The Gated, Infinite-Server Queue: Uniform Service Times

Sid Browne', E. G. Coffman, Jr.2, E. N. Gilbert 2, Paul E. Wright *

I Columbia University, New York, NY 10027,
2 AT&T Bell Laboratories, Murray Hill, NJ 07974

ABSTRACT

Customers, in a Poisson stream at rate A, enter an infinite-server queue. Customer service
times are independent and uniformly distributed on [0, s], s > 0. Gated service is performed
in stages as follows. A stage begins with all customers transferred from the queue to the
servers. The servers then begin serving these customers, all simultaneously. The stage ends
when the service of all customers is complete. At this point, the next stage begins if the
queue is nonempty. If the queue is empty, the servers just remain idle awaiting the next
arrival, at which time the next stage begins.

This paper develops asymptotics for the equilibrium distribution of the number served
in a stage in the light and heavy traffic regimes A — 0 and A — oo, respectively. The
results are obtained by the analysis of a Fredholm integral equation of the second kind.
For computational purposes, the integral equation is transformed into an infinite system
of linear algebraic equations. The effect of truncating the system to a finite size is then
examined.
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1 Introduction

Customers, in a Poisson stream at rate A, enter an infinite-server queue. Service is
gated in that customers are served in stages, as follows. A stage begins with all customers
transferred from the queue to the servers (the gate opens to admit waiting customers and
then closes). The servers then begin serving these customers, all simultaneously. The stage
ends when the service of all customers is complete. At this point, the next stage begins if
the queue is nonempty. If the queue is empty, the servers just remain idle awaiting the next

arrival, at which time the next stage begins.

Let k, denote the number of requests served during the n'" stage. Customer service
times are assumed to be independent, so {k,} is easily seen to be a Markov chain. This
paper analyzes the behavior of {k,} when service times are uniformly distributed on [0, s],
s > 0. The normalization s = 1 is convenient and applies hereafter. By the analysis of
a Fredholm integral equation of the second kind, asymptotics are developed for the mean,
variance and generating function of the equilibrium distribution in the light and heavy
traffic regimes. In light traffic, when A is small, almost all stages serve only one customer.
In heavy traffic, when A is large, stages serve many customers, so a stage duration (the
maximum of the service times in the stage) is nearly one time unit. Then &, is approximately
Poisson distributed with mean A. This paper derives asymptotic series that give higher order
corrections to these approximations. For other work on asymptotic solutions of Fredholm

equations of the type considered here, see [5, 6, 8].

A considerable literature exists on the analysis of gating disciplines restricted to single-

server systems. Recent examples are [1, 4, 7]. In [2], a gated infinite-server queue with
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vacations was studied. The infinite-server system “goes on vacation” whenever the server
finds the queue empty on its return. While the model here is the special case without
vacations and with uniformly distributed service times, the present analysis of {k,} is

carried to greater depth.

As noted in [2], there are many applications modeled by gated, parallel service. Among
these are data transmission stations, in which servers are communication channels, and task-
oriented parallel simulations, in which tasks are repeatedly removed from a queue by servers
(processors) working in parallel. In general terms, the gated, infinite-server queue applies
to those systems in which a large number of parallel servers require a gating mechanism to
synchronize the servers following each stage of a computation. For parallel simulations the
synchronization points are often necessary to guarantee the correctness of computations.
The reader will find further discussion in [2].

Acknowledgement It is a pleasure to thank J. A. Morrison for his gracious assistance

with the heavy traffic analysis of Section 4.
2 Preliminaries

This section begins with a brief reprise of the results established in [2] that are required
for the present analysis. For the Markov chain {k,}, let pggn) = Pr{k, = k}, k> 1, and

define the generating function

PO () =3 oy
k=1

Let H("(t) denote the probability distribution of the nth stage duration. The (n + 1)5t
th

stage serves 1 customer if there were 0 arrivals or 1 arrival during the n*"" stage. But &k > 1

th

customers are served in the (n + 1)54E stage if k& customers arrived during the n"" stage.

