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Abstract

A robot is deployed by a Web search engine in order to maintain the currency of its data
base of Web pages. This paper studies robot scheduling policies that minimize the fractions
r; of time pages spend out-of-date, assuming independent Poisson page-change processes,
and a general distribution for the page access time X. We show that, if X is decreased
in the increasing-convex ordering sense, then r; is decreased for all ¢ under any scheduling
policy, and that, in order to minimize expected total obsolescence time of any page, the
accesses to that page should be as evenly spaced in time as possible.

We then investigate the problem of scheduling to minimize the cost function ) ¢;7;,
where the ¢; are given weights proportional to the page-change rates p;. We give a tight
bound on the performance of such a policy and prove that the optimal frequency at which
the robot should access page i is proportional to In(h;)~!, where h; := Ee#X . Note that
this reduces to being proportional to p; when X is a constant, but not, as one might expect,
when X has a general distribution.

Next, we evaluate randomized accessing policies whereby the choices of page access are
determined by independent random samples from the distribution {f;}. We show that when
the weights ¢; in the cost function are proportional to g;, the minimum cost is achieved when
fi is proportional to (h;)~! — 1. Finally, we present and analyze a heuristic policy that is
especially suited to the asymptotic regime of large data bases.

Keywords: Web Search Engines, Web Robots, Spiders, Stochastic Scheduling, Stochastic
Ordering.



1 Introduction

The Web’s role as a major information publishing and retrieving mechanism on the Internet
continues to grow extremely fast. Indeed, the amount of information on the Web has long
since become too large for manually browsing through any significant portion of its hypertext
structure. Instead, the Web offers search engines for this purpose; Alta Vista, Lycos, Infoseek,
Magellan, Excite, and Yahoo are but a few of those available. These systems consist of indexing
engines for constructing a data base of Web pages, and in many cases robots for bringing
information to the indexing engine. To maintain currency and completeness of the data base,
robots periodically make recursive traversals of the Web’s hypertext structure by accessing
pages, then the pages referenced by these pages, and so on. There are currently well over 150
robots on the Web. Most of them, including the ones of interest here, are designed for resource
discovery, but others are used for mirroring, maintenance (link checking), statistics, etc. For
an extensive discussion of Web robots, see the work of Martijn Koster at

http:/info.webcrawler.com/mak/projects/robots/robots.html

and for a recent discussion of page change rates, see [8]. In the literature one finds more
colorful terms for robot, such as wanderer, crawler or spider, and the notion of a robot being
‘routed to’ or ‘visiting” a page. This paper keeps with the ‘robot’ and ‘accessing’ terminology

throughout.

We study problems of scheduling a robot that maintains the currency of existing pages
in search-engine data bases. We assume that the set of data-base pages is fixed, but as we
shall see, our results can be promoted as heuristics for data bases that acquire new pages and
drop old pages over time. A specific objective will be to find robot schedules that minimize
the obsolescence of the data base in some useful sense. For example, assume there are N Web
pages, labeled 1,2,..., N, which are to be accessed repeatedly by a robot, the duration of each
access being an independent sample from a given distribution. Assume also that the contents
of page ¢ are modified at times that follow a Poisson process with parameter u;. A page is
considered up-to-date by the indexing engine from the time it is accessed by the robot until the
next time it is modified, at which point it becomes out-of-date until the robot’s next access.
Let r; be the fraction of time page 7 spends out-of-date. The problem is to find relative page-

access frequencies and a sequencing policy that realizes these frequencies such that the objective



function €' = >, c; < 7, is minimized, where the ¢; are given weights. Under simplifying but
plausible assumptions on the weights, page access times, and the class of allowed policies, we

obtain explicit solutions to this problem.

From a theoretical point of view, our problem is closely related to those multiple-queue
single-server systems usually called polling systems in the queueing literature. Indeed, the
robot can be considered as the server and the pages as the stations in the polling system.
The durations of consecutive page accesses correspond to switch-over times and the page mod-
ifications correspond to customer arrivals. The service times in this polling system are zero.
Our two-stage approach of optimizing robot schedules (determining access frequencies and then
finding a schedule that realizes them) is similar to the approach in [5]-[7] of optimizing visit

sequences in polling systems.

