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ABSTRACT

Makespan scheduling problems are in the mainstream of operations research, industrial
engineering, and computer science. A basic multiprocessor version requires that n tasks be
scheduled on m identical processors so as to minimize the makespan, i.e., the latest task
finishing time. In the standard probability model considered here, the task durations are
i.i.d. random variables with a distribution F, and the objective is to estimate the distribution
of the makespan as a function of m, n, and F. This paper surveys probabilistic results for
the multiprocessor scheduling problem and an important variant known as the permutation
flow-shop problem. Several of the results are new; the others have appeared in the last few
years.

Because of the difficulty of exact analysis, the results take the form of limits as n — o
or as both m — oo and n — oo with m < n. Some highlights of the survey are: a new
asymptotic analysis of the on-line greedy scheduling policy, the resolution of a longstanding
open problem in the analysis of off-line policies, new applications of central limit theorems
to makespan scheduling, and limit theorems giving the asymptotic behavior under the greedy
and optimal policies for the flow-shop problem. Open problems and modeling issues are also

discussed.
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1. Introduction

An integer m > 2 together with positive task running times Tiy,...,T, defines an in-
stance of the multiprocessor scheduling problem: Schedule Ty, ..., T, on m identical processors
Py, ..., P, so as to minimize the latest task finishing time or makespan; i.e., partition the set

{Ty,...,T,} into subsets Py,..., P, so as to minimize the maximum subset sum

L max T, .
T T 5m Z !
- {iTeP;}

To avoid trivialities, we assume that m > m unless stated otherwise. The problem finds
application in operations research as a model of scheduling parallel machines in industrial job
shops. It has also had a prominent role in computer science, where the term multiprocessor
originates. Along with a number of other fundamental NP-complete problems, it has served as
a theoretical testbed for the development of new ideas in the design and analysis of algorithms
(see Garey and Johnson (1979)).

Because of the problem’s complexity, several heuristic policies have been studied. Our
interest here is in simple, but effective techniques (as illustrated in the next paragraph) rather
than elaborate heuristic search techniques. The combinatorial worst-case analysis of such
policies dates back over 25 years (see Graham (1966), and for a general treatment, Blazewicz,
et al. (1993)). More recently, the competitive analysis of on-line algorithms has been applied
to the problem (see Phillips and Westbrook (1993) for recent results and references to others).
In this setting, the problem has also been called load balancing, a term that suggests broader
applications. For example, in computer storage allocation, it may be necessary to distribute n
files among m identical storage units so as to minimize the maximum of the total file sizes.

For the purposes of defining multiprocessor scheduling policies, it is convenient to assume
that the tasks are presented in the form of a list (T1,...,T,). The on-line greedy policy is
arguably the simplest (and fastest) heuristic for finding approximate solutions to the mul-

tiprocessor scheduling problem. This policy uses no advance information on the number or



durations of tasks. The policy begins by assigning the first m tasks Ty, ..., T}, to the m proces-
sors Py, ..., Py; the processors start running these tasks at time 0, while the remaining tasks
wait. Thereafter, whenever a processor finishes its current task, the next waiting task, if any,
is assigned to the idle processor. In queueing terminology the system operates as an m-server
queue with a first-come first-served service discipline; n customers arrive to an empty system
at time 0, and the latest of their departure times is the makespan. The rule for resolving ties
among processors is immaterial, so we leave it unspecified. The off-line greedy policy operates
just as the on-line version, except that the list (7y,...,7),) is first sorted into decreasing or-
der. The off-line version is also called the largest-processing time (LPT) policy, a term we use
hereafter; the term greedy by itself refers to the on-line policy.

Understandably, the greedy and LPT policies were among the first policies studied when
the probabilistic analysis of scheduling algorithms began some 15 years ago. In the standard
probability model considered here, the task durations 7T; are independent and identically dis-
tributed (i.i.d.) with distribution F(¢) = P(T; < ). The problem is to find the distribution of
the makespan L,, , as a function of the number m of processors, the number n of tasks and
the distribution F. The general aim is to bring out typical behavior rather than the worst-case
behavior, which can be highly unlikely. With explicit formulas in mind, probabilistic analysis
is usually quite difficult, so research has often turned to large-n asymptotics.

This paper surveys new probabilistic results, concentrating on those of the past few years;
earlier research is covered in Coffman and Lueker (1991). We do not claim that our survey is
exhaustive; rather, our goal is to illustrate current directions, mathematical approaches, and
open problems in a field that is quite active.

