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Abstract

We study the times to grow structures within the tile self-assembly model proposed by Winfree,
and the possible shapes that can be achieved. Our earlier work was confined to the growth of rect-
angular structures, in which the rates of attachment of border tiles and rule tiles were the same. By
varying the relative rates one can engineer interesting new shapes, which have been observed in the
laboratory. We show that the results from an extension of our earlier stochastic models agree remark-
ably closely with experimental results. This is an important further demonstration of the validity and
usefulness of our stochastic models, which has also been used to study error correction in DNA self
assembly.

1 The Tile Self-Assembly Model

The general focus of the work here is on mathematical foundations of self assembly based on Win-
frees DNA tile model [12] to be described shortly. More precisely, the emphasis is on the analysis of
stochastic models. Although insightful such models and reference theories are ubiquitous in the physi-
cal sciences, they remain a fertile ground for self-assembly research in DNA-Based Computing, where
stochastic analysis has only recently begun. The early work of Adleman [3] and colleagues and that of
the authors [5, 4, 6] sets the stage in this area, and serves as the point of departure for the analysis here.

The seminal mathematictile model of DNA self-assembly, as developed by Winfree [12] and pur-
sued by many others, has led to a much improved understanding of DNA self-assembly in two dimen-
sions. At the physical layer being modeled, single-strand DNA molecules are manipulated to form DNA
molecules (e.g.double-crossovemolecules [7, 8]) which are designed to assemble (bond) with other
such molecules in a two dimensional crystal-growth process obeying bonding rules determined by the
molecular motifs [12]. These building-block molecules are modeled as tiles.

There are three types of tiles involved in a self-assembly process: rule tiles, border tiles, and seed tiles.
They participate in a growth process beginning at the origin of the positive lattice; the unit squares of the
lattice are the potential sites occupied by tiles.

e The seed tile occupies the lower-left corner of the positive lattice and is responsible for initiating
the tile self-assembly process. Only border tiles, as described next, can stick to the two free (upper
and right-hand) sides of the seed tiles.

¢ A border tile can join the structure only by attaching to the seed tile or another border tile along
the horizontal and vertical boundaries of the positive lattice, each such attachment extending one
of the borders of the structure assembled so far.



e A rule tile can attach to the growing structure at any available site which is adjacent to occupied
sites both to the left and below the available site, where either site may contain a border tile.

In the probability model governing growth (cf. [4, 6]) , as soon as a site becomes available to a rule tile
(for attachment to the left and below) its waiting time for such a tile is exponentially distributed with
mean 1. All such waiting times are independent. The attachment of new border tiles is also subject to
independent exponential waiting times, but with a different rate parameterthe analysis of the first

such model [4], the border (input) tiles were assumed to be prefabricated, occupying sites, say, from (0,0)
to (M,0) and to (O,N), the so-called L input; the problem was to estimate the(imne until a rule tile
became attached to the site at (M,N).

One of the principal tools used in solving this type of problem has been the analysis of the TASEP
(Totally Asymmetric Simple Exclusion Process) [9]; the main result is given below in terms of fluid
limits where the discrete position variables i and j are replaced by continuous variables x and y. We have,
with the obvious change in notation,

lim  Cly = sup (VT + 5)° 1)
(2,y)—(00,00) v

wherey represents all possible paths from the origin (the seed tile) to the (oint. In other words, the

time it takes to place a tile at positigm, y) is the maximum time it takes to place tiles along all possible

path from the origin to positiof, ). In [4], we show that the path is the straight line connecting the

origin, the location of the seed tile, to poift, y) in the fluid limit case.

In the more general setting, where border tiles are not prefabricated, but take part in the self-assembly
process, the problem becomes much more interesting and entails the assembly of a much larger class of
shapes, particularly whem < 1, i.e., the border-tile attachment rate is less than that of the ruletiles.

The more general extremal problem is illustrated in Figure 1. Sineel; a path along which the sum

of expected attachment times is maximum must first move along one of the axes; the slow growth rate of
the borders is less than the rate of tiling the rectangles bounded by the borders. At a point where these
rates balance, the trajectory is determined by the rectangle tiling result of (1).

In Figure 1(b), the dotted line shows the shape of self-assembled structure before the border reaches point
K during the process. When the crystal boundary is below pg@inthe rule tiles can fill in the square
covered by the length of the border before a new border tile arrive since the border tiles’ interarrival times
are much greater than the time that the rule tiles fill in the square when the edge of the square is small.
This means the time it takes to place a tile depends on the speed of the border tile attachment. When the
boundary grows beyond poiif, the rule tiles cannot complete the square in time before the next arrival

of a border tile, hence the attachment of rule tiles contribute to the speed of the self-assembly process.

This argument holds true for the case where- y andx < y. Thus, in the figure, to compute a path
to (z,y) along which expected total attachment time is maximum, one must find this maximum among
paths likeba; if x <y, anddg, if x > y.