An extensive literature exists on the analysis and control of polling systems. The interested
reader is referred to the book of Takagi [17, 18] for general references; the special issue of the
journal Queueing Systems, Vol. 11 (1992) on polling models and the recent thesis of Borst
[4] can be consulted for more recent developments. In particular, the polling systems with
zero service times were motivated by communication networks such as teletexrt and wvideotex
where pages of information are to be broadcast to terminals connected to a computer network
[1, 9, 14]. However, the problem here has not been analyzed. Indeed, in the usual analysis of
polling systems with unbounded buffers, interest centers on mean waiting times and mean queue
lengths, whereas in our problem, the performance measure of interest, viz., the obsolescence
time, corresponds to the maximum waiting time of a customer during a visit cycle of the server.
An alternative view of our model identifies it with a polling loss system having unit buffers, in
which our obsolescence time becomes the waiting time. With this point of view, our model has

potential use in mainenance applications.

The next section is devoted to a precise formulation of our model, and a review of some
useful concepts in stochastic ordering theory. Section 3 begins by proving two properties of
robot scheduling policies: (i) expected obsolescence times increase as the page-access time
increases in the increasing-convex-ordering sense, and (i), by Schur-convexity results, accesses
to any given page should be as evenly spaced as possible. We then derive a tight lower bound
on the cost function ' assuming that the weights ¢; are proportional to the p;. These results

yield a formula for optimal access frequencies. Our techniques can be extended to general ¢;,



but explicit formulas are not attainable in general.

To motivate the assumption on weights, note that a useful choice for the ¢; is the customer
page-access frequency, for in this case the total cost can be regarded as a customer total error
rate. The special case where the customer access frequency ¢; is proportional to the page-change
rate y is reasonable under this interpretation - the greater the interest (access frequency), the

greater the frequency of page modification.

Sections 4 and 5 deal with the problem of sequencing page accesses optimally, or near
optimally, so as to realize a given set of access frequencies. This material is prefaced by a
discussion at the end of Section 3 which relates our scheduling problem to those that come

under the heading of generalized round-robin or template-driven scheduling.

In Section 4, we introduce randomized page accessing, where each access is determined by
an i.i.d. sample from a distribution {f;}. We show how to find that choice for this distribution
which minimizes C'. In Section 5, we develop a policy that performs well when N is large. It
is based on work of Itai and Rosberg [12] (in an entirely different setting) and yields a cost
within 5% of optimal. Some directions for further research are mentioned in Section 6, which

concludes the paper.

2 Preliminaries

Let {X%} be the sequence of durations of consecutive page accesses by the robot, each Xy
being distributed independently as a random variable X. For scheduling policy =, let =, €
{1,2,..., N} be the scheduling decision for the n-th access, i.e., the index of the n-th page to
be accessed by the robot under 7. Define the interaccess distance d;(ﬂ') = n;(ﬂ) — né_l(ﬂ),
where n;(ﬂ) is the index of the j-th access of page 1, i.e., n;(ﬂ) = inf{n > né_l(ﬂ) | T = 1},

and where ni(7) = 0. Let X]i = X}(ﬂ) be the j-th interaccess time of page i, i.e., the time

7

between the (j — 1)-st and j-th page-i access completion times. We have X} = Z:J:n;_l_l_l X,

so the random variables X]i are mutually independent. Note that, if page access times X}, are

exponentially distributed, then X} has an Erlang distribution of d; stages.



Hereafter, except in definitions, the policy © will normally be omitted from our notation; in

such cases, the policy will always be clear in context.

Let Z; = Z;(ﬂ) be the time that page 7 is out-of-date during the j-th interaccess time

of page i. Let mi = ml (7) be the number of accesses of page i among the first n accesses:
m! = S 7_, 1{r, = i}, where 1{-} is the indicator function. Hereafter, we consider only

stationary scheduling policies in the sense that, for each such policy, the limit

7

fi = fi(m) = lim =

n—oo n

(1)

exists and is strictly positive for all ¢, 1 <7 < N. We call f; the access frequency of page 7. We
also require that the limits lim, ., > 7 Z;/n and lim, o0 3074 E[Z;]/n exist and be equal.
These last assumptions hold under fairly mild conditions, e.g., when the sequence {d;(ﬂ')}] is

stationary and ergodic (cf. Kingman [13]).