Section 2 covers the greedy policy, presenting new results of the authors in collaboration
with L. Flatto, A. Weiss, and P. E. Wright. The analysis here is self-contained, but Coffman
et al. (1993) study theoretical questions in more depth. Section 3 discusses off-line policies,
concentrating on the differencing methods of Karmarkar and Karp (1982). Yakir (1993) re-
cently solved an intriguing open problem set by Karmarkar and Karp’s original analysis. The
principal new insight in Yakir’s approach is described.

Central limit theorems are natural tools for asymptotic makespan analysis. Section 4
applies these tools in a policy-free set-up, i.e., limit theorems are proved which hold simulta-
neously for all scheduling policies. These results are new.

Research on the permutation flow-shop problem, a fundamental variant of makespan schedul-



ing, is surveyed in Section 5. In this problem, each task consists of m operations, one for each
processor, i.e., T; = (Ti1,. .., Tim), 1 < i < n. A permutation of the task indices (1,2,...,n)
defines a schedule because the operations of each task must be performed on processors in the
sequence Pp,..., P,, and because the n operations must be performed in the same task order
on every processor. Now the nm operation times 7;; are regarded as i.i.d. with distribution F'.
Thus, under the greedy policy the queueing system with analogous dynamics is a network with
m single-server queues in tandem, the first-come first-served service discipline and n customers
initially at the first queue ready to begin service. In this case all service times are i.i.d. Asymp-
totic behavior is described for the greedy policy when either or both of m and n are large,
and for an optimal policy when m = 2 and n is large. The results for the greedy policy are
contained in Glynn and Whitt (1991), Greenberg, Schlunk and Whitt (1993) and Srinivasan
(1993); the results for the optimal policy when m = 2 are due to Ramudhin, Bartholdi, Calvin,
Vande Vate and Weiss (1993). Section 6 caps off the paper with a discussion of open problems
and modeling issues.

This section concludes with matters of convention. Probabilistic results have varied widely
in the classes of distributions F' allowed. A convenient, common subset consists of those
distributions supported on a finite interval, with a positive continuous density f. In what
follows, F has these properties, unless stated otherwise. The mean and variance of I are
denoted by 7 and ¢2?. Qur uniform treatment simplifies the presentation of the basic ideas;
but while such distributions are adequate as models of most practical situations, many of the
results hold for broader classes of distributions. Details on these technical matters can be
found in the references.

Because of the form of the results in Sections 2-4, policies will also be assessed in terms
of the error o, = Ly, — nt/m, where nt/m is an obvious lower bound on F[L,, ,]. An
analogous normalization is introduced in Section 5 for the flow-shop problem. The notation
Ly yy @ will be used generically; in any given instance, the problem and policy being

considered will be clear in context.
2. The On-Line Greedy Policy

In the past decade, several papers have been devoted to an asymptotic analysis of the
greedy policy for general m; see Boxma (1985), Bruno and Downey (1986), Coffman and
Gilbert (1985), Han, Hong, and Leung (1992) and Loulou (1984). None of this work has led to



limiting behavior as precise as that found for m = 2 in an early result of Feller (1971), p. 208;
for m > 3, the analysis has resorted to various bounding techniques. However, Feller’s result
can in fact be generalized, as shown below. (See Coffman et al. (1993) for extensions.)

Fix m > 2, and for convenience, extend the greedy process to the infinite time horizon;
i.e., construct a greedy schedule from the infinite sequence Ty, Ty, ... . Let C, denote the nth
completion time; let R, 1 <7 < m — 1, denote the residual times of those tasks still running
at time C,, ordered by increasing processor index; and let R?l) < < R?m_l) denote the
order statistics of the R?. Without loss of generality, assume that C,, # Cp4q for all n > 1.
At time C\_ 41, tasks Ty, ..., T, have all started, n —m + 1 of them have finished, and m — 1
are still running with residual times R?_m"'l, 1 <2< m—1. Then the tasks TY,...,T, have
a latest finishing time

(21) mn — Cn m—+1 + R? m—l;l 9

and a sum of running times that can be expressed as

m—1 m—1
(22) ZT = an m+1 4 Z Rn mtl — an m+1 4 Z Rn m+1 .
=1 =1
Combining (2.1) and (2.2) gives
(2.3) ZT +mRTH! Z Ry~

To proceed, we need information on the random variables Rz). A direct approach analyzes
the Markov chain {(R?l), .. .,R?m_l)), n > 1}. Let p, denote the density at epoch ), of the

Markov chain, and define

to(@/) = (tl + Y, lma ‘|'3/) ’

tl(y) = (3/7151+3/7---7ti—1‘|'3/7ti+1‘|'3/7---7tm—1‘|'3/)7 1§7/§m_17

with t = t¢(0). Let to = 0. A straightforward analysis then shows that, with pg given,

m—1

(2'4) pn-l—l(t) Z /OOO pn(tz(y))f(tz + y)dy, n Z 0.