Then

1
A = [ e e )
0

k
st =[O
0




Gated, Infinite-Server Queue 3

To determine the generating function for this distribution, note that, by the uniform distri-
bution of service times, ¢* is the probability distribution of the duration of a stage serving

k customers. Then an easy calculation gives for the function Q(”)(y) =1- P(”)(y),

QUF(y) = M1-y) /1[6‘”1‘@’” — e MQUM ()t + 1 -y (2.1)

0

This recurrence for Q(™(y) may be abbreviated to

QUt(y) = KQM(y)+ 1y,

where K is the integral operator

Kiw) = [ Kln0swd,

with the kernel
K(y,t) = AL )l 00t = o= (2.2)

Iterating (2.1) gives the solution

QU(y) = K'QU(y) + T+ K+ + K™)(1-y). (23

In [2] it was shown that K"Q(©)(y) — 0 as n — oo for all Q(%)(y), while the remaining

terms of (2.3) approach a convergent series
Qly) = T+K+K*+--)(1-1y). (2.4)

For any initial state distribution, described by Q(O)(y), (2.3) represents a transient towards
a stationary distribution, described by Q(y). Our objective is to find Q(y) in order to obtain
the stationary probabilities pj, = limj_ o pggn) from S ppy® = P(y) = 1 — Q(y).
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Equation (2.4) may be recognized as the Neumann series for solving the integral equation

Qly) = KQy)+1—-y (2.5)

(see [3, 9]). Partial sums of (2.4) are the functions Q(")(y) in (2.3) that are obtained from
the iteration (2.1), starting with Q(O)(y) = 1 —y. With that initial distribution, Q(”)(y)
describes the queue n stages after an initial stage that served a single customer (such as a

stage following an idle period).

Sections that follow will derive good approximations to Q(y). These approximations
will then supply good approximations to the state probabilities pg. For, after expanding

the kernel K(y,t) in a power series in y, one may equate coefficients in (2.5) and find

L= 2 g tem Qb k=1
Pr = 1/ (A=t )P (26)
Mo (((kll)! - By ) e~ MQ(t)dt, k>2.

Numerical approximations to Q(y) also have interest because of the connection between
Q(y) and the duration of a stage, i.e., 1 — Q(y) = 3. ppt* is the stationary distribution of

stage durations.

Intuition may suggest that the Markov chain approaches stationarity rapidly, especially
if A is small or large. That entails rapid convergence of the Neumann series (2.4). One

bound on the rate of convergence of (2.4) is obtained from the norm

K| = sup |Kf(y)|, (2.7)

fry

in which 0 <y < 1 and f is restricted to integrable functions with supg<,<q [f(y)| = 1. If
||K|| <1, (2.4) will converge at least as fast as the power series for 1/(1 — ||K||). Let

Kl(y) = /01 K(y,t)dt — 1 — e Mi-y) _ (1 _ y)(l . 6_/\) ‘
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Then since K (y,t) is a nonnegative kernel, (2.7) becomes

K|l = sup Kl(y) = 1-CA)[-InCA)], (2.8)
0<y<1
where C(A) = (1 —e™*)/A. For small A, ||K|| = A?/84 O(\?) and the Neumann series does

indeed converge rapidly.

If X is not small, one can still deduce that the Neumann series converges by using (2.8)
to prove ||K|| < 1. Although ||K|| — 1 as A — o0, a more refined argument will now
show that the convergence is always quite rapid. Because K(0,t) = 0, the terms K"(1 —y)
of (2.4) with n = 1,2,... all vanish at y = 0. If ¢1, ¢3, ca,... are constants such that

[K"(1 —y)| < eay, then
K
K™ (1 - y)| < e, Ky < chyy < peny

where
Ky
p = sup —.
o<y<t ¥
Then ¢, < p" leq, so the Neumann series converges as fast as (p+p%+---)e1y. A numerical
calculation of (Ky)/y indicates that p < .3884 for all A, with the maximum p achieved at

A = 3.39.