The obsolescence rate r; = r;(7) of page ¢ is the limiting fraction of time that page 7 is out

of date; precisely, it is defined as

my i lim L?L & % m; i
ri = lim — = . = TX] lim ——— (2)
n—0c0 \Mp Yi Mn Y1 n—00 n
L Xy B X
n—00 n

In particular, when policy 7 is cyclic with cycle length K, i.e., when T, x4k = T(n_1)K 4k for all

1<k<Kandall n=1,2,... then

7

1 My :
i = W[X];E[Zj]’ (3)

where m¥- is the number of page-i accesses during a cycle. The cost function to be minimized

is the weighted sum of the obsolescence rates:

N
C:C(W):z:ci i (4)

where ¢; are given positive real numbers and the minimization is to be over all stationary

scheduling policies.



A few basics in stochastic ordering conclude this section. For two m-dimensional real
vectors x and y, X majorizes y, written x > y, if Zle T 2> Zle Yy for k =1,...,m -1
and Y270 @ = 2oLy Y, where xp; is the ith largest component of x. Intuitively, y is better
balanced than x. A function h is said to be Schur-convexz if h(x) > h(y) whenever x > y. See

[15] for more details about this and related properties.

A random variable Yj is said to be no greater than a random variable Y5 in the convex
ordering sense, denoted Y <., Y3, if E[h(Y1)] < E[h(Y?2)] for all convex functions h, provided
the expectations exist. If in this definition ‘convex’ is replaced everywhere by ‘increasing and
convex,’ then we write Y| <;., Y5. As is easily verified, Y; <. Y5 implies that Y7 has the same
mean but smaller variance than Y5. It is also easy to see that Y7 <., Y5 implies Y7 <;.; Y5. See

[16] for equivalent definitions and further properties.

3 Schur Convexity and a Lower Bound

Recall that a page is considered out-of-date from the time it is modified until the next time it is
accessed by the robot. Thus, if page ¢ is not modified during its j-th interaccess interval, then
the obsolescence time is Z; = 0. Otherwise, Z; is the time that elapses from the first moment
page ¢ is modified during its j-th interaccess interval until the end of that interval. Recall also
that the modification (or mutation) epochs of page i follow a Poisson process with parameter y;.
By the memoryless property of the Poisson process, the time that elapses from the beginning of
page 2’s j-th interaccess interval to the first subsequent mutation has an exponential distribution

with parameter ;. Let RY, R}, ... be an i.i.d. sequence of such random variables, so that
74 (X; - R;) , (5)
where 2% denotes max(z,0) and £ denotes equality in distribution.

As an immediate consequence, we obtain

Theorem 3.1 If the page access time is decreased in the increasing convexr ordering sense, then

the obsolescence rate is decreased for all pages under any scheduling policy.



Proof. Let {X]} be a sequence of access times distributed independently as X', and define
{X’;}j and {Z’;}j as for Xj. Assume that X’ <;., X. Then,

7L (X7 - R;i)+ oo (X1 - R;i)+ 1 7,

7
J

and so E[Z’;] < E[Z;] Thus,

as desired. [ |

Returning to our main problem, where the distribution of page access times is assumed
given, we now show that the obsolescence rate is a Schur convex function of the vector of
interaccess distances. For this, we need the following calculation which will also be useful for

later results. Define h; = E[e™#X], the Laplace transform of X evaluated at ;.

Lemma 3.1 For any page i,

. : 1 i
BZ]) = diE[X] - — (1 _ hd) .
Hi

Proof. Let G; be the probability distribution of X]Z We have from (5) that

E[Z]] = /0 P(Zi > 2)dz

/ P(X; — R; > z)dz
0

I



which yields the lemma. |

We can conclude from the above proof that the result of Theorem 3.1 still holds when the
increasing convex ordering is replaced by the weaker Laplace-transform ordering (see [16]). It

follows from a result of Schur (cf. [15, Proposition 3.C.1, page 64]) and Lemma 3.1 that

Theorem 3.2 For any fixed number n of page-i accesses, the expected total obsolescence time

of page i, Yy E[Z;] is a Schur convex function of the distances d;, j=1,...,n.

Thus, in order to minimize the expected obsolescence time, the accesses to any particular

page should be as evenly spaced as possible.