=0
An application of the theory of Harris-recurrent Markov chains (see Asmussen (1987), pp. 150~
158) proves convergence of the distributions to a proper limit independent of the starting state.

In terms of random variables, we can write

(25) (R?l), ey R?m—l)) = (R?1)7 ey R?m—l)) as n — oo,



where = denotes convergence in distribution. Indeed, there is convergence of the probability
measures in total variation as n — oo.

To obtain an explicit formula for the limiting distribution, i.e., the distribution of (R?l), ey

R(*m_l)) in (2.5), the Markov chain analysis now requires that we solve the stationary version of
the rather awkward recurrence in (2.4). A key observation allows us to side-step this difficulty
by applying the theory of stationary point processes, in an argument that makes no direct use
of properties already established by the Markov chain approach. The observation is that the
sequence {C,} generated by the greedy rule is equal stochastically to the superposition of m
i.i.d. ordinary renewal processes; i.e., each is defined independently by F' and each starts with
a point at 0. The time-stationary version of each renewal process is the familiar equilibrium
renewal process, in which the distance to the first point has the equilibrium residual-life dis-
tribution G with density g¢(t) = [1 — F(¢)]/7. Each original renewal process is the Palm (or
synchronous) version of its time-stationary version.

Now consider the superposition of m i.i.d. copies of this time-stationary renewal process.
This is a time-stationary point process with the distance to the first point from each component
stream having distribution G. Since we want to look at the superposition process at completion
times, we are interested in the Palm (synchronous) version of this stationary point process.
Section 5.1 of Baccelli and Brémaud (1987) characterizes this Palm version in terms of the
Palm and stationary versions of the component processes. However, from this superposition
process alone we cannot extract the stationary distribution of (R?l), .. .,R?m_l)) directly. To
do this, we mark the points of each component stream with the index of the processor on
which it occurs, and then apply the corresponding superposition result for stationary marked
point processes in Section 1.3.5 of Franken et al (1982). This result shows that each of the
m — 1 streams is equally likely to produce the current point (i.e., the m possible marks of
the current point are equally likely), and that the residual time to the next point in each of
the remaining m — 1 streams has the distribution G. It follows that the stationary version of
(R?l), .. .,R?m_l)) at completion times coincides with the order statistics of m—1i.i.d. random

variables with distribution (/. This implies that a stationary solution to (2.4) is

m—1

(2.6) p(t) = (m =1 ] g(t:)

=1

which a substitution into (2.4) will verify.



As a consequence, we have the limit

(2.7) Ly ——ZT:>am_R ZR* as n — 00,
=1
where R}, ..., R} _; are i.i.d. random variables with distribution G

We now consider expected values. Note that the residual-life distribution G has mean
(o2 + 72)/21 = 7(v? 4+ 1)/2, where v = o /7 is the coefficient of variation of F (recall that
T and o are the mean and standard deviation of F'). Uniform integrability follows from our

assumptions on F, so from (2.7) we obtain

(2.8) Elay, ) — Elay,] = E[ -

ZE n — 00

or, equivalently,

(2.9)  Elay.] = /000[1 _ G ()]da — (m_ 1) . (”2; 1) +o(1) as n— oo

m

An important special case is the uniform distribution, F(¢) = ¢, with g(¢t) = 2(1 — 1),

0 <t < 1. From (2.9), we obtain

(2.10) Elan] = /01[1 (2t — 2yt - M)

3m

A direct calculation gives

om 41 T (3)T(m)
)

Coffman et al. (1993) also consider rates of convergence. For our distributions F, it is

(2.11) Elomn] =

+o(l) as n—o0.

easily verified that, from any point of the (compact) state space to any other such point, the
r-step transition density is strictly positive for at least one r < 2(m — 1). Then Doeblin’s
condition holds and convergence to the stationary distribution is geometrically fast (see, for
example, Meyn and Tweedie (1993), Section 16.2). Similarly, it can be shown that the o(1)
term in (2.9) can be sharpened to O(p") for some p,0 < p < 1.