Sections 3 and 4 will give explicit formulas that approximate Q(y) for small and large
A. Q(y) could be calculated for other values of A from the Neumann series. Although it
converges rapidly, each term of the series requires a numerical integration for each value of
y. To avoid that problem, Section 5 transforms the integral equation (2.5) to an infinite
system of linear algebraic equations and examines the effect of truncating the system to a

finite size.
3 Light Traffic Asymptotics

When A is small most stages serve only one customer; then P(y) is near y. This section

finds closer estimates of P(y) and Q(y) in this limiting situation.
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Bounds on @(y) follow easily from (2.5) because K(y,t) is nonnegative. Starting with
Q(y) >0, (2.5) shows Q(y) > 1 — y, then Q(y) > (I+ K)(1 — y), etc.; each partial sum of
the Neumann series is a lower bound on @(y). The same argument, starting with Q(y) < 1,

shows Q(y) <1 —y+ Kl(y),..., and ultimately

Q) <(I+K+--+K")(1-y)+ K"1(y) . (3.1)

Truncating the Neumann series at the n'P term underestimates Q(y) by at most K"t 1(y).

Simple instances of these bounds are (I+K)(1 —y) < Q(y) < (1 —y)+ Kl(y), or

1—e M9 A

“Ml=y) _ =M =
e e (1—y)< P(y) < YO /\

(1—y). (3.2)

When A is small, Section 2 has already shown that supg<,<; K1(y) = [|K|[| = O(\?).
The error term in (3.1) is at most supy<,<y K™ 1(y) = O(A\**+%). To make the bound

more precise, write

At

K(y,t) = M1-1y) /A(l_y)te_xdx < Ny(1—y)t .

Then K1(y) < A%y(1 — y)/2. An induction argument, based on K"*'1(y) = KK"1(y),

K" 1(y) < 6y(1 —y) A—z n+1<§ A—z - (3.3)
=009\ 1 =2\ 12 ' '

In (3.2) the upper bound on P(y) is accurate to supgc,<q K?1(y) < A*/96. Expanding

proves

(3.2) gives
2 3

Q(ty=1—1+ %t(l—t)— ;\—4t(1—t)(2—t)—|—O(A4). (3.4)

Substitution into (2.6) provides py within O(A*+2) as A — 0. The leading terms are

2 — %435 +H00Y

k E4+1)Ak+1
Pk = (kil\—l)! -4 El—kllz)! +ONY k>2.
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From (3.5), the mean p and variance o2 of the number served in a stage are

A28

. B 4
po= 1+ 5 + O(AY), (3.6)
AZA3
2 4
o? = —6+—24+O(A). (3.7)

4 Heavy Traffic Asymptotics

With A large, the lower bound in (3.2) should be accurate because it is close to the
generating function for a Poisson distribution with mean A. Tndeed, the extra term —e™*(1—
y) is a correction that accounts for the fact that every stage serves at least one customer.
This section develops a heavy-traffic approximation for P(y) which leads to asymptotic

series for the moments.

It will be convenient to introduce a new variable £ = A(1—y) and a function 9(&) defined
by P(y) = e~¢9(€). Like P(y) and Q(y) = 1 — P(y), 9(€) depends on A as well as £. For
large A one expects P(y) to be close to e *(1=%) and hence 9(£) to be near 1. A sequence

of approximations of the form

PO(y) = e~ (€), r>0, (4.1)

will now be given, where

Mk
k=0
with coefficients V(&) independent of A and defined as follows. Substitute Q(y) = 1-P(y) =
1 — e~€9(€) into (2.5), change the variable of integration to 7 = A(1 — ) and obtain

ae = 5 /(f[e‘“-f/””—ef-w(n)dw1— L (43)