An algorithm that computes a schedule of the robot that implements a given set of access
frequencies in the sense of (1) is called an accessing policy. In these terms, the scheduling policies
proposed in this paper consist of two stages; the first computes a set of access frequencies {f;}
and the second is an accessing policy that implements {f;}. The even-spacing objective of

accessing policies yields a lower bound, as follows.

Theorem 3.3 The obsolescence rate under any accessing policy implementing the access fre-

quencies { f;} satisfies for each i,

1 i i ;
P> —— (E[X] _ iy ih}/ﬁ) .
E[X] i
Proof.
" B[
r, o= 1 - lim 2i=1 []]
1 ™ 1 di
= —— lim — (d’EX ——(1—/12]))
A A 2 \ G P -
1 mi 1T g
= ——-lim — [nE[X]-—4+—)> b’
E[]”*mn( [X] i uz; )



B 1 fi ds
= m(E[X] uZ—I_Enh—%OEZh )
1 fz n n/m
> (P11 4 S
1 fi o fiy
- —(E[x]- L4 L
i (PO = 2 L)

where the inequality comes from the Schur convexity of Z " h % in the d“ (cf. Theorem 3.2).
|

The above lower bound can be achieved only in special cases. For instance, if the frequencies
are all equal, the policy that accesses pages 1,2,..., N cyclically yields this optimal obsolescence
rate. Another example where we can find a feasible accessing policy achieving the lower bound
is when the frequencies are of the form f; = 1/2%, where k; is an integer for every i. We
return to the general case after considering the cost-minimization theorem. The proof of the
following theorem gives a solution technique applicable to general weights ¢; and shows that

the technique leads to explicit results in an interesting special case.

Theorem 3.4 Assume that the weights in the cost function are proportional to the mutation

rates of the pages, i.e., ¢; = cop; for allv=1,2,..., N. Then for any scheduling policy,

N 1
C=cq- ZIMZTZZCO(,M E Hh) (6)

=1

where = Zf\; i

Proof. For the moment, let the ¢; be general. Following Theorem 3.3, we have C' > C*,

where C* is the solution to the following optimization problem:

N
* s 1 _ 1 . 1 . 1/1’1‘)
e =min3e: (1= g+ g @)



subject to x; > 0 and
N
in =1.
=1

To solve the above problem, we use Lagrange multipliers and define

N N
1 1 i
ﬁ(wla---awNa/\):ZCi (1—E[X]M2$Z+E[X]Iu2$zhzl/ )—I_/\(le_l)

By the convexity of the function

al 1 1
Z c; (1 — z; + wzhll/%)
Y] B
in the vector (21,...,2n), the solution satisfies the necessary and sufficient condition
oL ¢ 1z | Inhy l/x‘)
= - 1—h'"" h '™t A=0
dx; wi [ X] ( oot i * ’

oL N
= = > 2;,—-1=0.
I i=1

(8)

(9)

Observe that h; < 1, so that h}/xi < 1. One can easily check that the function 1 —y+ylny

is strictly decreasing in y for y < 1. Thus, under the assumption that ¢; is proportional to

i, we conclude from (8) that all h}/xi are identical and that the minimum is achieved, by (9),

when
In A, _ hl(hi)_l
Zﬁl In h; - Zﬁl In(h;)~1 ‘

;=

(10)

This solution is positive so it is also the solution to the minimization problem in (7). Hence,

al Co u Co u 1/
cr = i — = ; R
;CO" E[X]Ew + E[X]Z::x i

1

_ ot ) BEERE I
R Gllzo s o ke ORI § Bkl Ul 755 oo | OO X

=1



Note that

S0
1 1

N
# = g g L O

and the proof is complete. |

When the weights in the cost function are not proportional to the mutation rates of pages,
one can still use Lagrange multipliers to solve the optimization problem. As noted earlier,

however, we do not have closed-form solutions in general.

It is also worthwhile noticing that the optimal access frequencies (cf. (10)) in the above lower
bound are not necessarily proportional to the page mutation rates u;, a fact that has emerged

in the context of other polling systems (see, e.g., [5]-[7]). Rather, they are proportional to

-1
In(h;)™! =1In (E[e‘“iX]) . Proportionality to the p; occurs only when X is a constant. Note

-1
also that the magnitude of the difference between p; E[X]and In (E[e‘“iX]) is large if Vaar(X)

is large (or X is large in the convex ordering sense).