A simplified analysis applies to the exponential distribution F(t) =1 — et/7, ¢ >0, which
falls outside our standard class of distributions. In this case the C),, n > m, are the epochs of
a Poisson process at rate m/7, so that for all ¢ and n > m, the R and thus R are m —1 i.i.d.

random variables with the distribution G' = F. Then (2.3) gives

(2.12) Elay, ) = r[H, — 1] forall m and n > m



where H,, =37, 1/j (see also Coffman and Gilbert (1985)).

The exponential case with m = 2 was examined by Coffman and Wright (1992) under
more general assumptions, namely, an initial delay z (release time) on one of the processors
and a random number N of tasks having either a geometric or a Poisson distribution with
mean n. Explicit, though complicated, expressions for the moments E[Lgm(x)] were studied
by computing a variety of asymptotics as n — oo and & — oo at different rates.

Because of the increased use of massively parallel computers, it is natural to consider
asymptotics as m — oo. From expressions like (2.11) and (2.12), large-m asymptotics for the
mean of the time-stationary random variable a,,, can be obtained directly. For example, (2.11)

and asymptotics for the gamma function give

(2.13) Ela,) = % — 2\\//_% + 0 (%) as m — 00

when F' is the uniform distribution on [0, 1]; similarly, when F' is the exponential distribution,

(2.12) and asymptotics for H,, give
(2.14) FElagp)=71(lnm—-1—-7)+0o(1) as m— oo,

where v is Euler’s constant (0.5772...).
More generally, we can obtain asymptotic properties of Ela,,] from (2.9). When F has
support [0,b], (2.7) and the strong law of large numbers implies that

(*+1)

(2.15) Oy —a=b—r1 5

w.p.l as m—oo.

From (2.15) we can see how F' influences the asymptotic error a. For a given bound b, a
decreases in 7 and v2. For given b and 7, the lowest value of a is b/2, which is approached
by the two-point distribution with mass 7/b on b and mass (b — 7)/b on 0; e.g., see p. 120 of
Whitt (1984).

It is interesting that for this extremal two-point distribution the greedy policy is optimal
for all m and n; i.e., there is a distribution with finite positive variance for which greedy gives
the minimum expected error. The optimality of the greedy policy in this case is easy to see
because the makespan is the same as for a random number of tasks, each with a constant
running time b. In this case, all work-conserving policies (in which no processor is idle when
there is a task that has not started) are optimal. This two-point distribution is not in our class

of distributions, but it is approached by such distributions.



The term R(*

m—1) in a,, obviously becomes even more important if F' does not have finite

support. The asymptotic behavior of R}, _; is described by the classical extreme-value theory;
see Leadbetter, Lindgren and Rootzén (1983) and Reiss (1989). This extreme value theory
applies to the iterated limit as first n — oo and then m — oo provided (2.9) is still valid.
Since the superposition of m i.i.d. renewal processes, appropriately scaled, converges to a
Poisson process as m — 00, e.g., see Cinlar (1972), one might expect that the general formula
for Ela,,]in (2.8) and (2.9) would in some sense approach the formulas for the exponential dis-
tribution in (2.12) and (2.14), but this is not the case. For the question here, the superposition

limit theorem does not apply. The superposition limit theorem implies that the distribution

(m—1)

of R(*l) = RTSL is asymptotically exponential as m gets large, but in (2.8) we focus on R
m—1
*
and Z; R(i).
An interesting open problem is the joint limiting behavior as m — oo and n — oc. Above,
we considered only the iterated limit in which first n — oo and then m — oco. If m = n,

then the extreme-value theory for i.i.d. random variables with distribution F describes the

makespan. It would be interesting to develop different asymptotics in intermediate cases.

3. Off-Line Policies

The off-line component of the LPT policy introduced in Section 1 is simply an initial sorting
of the list (T4,...,T,) into decreasing order. Results for LPT as precise as those for the greedy
policy in Section 2 have not been obtained. On the other hand, asymptotic behavior for fixed
m is rather well understood. For comparison with Section 2, we illustrate the main results by
the following, taken from Rinnooy Kan and Frenk (1986) and Frenk and Rinnooy Kan (1987).
For any fixed m, a,,,, = 0 a.s., n — o0, so long as F'is strictly positive in a neighborhood
of the origin. Moreover, if F(t) = t*, 0 <t < 1, for some 0 < a < oo, then the convergence
rate is O(loglog n/n)'/*, and the moments are bounded by E[a%n] = O(n=%/*). Results in a
similar vein were presented by Boxma (1985), Coffman, Frederickson, and Lueker (1984), and
Coffman, Flatto, and Lueker (1984).