Now suppose S 7_o Ux(€)/A\* were substituted for 9(¢) in (4.3) and the Jx(£) determined

formally by matching coefficients of like powers of 1/A. In this matching, the functions
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ef=*, that appear twice in (4.3), would contribute only higher order terms. Also, the upper
limit of integration could be increased from A to oc without affecting terms O(A~%). Now
simplify (4.3) according to these observations and replace ¥(£) by 19(T)(£); this defines the

desired heavy traffic approximation by

g = 5/ —(1=€/Nmg() () + 1

£]+1

= /\]+1 / e~ ()dn 41 (4.4)

Matching coefficients in (4.4) leads to ¥o(£) = 1 and the recurrence

k fj-l-l
e (§) = D"
—0 7]

/ e (m)dn, k>0, (4.5)
0

The first few 95(¢) from (4.5) are 9o(&) = 1, 91(€) = &, 92(6) = €+ €2, 93(¢) =
3E + 267 + &3, 04(6) = 136 + 862 4363 + ¢4, Tt is clear from (4.5) that 9x(€) is a
polynomial
k
(&) = D ek, j)E, (4.6)
7=0

with coefficients c(k, j) satisfying ¢(0,0) =1, ¢(k,0) =0, k > 1, and

k—7 .
. . + m)!
ck+1,74+1) g c(k—j,m (]]7'7”) . (4.7)
m=0 '

This series for 19(T)(£) yields a corresponding approximation pu(") for the mean p =

P'(1) = Mimg_o % = A[1 — 9'(0)]. Replacing 9(¢) by 9()(€) gives

L) = All_zﬂiﬁl )] - All—i%] . (4.8)
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For example, (9, ..., u® are given by the partial sums in

13 13 7
5) _
“()_A_l_X_F_F_F' (*.9)

A similar argument gives approximations for higher moments. For example, standard cal-

culations yield for the variance approximations »("), r < 3, the partial sums in

16 39
v® = A+ S+

STt e (4.10)

The remainder of this section shows that, as r — oo, (4.8) in fact becomes an asymptotic

series for u. The same techniques can be used to prove similar results for higher moments.

Theorem 4.1 For allr > 0, as A — oo,
lp—p = 0 1 (4.11)
lu lu - AT+1 : :
Proof. Differentiate (2.5) and obtain at y = 1

1—|—/\/ e )Q(2)dz

=
Il

_ 1—|—/\/ 0 dz—|-/\/ eMNQ() = QU(d . (4.12)

Substituting n = A(1 — 2), QU)(2) = 1 — e Y 4_o Px(n)/AF and integrating gives for the

first two terms

1+ /\/ e M1Q(2)dz =

A— Z/ —77’“ +—A[1+Z/ ].(4.13)



Gated, Infinite-Server Queue 10

Now extend the upper limit of the first integral from A to co; this adds only a term O(e™)
0 (4.13). The last term in (4.13) is O(Ae™), so

1—|—/\/ e QU (2)dz = A — Z/ ‘”kd—|—0(/\ M

Differentiation of (4.5) then shows that, by (4.8),

14 A/Ol[l —e™QU(2)dz = A [1 - Z 1%;*,;1(1 )] +0(Ne™)

k=0
u +0oe™) .

Substituting into (4.12) gives

- = / Q) - QU(2))dz + O(Ae™)
< A sup [Q(2) = Q=)+ 0(A) . (4.14)
0<2<1

It is shown below that

A sip 10() - @) = 0 () (4.15)

0<2<1

Then, since u() = p("+2) £ O(1/X"+1), the theorem follows at once from (4.14) and (4.15)

with r replaced by r + 2.

To prove (4.15), first introduce the function I',(y) defined by

QW (y) = (KQW)(y)+ (1 —y)+Tu(y). (4.16)

Then
QU (y) - Qy) = (K{Q" - Q(y) + T'(y)
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and
1
sup |Q(y) = Q)| < e sup Th(y) -

0<y<1 1= [|K][| o<y<1

By (2.8)
N In A _\

I—||K||< CM)[1-=InC(N)] = ~ 1 O(e™).

