds

T, = = 6(n/d)Si (6)

d|n

For example, if n = 8, then (6) has 4 terms and

Ty=(4-342-T41-47+1-2207)/8 = 285.

To find representative states belonging to T, distinct classes, one may start with the
classes of states that contain no A’s and from 0 to n B’s. There are 2" such states.
Counting their classes is equivalent to counting the rotational classes of necklaces having
beads of two colors, white for empty slots and black for occupied slots. A derivation
like the one for (6) leads to a formula for the number of classes of necklaces with n
beads (Riordan [5, p. 162]). Tt differs from (6) only in having S, replaced by 2¢. For
n = 8 there are only 36 classes of states with no A’s. Thirty six representatives are
easily found. Next, add single A’s to the 36 representatives with no A’s and select
inequivalent states to represent the classes with one A. Continuing to add single A’s to
the representatives already found, one eventually finds all classes. In this procedure one
needs never examine states with more A’s than B’s; their classes can be obtained from
earlier classes by interchanging A’s and B’s. At each stage, there are only a few ways to
add an A; T, representatives are found by testing much fewer than S, states. Formula
(6) gives a check that all classes were found.

Once the rotational classes are found, it is not hard to find the dihedral classes. The
new symmetry (reflection) will combine certain pairs of classes into one dihedral class.
Pick any state in rotational class C and reflect (reverse) it. If the reflected state belongs
to a new rotational class C’ then the union of C and C’ is a dihedral class; otherwise,
C is itself a dihedral class. A detailed analysis (by computer program) for n = 8 gives
the count in Table 4 as a function of the numbers of A’s and B’s. The sum total of the
table entries gives 187 dihedral classes.

Finally, we count the dihedral exchange symmetry classes where interchanging A’s
and B’s is added as a third symmetry operation. Pick a state in a dihedral class C and
exchange A’s and B’s. If this gives a state in a different dihedral class C’ then C and
C’ are merged into a single dihedral exchange class; otherwise, C is already a dihedral

15

Table 4: Numbers of dihedral classes of states for n = 8; the classes counted
in the (4, 7)™ entry have states with i A’s and j B’s.

1 1 4 5 8 5 4 1 1
I 3 9 10 9 3 1 0 0
49 17 12 7 0 0 0 O
5 10 12 4 1 0 0 0 0
s 9 7 1 0 0 0 0 0
5 3 0 0 0 0 0 0 0
4 1 0 0 0 0 0 0 0
r 0 0 0 0 0 0 0 0
r 0 0 0 0 0 0 0 0

exchange class. Clearly, dihedral classes that are also dihedral exchange classes have
equal numbers of A’s and B’s, and patterns of A’s and B’s that are similar. For n = 8
these are easily identified as the 11 classes having the representatives:

R b (A B) (Ae.. B.) (Av..B..)
(..AA.BB..) (LAA..BB.) (A..A.B..B) (.A.B.AB..)
(A.B..A.B..) (AAA.BBB..) (AA.B.A.BB.)

Then the number of dihedral exchange classes is (187 — 11)/2 + 11 = 99.

6 Optimality of BF),

The dynamic program of Section 2 maximized the stationary acceptance rate of calls.
Here we can strengthen the notion of optimality by removing the restriction to a sta-
tionary process: Algorithm V' is optimal if, for any given initial state, V maximizes the
expected number of accepted calls in [0,¢] for all ¢ > 0.

The best-fit algorithm BFg is defined by the vectors

50:—7, 51:2, 52:1, 53:0,

and

8 =17, 6 =0,8=1.

Figure 5 shows the transition function under BFg; every state that can accept an A (B)
call has a heavy solid (dashed) arrow exiting from it, and it has a light solid (dashed)

16

Figure 5: Transitions under BFg.

17

arrow exiting from it for every A (B) call it contains. The wedges and equal signs denote
a partial order that we will discuss shortly. Note that there is exactly one state for each
dihedral exchange class; these (26) classes can be identified by calculations similar to
(and simpler than) those used in Section 5 to obtain the dihedral exchange classes for
n = 8. Figure 6 illustrates sample paths starting in the empty state, with integers
denoting current slot weights.

This section proves the optimality of BFg under the following two assumptions:

Assumption 1: All optimal algorithms are greedy (as noted earlier, this is effectively
a constraint on the offered loads p4, pp).