Consider next the superior differencing methods of Karmarkar and Karp (1982), with the
restriction to m = 2, for simplicity. We describe the largest-first differencing method (LDM);
it is a particularly simple differencing method, and no other such method is known to have

a better asymptotic performance. Other methods that have been successfully analyzed are

either much more elaborate (Karmarkar and Karp (1982)) or have worse performance (Lueker



(1987)); see also Coffman and Lueker (1991) for a discussion of these methods.

LDM starts by computing the absolute difference d between the largest two tasks in the
current list; it then replaces these two tasks by a single task of duration d, leaving a list with
one fewer task. LDM iterates this procedure n — 2 more times until a single task remains; the
duration of this task is 2aq,, = 2Ly, — 5,,. Noting that the largest two tasks being differenced
at each step are to be put on different processors, it is a simple exercise to work backward
through the differencing sequence to determine a partition of {T%,...,T,} that gives the final
difference 2a5 ,,. An intriguing problem set by Karmarkar and Karp over 10 years ago was a

proof that, under LDM with F' the uniform distribution on [0, 1],
(3.1) Elag.,] = O(n=closm)

for some constant ¢ > 0. The recent work of Yakir (1993) provides an elegant solution to this
problem. We give below Yakir’s important new insight into the structure of LDM.

The new insight is based on Lueker’s (1987) initial transformation of the problem. This
J

transformation uses the well-known fact that, if 5; = ZX“ 1 <j < n+1,are the partial
=1

sums of n + 1 i.i.d. exponentials X; with parameter 1, then the ratios Ss.lu""’ Ssj-l are
independent of 5,41 and equal in distribution to T(yy,...,T(,), i.e., to the order statistics

of n independent samples from the uniform distribution on [0,1]. Let a3 ,,as, denote the
errors produced by LDM from the respective lists (T1,...,7T,), (51,...,9,), and let 2 denote
equality in distribution. Then one obtains s, 4 Sn410Q2 5, with S, 41 and ag,, independent,

s0 E[S41] = n + 1 gives E[ag,] = = E[ds.,]. Thus, to prove (3.1) it is sufficient to prove

n+l
that E[ay,] = O(n=¢18") for some ¢ > 0.

J
Let X7,..., X[ denote the spacings between the tasks S7 = > XTI, 1 <j <r, just after the

=1
(n — r)th iteration of LDM, 1 < r < n — 1; the initial spacings X" = X; are i.i.d. parameter-1

exponentials. The (n — )" iteration of LDM inserts the difference X = §7 — S7_, into the
sequence S7,...,5_, to form the sequence S{_l, .. .,S;:ll. The key result, easily proved by
induction on r, is that, if the X/, 1 <1 <r, are independent exponentials with parameters A,

then the following holds:

(i) Giventheevent {S7 , < X7 < §7},i=1,...,7—2, the spacings in the list (5] ~',...,577]),
i.e.,

{Xihcrciot, X7 =50, 57 = X7, AX Fivicher—2



(i)

(3.2)

are (conditionally) independent and exponential with parameters {A} }1<r<i, {AL+A] Fig1<h<r—2-
Given the remaining possibility {X7 > ST_,}, the X7, 1 <i¢<r—2, and X] — 5/_, are

independent exponentials with parameters {A] + A7} i<p<r—2 and A7.

The event probabilities are

=P
Pr{Si_1 < X <5} = . —, 1<i<r—-2,
r{9_1 < X] < 5;} /\f+/\§]1;[1/\§+/\§ 1 <r
r—2 A’/’
Pr{X’ > 85,_,} = J
r=uT LLAT 4 A
j=1"17 T

It follows immediately that the sequence (A7, ..., A7), (A*71 ..., A"71), ..., (A]) has the Markov

property with transition probabilities given by (3.2). By (i) and the initial state A} =

\p >

Yakir’s (1993) bounds establish that, to within a constant factor, A] grows as n

A% = 1, we note that A} < /\711_1 < --- < Al and for each r = 1,...,n, we have
AL > -+ > AL The proof of (3.1) now reduces to an estimate of the growth rate of Aj.

clog(n—r) for

some ¢ > 0, as desired.