Then (4.15) and hence the theorem will follow if
su r()—o(l) (4.17)
e Toly i) :

The proof concludes by showing (4.17) directly.

Substituting for Q") in (4.16) gives, after routine manipulations,

R,(g/):e_g [1—276:%] = _SZ/ e/ Ao~ n? )dn
k=0
_§ - lH Z/A (1 ] (4.18)

Recall that the 9(¢) are polynomials of degree k. The last term in (4.18)is O(Ae™") for

0 < & < A, so expansion of e¢"/* and rearrangement gives

33 ZZ/ n (En/A) _ —sz AN (4.19)

k 05=0 ‘]'
To estimate the terms in (4.19) note that the recurrence for ¥y in (4.5) gives
r—1

7’195 T—lﬂ 5—
SOy Dl E s

k=1 k=0 k=0 7=0

> /oo 5n/A) ()

whereupon reorganizing the double sum yields

r —1r—k—
Zﬂ §Z Z/O 577/” A(k)d”‘ (4.20)

k=1 k=0 j5=0
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Now consider the terms of the double sum in (4.19) for which 0 < k < r—1,and 0 < j < r—k.
If the upper limit of the integral is increased from A to oo for these terms, then by (4.20)
these terms are all cancelled by the single sum in (4.19). It is easily verified that the above
change in the integral creates a change of at most O(e™") in T',(y), so the terms remaining

after the cancellation give

rT(y):e—fg{/o —n(1-¢/n) AT 20 +Z Z / 577/“19’;(k)d }—I—O(Ae‘A).

!
k=0 j=r—k J

Introducing the bound 3,5, _; (gn/A) < 577”% in the double sum gives

= g 8 o ) o)

(4.21)
Estimates of this expression are easily obtained from estimates of the function
. A .
g(A) = sup O/e_w/ e="=)pidy (4.22)
0<a<l 0

where ¢ > 1 and j > 0 are integers. It is easily shown that g(A) = O(A™") (the hidden
multiplicative constant depends on ¢ and j). Use of (4.22) in (4.21) with o = £/\ easily
shows that both terms in (4.21) are no greater than the desired error term O(1/A"*1); the

routine details are left to the reader. M

5 Intermediate )\

At values of A too large for Section 3 and too small for Section 4, a numerical procedure
is needed. The integral equation (2.5) can be transformed into a system of simultaneous
linear algebraic equations. A straightforward way would be to substitute Q(y) = 1— P(y) =
1—pry—p2y?...into (2.5) and match coefficients of like powers of y. The resulting system,
to be solved for the unknowns py, po, ..., would not have a symmetric matrix. That would

complicate the problem of estimating the error introduced by truncating the system to one
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with only finitely many unknowns py, ..., pn. The procedure that follows has the advantage

of a symmetric matrix.

Begin by expanding the kernel (2.2) in the form

i B 0 /\z’ z’ti
E(y,1) = A1-ye ™y 5=,
k=1 :

so that (2.5) is
A

i ,
El / Q)+ 1~y . (5.1)
' Jo

1

Qly) = A(1—@/)§:

Multiplying both sides by e~*** and integrating will convert (5.1) to an algebraic system

for unknowns that are integrals of e *¥y*Q(y). If the unknowns are properly normalized

the system can be made symmetric. Accordingly, define unknowns

B\ /2 4
ap = (%) /Oe”yka(y)dy (5.2)

and the vector a = (aq,az,...). The system for a is
a=Ta+b (5.3)

where b = (b1, b2, .. .),
/\k 1/2 1
by = (F) /0 MY = y)dy (5.4)

and T is the infinite symmetric matrix with elements

A\ 2 4
T, = A : / e Mk (1 — 1)dt (5.5)
kg! 0

for k> 1 and j > 1. When (5.3) is solved for a, (5.1) will be

[e’e] AZ 1/2 )
Qly) = A(l—y)Z(g) ay' +1-y.