With z as defined in the figure, the extremal path of tile attachments will start from the origin, go to
position(0,y — z) in expected timdy — z)/a for < y or (z — z,0) in expected timdz — z)« for

K. Fujibayashi working in E. Winfrees lab at Cal Tech notes that: 1/2 was common in certain of his experiments,
wherea is a stoichiometric parameter giving the concentration of border tiles. In this case he found that the profile of the
self-assembly structure is triangular, a fact that will also emerge in our purely mathematical framework.
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Figure 1: (a) The paths that contribute to the time required for a tile to attach to the pdsition The

pathba is followed whenz < y and the pathic is followed whenz > y. (b) The dotted line illustrates

the boundary of the shape of self-assembled structure before the border tiles readki daiig the
process. When the crystal boundary is below péinthe rule tiles (in the fluid limit) fill in the square
covered by the length of the border before a new border tile arrives. Beyondipgiing rule tiles cannot
complete the square before the next arrival of a border tile, so the attachment of rule tiles determines the
speed of the approach i9y).

x > y, and then go on to readh, y). We need only find the supremum oweto identify the extremal
path. Thus, for finding the time to reach point y) wherex > y,

Clpy ~ SUP <(\/5+ ﬁ)2+y;2) )
as(z,y) — (o0, 00). A calculation forC,,,, then shows that
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as(x,y) — (o0, 00), Wwherez = x (ﬁ) ,x < yandz < y.

An analysis of the alternate pathl for = > y follows the same arguments and yields the same result
with z andy interchanged. By fixing the computing tind&. , (e.g. at an instant of time), we can plot
values ofz andy for different values ofx as shown in Figure 2.

For0 < a < 1/2, the shape of the self-assembled crystal looks like the one shown in Figure 2(a). When
a = 1/2, the shape of the self-assembled crystal is triangular as shown in Figure 2. This corresponds
to the shape suggested by K. Fujibayashi’s simulation. Wheén< « < 1, the shape of the structures

has an L-shape with sharp corners as shown in Figure 2(b). Thenavhen, the shape of the self-
assembled structure is no longer linear like, and it is described by the equation suggested in [4] which
analyzed self-assembly systems whose rate of growth for the border tiles is greater than or equal to the
rate of growth for the rule tiles.
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Figure 2: The shape of tile self-assembly for different values of border grewth

It is clear from (3) that the time a tile takes to attach to positiery) depends linearly on the value of
x andy, given thata is a constant. This explains why the asymptotic shape of the structure looks like
simple geometric shapes, especially wheis approximately 1/2 the shape becomes triangular.

Remarkably, the simulations of self-assembly structures agree with our prediction for all vatugs%nf
Figure 3 shows the simulation results for various values.of
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Figure 3:Simulation of 2D structures with various valuescof

Itis possible to extend the scope of our discussion to be even more general by allowing the rates of border
growth to differ on the vertical and horizontal axes.

2 Different Rates of Border Growth

Let o1 be the ratio of the attachment rate of the vertical border tiles to the rule-tile attachment rate, and
let a2 be the ratio of the attachment rate of the horizontal border tiles to that of the rule tiles. The paths
that determine the time taken by a tile to arrive at positiery) with = < y (respectivelyr > y) do not



depend on the border tiles that are growing in the horizontal (respectively vertical) direction. We arrive
at
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as(z,y) — (00, 00). Figure 4 gives an example of the shape of self-assembly structures with different
border growth rates.
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Figure 4: Simulation of 2D structures with different border growth rates. The shapes are no longer symmetric
alongy = x.

Crystal self-assembly is typically designed to grow indefinitely yielding congruent shapes at different
times. A problem arises when we want a specific finite shape. Although we can design tile sets so
that the growth process will stop at some pre-specified point, the complexity of the tile sets is high (cf.
[2, 1, 10, 11]). In order to create shapes that are useful and economically efficient, a small number of
simple tiles is desirable. A straightforward method of creating desired shapes is simply to remove the
supply of tiles completely when we know that the desired crystal size has been reached. This method
works since the shape (fluid limit) approximation above allows one to estimate the size of the structure
and the time it takes to create a specific structure.

3 Conclusions

As is well known, essentially arbitrary 2D shapes can be created by tile self assembly (cf. e.g., [11, 12]).
For example, one technique is to create a domino pattern that serves as a skeleton on which to grow some
given shape; the length of a leg of the pattern can be determined by a counter structure ofloggder

width. Figure 5(a) shows an example which begins with a (blue) seed from which growth proceeds in
each of the four directions. At the ends of legs new (red) seed structures can self-assemble to give the
domino branching patterns. Once the domino pattern is in place, or as it self assembles, the growth as
described earlier can flesh out the desired shape. The domino patterns define independent, elementary
growth regions as illustrated in Figure 5(a). In simple cases, expected times to compute such shapes may
be expressible as the expected maximum of the times to grow the independent regions (cf. [4]). But in
general, the computations of overall expected growth times are complex.

AcknowledgementWe are grateful to K. Fujibayashi for pointing out and discussing the problem of
(slowly) self assembling border tiles.
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Figure 5: The shape of tile self-assembly model built on a predesigned skeleton.
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