Recent simulations of Bentley (1993) suggest that the value of ¢ in (3.1) is close to 1/2,

with 2 being the base of the logarithm. Johnson et al. (1991) ran experiments comparing L.DM

with simulated-annealing approaches to the makespan minimization problem. The clear supe-

riority of LDM in this comparison contributed to their conclusion that the local optimization

framework of simulated annealing was not well suited to makespan minimization problems.

With m = 2 and F the uniform distribution on [0, 1], a rough summary of the expected-

error results is that, for the greedy, LPT, LDM, and an optimal policy, we have respectively,

E[a2,n] = 0(1)7 O(n_l)v O(n_dogn)v O(pn)

for some ¢ > 0, 0 < p < 1. The O(p™) result for optimal scheduling is not discussed here

(see Coffman and Lueker (1991), Section 4.3), and in fact remains a conjecture. The strongest

results of this type are those of Karmarkar et al. (1986) who showed that the median of the

final difference, 2a; ,,, is bounded by a constant times n/2".

4. Policy-Free Error Asymptotics

From (2.7) it is clear that the relative size of the error a,,, compared to the makespan

L, 5 itself is asymptotically negligible as n — oo for the greedy policy. For large n, obviously

10



the dominant part of L, ,, for any policy is the normalized sum of all the processing times. In
this section we establish a stronger result. We show that for any policy the limiting behavior
of the error a,, , as n — oo is independent of the policy. In particular, the expected error
Elay, ,] for a given policy is asymptotically negligible compared to the standard deviation of
the makespan (which is the same as the standard deviation of the error). In a probabilistic
setting, what we can gain from a good policy is asymptotically negligible as n — oo compared
to our degree of uncertainty about the makespan.

Central limit theorems (CLTs) and functional central limit theorems (FCLTs) provide
asymptotics that exhibit this property for general distributions and a policy-free set-up, i.e., a
model yielding results simultaneously valid for all policies. The policies to be considered in the
illustrations below are those in the class of list scheduling (1.S) policies. Such a policy begins
by computing a permutation 7, = (7(1),...,7(n)) of the integers 1,...,n, and then schedules
the ordered list (Tﬂ(l), .. .,Tr(n)) by the greedy rule. For any given sequence T1,7T5,..., an LS
policy defines a sequence of permutations {7,,n > 1}. Note that the policies of earlier sections
are all LS policies.

Let 5, and M, be the sum and maximum of Ty, ..., T,, and note that both quantities are
invariant under permutations of Ty,...,T,. Let the number m,, of processors be a nondecreas-
ing function of n, and denote the makespan and error under permutation 7, by L™ and afr, .

From (2.3) we obtain the basic inequality
(4.1) |Sn — mp L < m, M, forall =,

from which we see that the limiting behavior of L7», afr  is determined by the asymptotics of
(Sn, M,,). Typically, when a CLT holds for S5, M, is asymptotically negligible compared to
Sin. (See §4.5 of Resnick (1986) for further discussion of the asymptotic behavior of (5, M,,).)

In our case, we have the CLT
(4.2) V28, —nr) = N(0,0%) as n— oo,

where = denotes convergence in distribution and N(a,b) denotes a normally distributed ran-
dom variable with mean a and variance b. It then follows from (4.1) and Theorem 4.1 of
Billingsley (1968) that, if

mnn_l/zMn:>0 as n— o0,

11



then for any sequence of permutations {m,,n > 1},
(4.3) n~2m,at = N(0,06%) as n— oo .

For example, suppose T' is exponentially distributed with mean 7. Since M, /Inn = 7, n — o
(e.g. see Leadbetter, Lindgren, and Rootzén (1983)), then (4.3) holds if m, = o(n'/?/Inn),
n — 00.