Assumption 2: As before, call holding times are independent, exponentially distributed
random variables with possibly different rate parameters, but now no restrictions are
placed on the arrival processes.

The arguments below do not extend to n > 7 without further assumptions, but they
do work, and become much easier, for n < 5; these remaining small-n cases are left to
the reader.

Theorem 2 Under Assumptions 1 and 2, algorithm BFg is optimal.

Proof: Let V be an optimal, and (by Assumption 1) greedy algorithm that differs from
BFg, i.e., there exists at least one state in which the two algorithms will pack a new
arrival but into different slots, creating thereby new states in different dihedral exchange
classes. Using a coupling argument we prove the contradiction that, over a given time
interval starting in a given initial state, the expected number of calls accepted by V is
at most the expected number accepted by B Fg.

Instead of comparing V' directly to B Fg, it will be more convenient to compare both
to a version of BFy that follows the decisions of V' as described below. Consider Vs
decisions on a random sample path w starting in a fixed but arbitrary state xq. In
parallel with these decisions, we track those made by algorithm W on a sample path
w'. Algorithm W makes the same decisions as BFg except that W never packs a call
that V' can not also pack; and the sample path w’ is the same as w except possibly for
the identities of the calls at departure events; these are determined by couplings such as
those shown in Figure 7.

Couplings are defined only between states with the same numbers of A’s and B’s;
between two such states a coupling is simply a one-to-one map of A’s onto A’s plus a
one-to-one map of B’s onto B’s. For the argument below, the maps can be arbitrary
so long as they satisfy the constraints given by the arrows in Figure 7 or constraints

18

e 8

e
]
,

e

D — = p———_

U

symmetric to those in the figure. Only two pairs of states are constrained:

1. The second and fourth A of (AAA..A..) must be mapped in one of the two possible
ways to the first and fourth A of (AAAA....). The first and third A in the state
(AAA..A..) can be mapped in either of the two possible ways to the middle two A’s
of the state (AAAA....). The figure shows one of the four equivalent possibilities.

2. For the states (AAA......) and (AA..A....), we need any constraint that forces the
third A of the latter state to be mapped into either the first or third A of the
former state.

Y, 1 > 1, be the respective states just after the ¢-th event of
w and &’ under V and W, and let the initial states be equal: zo = z. Note that, by
definition of W, the numbers of A’s and B’s in x} is at most the respective numbers in

For given w,w’ let x;, !

x;, for all ¢ > 0. We will verify that the converse also holds, so that the numbers of A’s
and B’s in z; are equal to the respective numbers in z! for all ¢ > 0.

In fact, we prove a stronger result expressed in terms of the ordering < of states
shown in Figure 5. More precisely, the relation is a reflexive and transitive partial order
without the trichotomy property (two elements of the partial order can be equal without
being identical). Note that states with different numbers of A’s or different numbers of
B’s are incomparable under <. On the other hand, as explained later, not every two
states with equal numbers of A’s and B’s need to be comparable; the two instances of

this are the states (AA..AA..), (AAA..A..) and the states (AA..A....), (A..A..A.).

We now come to the heart of the argument, which is a proof of
Lemma 1 The inequality x; < ! holds for all ¢ > 0.

Before giving the case analysis proving the lemma, we verify that it gives the desired
result. First, we make the informal observation that the coupling process has no effect
on the probability laws governing sample paths, i.e., the sample paths &’ created by the
coupling from random sample paths w are stochastically no different than the original
sample paths w. This property is guaranteed by Assumption 2 which implies that, in any
given state, each A call is equally likely to be the next A call to depart, and each B call is
equally likely to be the next B call to depart. Then by a standard coupling argument [6],
the deterministic majorization of the lemma parlays easily into the probabilistic assertion
that the expected number of calls accepted under W over a given time interval starting
in state g is at least that under V over the same time interval starting in the same
initial state. It follows that, since V' is optimal, W must also be optimal; and since V'
differs from BFg, so also must W differ from BFgz. But by definition of W, the only

way W can differ from BFg is by making non-greedy decisions in one or more states.

21

This contradicts the optimality of W by Assumption 1 and completes the proof of the
theorem.