To summarize, the results of this section show that, if the weights in the cost function are
proportional to the mutation rates of the pages, then an accessing policy that comes close to
the lower bound in Theorem 3.3 with the f; nearly proportional to the In(h;)™! will come close

to minimizing C.

Finding good accessing policies that realize a given set of access frequencies is the subject
of the next two sections. In Section 5, we develop an optimal randomized accessing policy,
and in Section 6, we adapt the well-studied golden-ratio policy to our problem, primarily as a
candidate for good asymptotic performance; we will see that this policy gives an obsolescence

rate within 5% of the lower bound, in the limit of large N.

We remark that this problem is closely related to the design and analysis of polling/splitting

sequences in the context of queueing (and in particular, communication) systems [2, 3, 5, 6, 7],

10



where algorithms are described as template driven or generalized round robin. With future
research in mind, we note that these studies suggest other approaches worth investigating, e.g.,
extensions of the mathematical programming techniques in [5] and the algorithms [3] derived
from Hajek’s [10] results on regular binary sequences. Although the latter lack the established
performance bounds of the golden-ratio policy, simulations in the earlier queueing models show
they are superior algorithms. Thus, they make promising candidates for our page-accessing

model.

4 Randomized Accessing and Its Optimal Solution

Let fi, f2,..., fv be given access frequencies. According to the randomized scheduling policy, at
each decision point, the robot chooses to access page ¢+ with probability f;; the decision is made

independently of all previous decisions. One can easily see that {d;}j, {X]Z}] and {Z;}] are
three sequences of i.i.d. random variables for all . Moreover, d; has a geometric distribution:

P(d;‘ =n)=f;(1- fi)”_l. Thus, we have

Lemma 4.1 For given frequencies fi, fa, ..., [N,

(o f h
TZ_E[X] (E[X] ,Uz'—l_,ui 1—hr|-f¢hi)'

Proof. As d; has a geometric distribution, we obtain

FX]
i’

E[X]]= f: fi(1=fi)" " 'nE[X] =

n=1

and by Lemma 3.1 we have,

. 0 1 1 E[X 1 1 ih
ELZ) = 3 0= ™ (nBLX) = k) = . ot T
n—l 1 1 1 1 1 1 1've

so elementary renewal theory and (2) imply

B B fo fi o fihi
rilp) = E[Xi(p)]  E[X] (E[X] T Tk +f¢h¢) '

11



It is interesting to compare the lower bound of Theorem 3.3 with the obsolescence rate of
the randomized policy. One can see that when f; is small (close to 0) or large (close to 1), the

difference between r; and the lower bound tends to 0. More precisely, this difference is

h;
i ELX]

FE+o((fi))

when f; goes to 0, and is

hi
i ELX]

(I+Inh)(fi—1)+o(1—f;)

when f; goes to 1.

We now consider the problem of finding the optimal access frequencies under the randomized

policy. First, we have the following lower bound over all frequencies.

Theorem 4.1 Assume that the weights in the cost function are proportional to the mutation

rates of the pages, i.e., ¢; = cop; for alle=1,2,...,N. Then

N 1 SN (= 1) )
C=c¢y- > c — . ! L . 11
o2 °(“ EY] T4 Sy (b - ) )

Moreover, this lower bound is achieved when the access frequencies are proportional to h;l —1.

Proof. TFollowing Lemma 4.1, we have

DR N S
TZ_E[X] (E[X] ,Uz'—l_,ui 1—hr|-fihz’)7

so that C' > C™* where C* is the solution to the following optimization problem:

1 x?h;

N N e 1 Mo
* o s PR 1bq L G 19
¢ =i ZZ:;C E[X]ZZ:; 1 —I—E[X]; i 1= hi+ah;’ (12)