For a fixed number m,, = m, n > 1, of processors, no explicit assumption about M,, needs
to be made. This can be seen in the general setting of the following FCLT for 5,,. In terms of

the usual diffusion-limit scalings, define the normalized processes

S| — TNL
S, = Su(1) = om0
n
Lt — (r/m)nt
a = al(t) = L] 1(/2 ) , t>0.
n

If B denotes standard (zero drift, unit diffusion) Brownian motion, then we have
(4.4) S, =0B as n— o0,

where = denotes weak convergence in the Skorohod space D = D([0,1],R) (see Ethier and
Kurtz (1986) for technical details). By the continuous mapping theorem with the maximum
jump functional, we deduce from (4.4) that n~Y2M, = 0 as n — oo. Hence, for any sequence

of permutations {m,,n > 1},
a .
(4.5) a;”, = —B in D as n—oo.
’ m

This gives the approximation

(4.6) 1o~ D 2N (0, 0% m?)
m

m,n

in which 7, does not appear, since the effect of the permutation 7, is of order M,, which is
asymptotically negligible compared to n'/2.

We remark that the setting for the above limit laws can be broadened considerably, covering
interesting cases where the independence assumption or the identical-distribution assumption

does not hold.
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5. Flow Shops

In a variant of multiprocessor scheduling, called permutation flow-shop scheduling, the pro-
cessors are connected in tandem and tasks consist of ordered sets of operations (T, ..., Tim),
1 <7 < n, to be done in sequence on Py,..., P,. A schedule is determined by a permutation
Tn = (7(1),...,m(n)); on processor j for each j the operation of Ty ;) ; must precede the oper-

ation of Tr(;41),5, 1| <1 < n—1. Thus, we have a tandem queueing system with m single-server

Tn
m,n

queues and n arrivals, all available at time 0. The makespan L is the finishing time of
Tr(n),m- In the problem considered here all mn operations are i.i.d. random variables; for
simplicity the distribution F' and its properties will be carried over to the flow shop problem,
but it will refer to operation times rather than entire task times.

The combinatorial problem of selecting an optimal permutation m, is NP-complete for
m > 3, as shown by Garey, Johnson, and Sethi (1976), but Johnson (1954) proved that the
following simple rule is optimal for m = 2: if min(T},7;2) < min(T;2,T;1) then schedule T;
before T;. We return to an analysis of Johnson’s rule after discussing the greedy rule for general
m.

As before, the greedy rule sequences tasks in the order given, i.e., with =, = (1,...,n). The
makespan is again denoted by L., ; the error is now defined to be oy, , = Ly — (n+m—1)T,
where (n4+m—1)7 is a trivial lower bound to the expected makespan. Glynn and Whitt (1991),
motivated by earlier work of Srinivasan (1993), studied in depth the asymptotic behavior of

Ly, as m, n, or both tend to infinity. An immediate dual is obtained for each limit by the

easily proved symmetry,

(5.1) {Lij:1<i<m1<j<n}E{l;:1<j<n1<i<m}.
Theorem 2 of Iglehart and Whitt (1970) gives an FCLT for each m,

(5.2) n_l/zamm = oa,, as n— oo,

where &, is a functional of m-dimensional Brownian motion and convergence is in the appro-
priate Skorohod space. By applying the subadditive ergodic theorem (Liggett (1985), p. 277),
Glynn and Whitt established that

(5.3) m~ &, =y as m— oo,
where v is a positive constant. Analysis has so far yielded little information about &, or 7.
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This prompted a simulation study by Greenberg, Schlunk, and Whitt (1993), which provided
further insights, e.g., the simulations suggest that v = 2.
By means of a strong approximation theorem, Glynn and Whitt proved a result more

general than the above iterated limit: If for any ¢, 0 < € < 1, m,, = n'~¢, then
(5.4) (nm) ™ P, =y as n— oo,

with v as in (5.3).
If m,n — oo at comparable rates, then hydrodynamic limits for L,, , emerge. By applying
the results in Section 4.2 of Srinivasan (1993), Glynn and Whitt showed that, if the T; are

exponentially distributed with mean 1, then
(5.5) n_lLLan — (1+v2)* wplas n — 0.

for any z > 0. Glynn and Whitt also extend this result to any distribution with an exponential
tail; they get a deterministic function y(2) as the limit which, according to simulations, depends
on the distribution. They verify that v(2) is strictly increasing and concave and provide upper
and lower bounds.