Proof of Lemma 1. The proof is by induction on the number of events in w,w’. The
basis of the induction follows by inspecting Figure 5 and verifying that, in each state
that has space for a call, a new call is packed by W in a slot such that the new state
is at least as large under < as any state obtained by packing the call into one of the
remaining available slots, if any. We give an example and then leave the routine check
of the remaining states to the reader. Consider the state (A..A......) as the example,
and note that W packs a new A call into the slot between the A’s to obtain the state
(AAA......) which is larger under < than any of the other states, viz., (A..A..A..) and
(A..AA....), that can be reached by packing a new call in (A..A......). The case of packing
a new B call is trivial since the next state is the same (up to dihedral symmetries) no
matter which of the two available slots the new B call occupies.

For the induction step we consider pairs of states x;, 2! with z; < 2! and hence
with the same numbers of A’s and B’s, and verify that an arrival transition preserves
the ordering and that a departure transition under the coupling shown in Figure 7 also
preserves the ordering. The case where z; and 2 are the same state is handled by
the basis argument above, so we assume that the two states differ. To illustrate the
checks that are needed, observe that a new A call is packed by V and W into the
respective states of (A.B.A....) < (AA...B...) to produce the respective new states in
(A.B.AA.) < (AAA.B...). As a further example, let W and V be in the respective
states of (A.B.......) = (A...B.....). Algorithm W packs a new A call to produce the
new state (AA.B.....). Algorithm V packs a new A call into (A...B.....) to produce the
same state that W produces, or it produces one of the states (AA...B...) or (A...B.A..).
But the latter two states are respectively equal to and less than the state produced
by W'. To illustrate departure transitions that must be checked, we note that, under
the coupling, a departure from the states of (AAA..A..) < (AAAA....) produces the
same state (AAA......) or the respective states of (A..A..A..) < (AAA......). Note that,
consistent with this last example, we need not be concerned with an ordering of the pair
of states (A..A..A..), (AA..A....) for it is not possible for V to be in one of these states
and W to be in the other. To see this we need only observe that
(i) the coupling constraints do not allow this pair to arise as a result of departures from
larger states ordered by <, and
(ii) W’ can not reach (A..A..A..) as the result of an arrival, and the only way it can
reach (AA..A....) on an arrival is from the state (A....A....). But from this last state
(A..A..A..) can not be reached on packing a new arrival under any algorithm.

Note that the induction step would fail if one were to make the states (A..A..A..)
and (AA..A....) comparable, no matter what coupling was adopted between these states.

22

To see this, observe that the only state produced on a departure from (A..A..A..) is
(A..A......). But this state is less than (AA........) and greater than (A....A....), which are
both reachable on departures from (AA..A....).

We should also explain the other incomparable pair of states that have the same
numbers of A’s and B’s, viz., (AA..AA..) and (AAA..A..). To see from Figure 5 that
W can not be in one of these states while V' is in the other, note first that there is only
one state that can produce these states on departures, and second that, of the 3 states
with just 4 A’s, only (AAAA....) is reachable by W on an arrival transition.

Beyond the exceptions already discussed, all pairs of distinct states in Figure 5 with
the same numbers of A’s and B’s must be checked in establishing the induction step.
We have illustrated the process by checking 3 cases, each by inspection of Figures 5 and
7; the remaining 12 can also be checked by inspection and need no further comment. B

References

[1] Bertsekas, D. (1976), Dynamic Programming and Stochastic Control, Academic
Press.

[2] Harte, L., Smith, A. and Jacobs, C.A. (1998), I5-136 TDMA Technology, Fco-

nomics, and Services, Artech House, Boston.

[3] Lee, W. C.-Y. (1989), Mobile Cellular Telecommunication Systems, McGraw Hill,
New York.

[4] Mouly, M. and Pautet, M. (1992), The GSM System for Mobile Communications,

Palaiseau, France.
[5] Riordan, J. (1958), Combinatorial Analysis, Wiley & Sons.
[6] Ross, S. M. (1983), Stochastic Processes, Wiley & Sons.

[7] Stanley, R. P. (1986), FEnumerative Combinatorics, Volume I, Wadsworth &
Brooks/Cole, Mathematics Series.

[8] Whittle, P. (1982), Optimization over Time: Dynamic Programming and Stochastic
Control, Wiley & Sons.

23