12



subject to x; > 0 and
N
in =1.
=1

Again, we use Lagrange multipliers to solve the above problem. Define

ﬁ( IYTED U N o7 N S (o
1y, EN, _2:102 E[X]Z»Zl ” E[X]Z»Zl v T it o 2:1962 .
By the convexity of the function
N N N 2
1 T 1 C; x:h;
S g L o
= E[X] =7 M E[X] = M 1—h; + 2k
in (21,...,2n), the solution satisfies the necessary and sufficient condition
oL C; C; th(l — hz)xz + h2a?
- _ . ) A\ = 1
ox; ,uZE[X] + ,uZE[X] (1 —h; + hixi)Q + 0, ( 3)
oL a
o= Ywm-1= (14)
=1
Equation (13) can be rewritten as
Apa(1 = by + hiz)? = ——(1 — hy)2.
1 = byt i = (1= )
Since h; < 1, we have
L—hi+ hiz; ci
1—hy M E[X]
50
C; 1—hy
i = — 1 . 1
' ( A E[X] ) hi (15)

Now use the assumption that ¢; = ¢op; and obtain from (14) and (15) that

Rt -1
S (b1

;=

(16)

13



This solution is positive, so it is also the solution to the minimization problem of (12). Hence,

N N -1
~h o SN -1
C* = cop — T3 7~ Colt— : . — )
E Z; 1—h + z;h; EIX] 143N, (b7t = 1)
which is the desired lower bound. [ |

Note that if the weights in the cost function are not proportional to the mutation rates of
the pages, one can still use (14) and (15) to solve the problem. However, the solution is valid

only when the right-hand side of (15) is positive. By solving for A using (14) and (15) we obtain

! P %(hfl—l)
VA= EX] 1+, (hjl—l)

so the solution (15) is valid if

N i -1
. o =\ (hi B 1)
min — >

1N Vo — 14N, (hi_l - 1) |

5 Asymptotic Optimality and the Golden Ratio Policy

In this section we consider the asymptotic large-N behavior of scheduling policies. A similar
study was carried out by Ttai and Rosberg [12] in the context of the control of a multiple-access

channel. Some of our results here are analogous to theirs.

We define asymptotically optimal policies with respect to the lower bound in Theorem 3.4.
Hence, we assume throughout this section that the weights in the cost function are proportional
to the mutation rates of the pages, i.e., ¢; = cou; for all ¢ = 1,2,..., N. We say that a policy =
is asymptotically optimal if

A}i_r}rlooC(ﬂ) - (" =0.
Note first that if the total mutation rate u tends to zero, then all eyclic policies are asymp-

totically optimal. Indeed, consider an arbitrary cyclic policy with cycle length K. Tt follows

14



from (3) and Lemma 3.1 that

N
¢ = CO'ZHﬂ‘i
=1

7
Mg

- AE Z“ZZ{JE ]_;(1_&)}

— ]1 ILLZ

7
N Mg

1 22 (1= (= i BIX] + 0(u))

=1 7=1

= Colt —

7
N Mg

:uz X+ O(:uz ))

=1 7=1
= O(NQ)v
so if p — 0, then C' — 0.

Thus, we assume that when N — oo, the total mutation rate u, as well as the expected
access time F[X], is fixed. However, for any i, 1 < ¢ < N, we have y; — 0 when N — oc.

Under such assumptions, the lower bound C* in §fp 1 v w th ifxu u i fip tif beos ecth

=1



accesses in each cycle of y(k, N); these numbers satisfy
LfiFi) < My < [fiFi]
and Zf\il M,;N = F}, where f; are the optimal access frequencies given by (10):

In A,

fi:zﬁllnhi'

Thus,

Let frac(y) = y— |y] be the fractional part of y, and A, = {frac(j¢=1)|j=0,1,..., F—
1}. The s-th access of the robot is identified with the s-th smallest point of Aj. In the golden
ratio policy y(k, N), the points

i—1 7
{fTaC(j¢_1) | D MIN<i< ) M;??N}
m=1 m=1

correspond to the accesses of page i. As an example, let us suppose N = 4 and f; = 2/13,
fo=3/13, f3 =3/13 and fy = 5/13. Let k = 8 so that Fj = 13. Then, the golden ratio policy
v(k, N') defines the access sequence {4,2,4,1,3,4,2,4,1,3,4,2,3}.

Thus, again from (3) and Lemma 3.1,

co N Mli,N i
C(V(kaN))ICOM—FkT[X] > (1—’%’")7
1=1 m=1

where the interaccess distance ¢, € {F},, Fj, 41, Fj, 12}, where j; = [Ing f;] (cf. [12]). Moreover,
it can be shown by mimicking the proofs in [12] that

CHN)) = Jim Cly(k, V)
Co N L Fy.
e silBlo-e

R S R hf““]} .