We return now to an analysis of optimal scheduling, and discuss results recently given by
Ramudhin, et al. (1993) for the case m = 2 with F' uniform on a finite interval. Ramudhin,
et al. begin by introducing the following more easily analyzed, stochastically symmetric version
of the optimal policy. Partition {T},...,T,} into the sets 77, 75 of tasks with shorter operations
on Py, Py, respectively, ie., Ty = {T; : Ty < Tyo}, To = {T; : Ty < T;1}. An optimal policy
first schedules the tasks in 7y in increasing order of the T;; and then schedules the tasks
of 73 in decreasing order of the T;3. An asymptotic analysis of this schedule shows that

Loy 4 T+ > Tit+I,if Y Th < Tz, and Ly, 4 S Ty +The+ 1, otherwise, where I = 0
=1 =1 =1 =1

1=
n

o3
a.s. as n — o0. The asymptotic makespan then becomes max{>_ T;y + T2, T11 + 5. Tiz}, in
the sense of the limit law

(5.6) az, = o max{Ny, No} as., n— oo,

where Ny, Ny are i.i.d. standard normal random variables. This yields the estimate
(5.7) Elaz,) = oy/n/m +o(v/n) as n— oo,

which differs only in the multiplicative constant from that obtainable from (5.2).
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Ramudhin et al. present several other results on queue lengths, workloads, and waiting
times under the optimal policy and a simpler, near optimal policy. A nontrivial lower bound
on expected optimal makespans for m > 3 remains an open problem. In particular, it would
be interesting to see whether Efa,, ,]| grows at least as fast as y/mn under an optimal policy.
The upper bound provided by the greedy policy would then show that this growth rate is exact

within a constant factor.
6. Final Remarks

When viewed against the much broader and more varied background of combinatorial
makespan scheduling problems, probabilistic analysis appears to be in its infancy. A few of the
many variants, scarcely touched at present, are task precedence constraints, dedicated proces-
sors, set-up times, interprocessor transfer times, variable profiles, and preemptive sequencing
policies (see Lawler, et al. (1992)). Modeling issues are often an initial hurdle in problems
with additional structure. To obtain a tractable model, the uniform or exponential is often the
distribution of choice. A case in point is the recent work of Dell’Olmo, Speranza, and Tuza
(1993) on dedicated three-processor systems. In this variant of multiprocessor scheduling, each
task specifies a nonempty subset of the processors that it requires throughout its running time.
In a uniform model of the processors required by tasks, Dell’Olmo, Speranza, and Tuza show
that, for m = 3 and for all n sufficiently large, optimal schedules can be computed in linear
time for over 95% of the instances; this property of an instance is checkable in advance.

However, uniform assumptions do not always lead to interesting structures, as the follow-
ing classical model with precedence constraints illustrates. Add to the problem instance of
Sections 2—4 a random irreflexive partial order < on {77, ...,T,} representing precedence rela-
tions (7; < T; means that T; can not begin until 7} is finished). To define the term “random,”
a natural first assumption would be that < is chosen uniformly at random among all par-
tial orders on {T1,...,T,}. However, a typical such partial order has height 3 (see Kleitman
and Rothschild (1975)), and hence yields a simplistic model for many applications of makespan
scheduling. A more promising model is that studied by Winkler (1985) in which random orders
are constructed from the intersection of £ > 2 random linear orders, or equivalently, the random
orders induced by the ordinary product order on » points chosen independently and uniformly
at random from the unit hypercube [0,1]%. Tn the induced order, (z1,...,2%) < (y1,. .., yx) if

and only if z; < y; for all e = 1,..., k, with strict inequality holding for at least one ¢. For large
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n, typical such random orders have the properties: (i) there are no isolated tasks, (ii) there
are (Inn)*=1/(k = 1)! minimal and (by symmetry) maximal tasks, (iii) the height is c¢;n'/* for

k=1)/k for some constant cz;

some ¢, 0 < ¢ < e, and (iv) the width is approximately czn(
in the balanced case, with & = 2, ¢4 = ¢}, = 2. An interesting sample problem might be to
determine asymptotic expected makespans under a greedy policy with random partial orders
as above and all T; = 1. In this case, a greedy policy could be highest-level-first (the next
task to be scheduled is one that dominates a longest chain), with some rule for resolving ties
amongst highest-level tasks.

Many other open problems exist in the same settings as discussed here, but with different
performance metrics, such as the sum, possibly weighted, of task finishing times, and tardiness
measures; again see Lawler et al. (1992). One fundamental variant that has received a great
deal of attention is the following dual of the multiprocessor scheduling problem: for a fixed
makespan (deadline) that exceeds the longest task running time, determine the least m such
that {TY,...,T,} can be scheduled on Py,..., P,, with all tasks finishing by the deadline. This
is the one-dimensional bin packing problem; the monograph by Coffman and Lueker (1991)

covers much of the probabilistic analysis of this problem.
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