16



Theorem 5.1 Assume for all ¢ that p; — 0 as N — oo and that Zf\il pi = > 0. Then,

. 1 1—¢~ 1 “¢'EX] (b_l —ﬁE[X]
< _ v .
fim sup C(y(N)) < co {u X T R e

Proof. By mimicking the proof of Theorem 5.3 in [12], we can show that
_ 2
o0 < an- i {1- SR [(- o)ty + o]
where t; vy = hl/(f’\/_) Note that when p; — 0, h; = e~ EX] +o(p;) so that fi = u;/p+ o(pi).

These imply that #; v — e~ HEIXIVE when N — oc. Hence, by noting that Zf\il fi =1, we

obtain

$E[X] _ pet B[X]
lim sup C(7(N)) < copt — - ‘{1‘ (1-¢7) e —g7te " }

|
Finally we compare the right-hand side of (18) with (17).
Corollary 5.1 Assume for all v that u; — 0 as N — oo and that Zf\il pi = > 0. Then,
lim sup ———= ChN) < 2" _ = V543 < 1.05. (19)
N—oo C* 5 5

Proof. Let ¢ = pFE[X]. Define

C(y(N)) q—14(1=09¢71 6_%(14'(]5_16_3_25‘1
)= fim sup =7 = g—1+ed :

We will show below that H(q) is decreasing in ¢ > 0. Thus, by applying I’'Hospital’s rule twice,

we obtain

sup H(q) = lim H(q)

920 9—0
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1- (b;le_%q — ie_%q
= lim /5 /5

q—0 1—e¢

3 q

&%

2 _@
— lim FEte V4
- q—0 e~ 4

O1|&

e_

P —o+¢> 26
5 5

Hence, (19) will hold if H'(¢) < 0 for all ¢ > 0.
It is clear that H'(¢) < 0 if and only if R(¢) < 0, where

-1 ¢

R(q) = (1 S —e‘%q) (g—14e)- (q — 1+ (1-07") VT4 ¢—1e—w) (1—e) .

V5 V5

After some simple algebra, we obtain

Let

_ 9
RSN (I RETRN EL
V5 q 2v/5

It is easy to see that Ay + A2 = 1 and that 0 < Ay < 1 (using the inequality 1 —e~* < 2). Thus,

owing to the convexity of the exponential function e~%", we have

— — 2
((1—1)1_6 q+ﬁ_1)-e‘%q+(—<1—i) I=c q+\/5+1)-e‘¢75qze—yq,

V5 q 2v/5 V5 q 2v5
where
.09
y=MN 75 + A2 Vs

It is simple to check that y < 1 so that

_Ra)
q

_® _
+e Tl =Me VBT dgem VBT > TV s o7,
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Therefore, —R(q)/q > 0 which implies that H'(¢) < 0. [ |

6 Concluding Remarks

Many of the numerous questions left unaddressed by our robot-scheduling results lead to inter-
esting avenues for future research. For example, there are the more general questions posed by
search engines served by multiple robots, which may be distributed. Also, in a comprehensive
data base such as Alta Vista, the number of pages varies with time; the creation of new Web
pages continues apace, and many pages will become defunct. One can adapt to this dynamic
version by delaying the first access to a newly arriving page until the beginning of the next
cycle following its arrival time, at which point a new template is computed. (A page dropped
from the data base is deleted from the template as soon as that fact becomes known to the
robot; again, a new template must be computed for the next cycle.) Heuristics based on this
technique should perform well when the relative variation of the data base over a cycle is small,

or at least moderately so.

We have already pointed out in Section 3 the open problems connected with sequencing
through a set of pages to achieve a given set of access frequencies and approach as closely as
possible the lower bound in Theorem 3.3. Progress on this type of template driven scheduling
problem has been frustrating in one important respect: Although there are very simple, e.g.,
greedy type, policies that seem to perform remarkably well, there has been little, if any, success
in establishing this fact analytically. In general, one must expect these design and analysis
problems to become even more complicated when the avoidance of "rapid-fire” (accessing a

Web site too frequently) is taken into account.
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