=1
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As in (2.6), matching coefficients gives

1— X2, k=1,
P = 1/2 1/2
() " aer = () T k22

Then a simpler formula relates a; to the tail probability

[e’e] Ak 1/2
S i = A(F) ap, k>1.

1=k+1

An iterative procedure for solving (5.3) leads to

a — f:TTb .
r=0

14

(5.7)

A proof that (5.7) actually converges will follow by showing that T has spectral radius

p(T) < 1.

Theorem 5.1 T is a positive-definite, self-adjoint, Hilbert-Schmidt (hence compact) linear

operator in 1% with spectral radius p(T) < .505

Proof. T is self-adjoint because it is real and symmetric. To prove T is Hilbert-Schmidt,

note that, from (5.5),

\kti 1/2
0<Tk]‘<A(k!j!)
Then
PLDY N
trace(T?) = ZT,@ <\ T et < oo .
oy P!

Positive-definiteness will follow by writing (5.5) as

T = [ R
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with

1/2
fu(t) = {,\ngj—t)} the=M/2

<72
For any x in [,

(x, Tx) Zwkx]/ () f;(t)dt = /OI‘ijfj(t)fdtZO (5.8)

and (x, Tx) =0 only if x = 0.

Since T is positive-definite and self-adjoint, p(T) = supx|=1(X, Tx). Applying the
Cauchy-Schwarz inequality to the integrand (5.8) gives

2
=
IA

/ Z|fk (Pdt = /01(1—15)6_”(6”2—1)%,

1/2
/\e_A/4/ N du — (e =14 N)/\, (5.9)
0

2
=
IA

the last line being obtained by the substitution t = u+ % It is easy to verify that p(T) — 0
both as A — 0 and as A — oo. An analytical proof of p(T) < 1 for all A > 0 is also not

difficult. However, the following simple numerical approach yields a good result.

For any ¢ in 0 < ¢ < 1/2 let the range of integration in (5.9) be broken into two
parts, [0,c] and [c,1/2]. In each part, bound u? by a linear function, u? < cu in [0, ¢] and

u? < (% + c) u— 5 in [¢,1/2]. Then (5.9) simplifies to

1y < o2, T e 1o
P

— Nl
_1—|—20+c(20—|—1) c t A (5.10)

The best bound is obtained from (5.10) with ¢ chosen as a function of A, but ¢ = .3 gives
p(T) < .505 for every A\. N

Numerical integration in (5.9) showed that p(T) < .41.

Although the series solution (5.7) converges to a as rapidly as the power series 3° p(T)*,

it contains products of infinite matrices. To obtain a finite computation, (5.3) will be
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approximated by an N X N system. As a preliminary step, approximate T by a matrix
T(N), having the same elements T}; in the principal minor with 1 <A < N and1<j <N,

but having zeros elsewhere. Then approximate (5.3) by the system

a=TMat+b (5.11)
for the unknown vector &. Because rows N +1, N +2,...0f T contain only zeros, a will
have the form (a1,...,an,bN41,bN42,...). The first N equations of the system (5.11) are
then an N x N system for aq,...,an.

To study the truncation error, combine (5.3) and (5.11) into a system

a—a = T(a—4a)+ (T -TM)a (5.12)

for the error vector a — 4. The ratio |a —a|/|a| of [ norms of a — & and & will be a measure

of the relative error caused by truncation.

Theorem 5.2 The relative truncation error satisfies

{1 - p(T)}a—al/la] < irace(T—TMpr < 2 3 377 (5.13)

F>N+1E>1

Proof. Apply the triangle inequality to (5.12) and obtain Ja—a| < |T(a—a)|+|(T—TW))a|.

The first inequality of (5.13) follows because the operator T — T™) has norm less than

\/trace{(T - T(N))Q}. The trace is the sum of squares of elements of T outside the principal
N x N minor. The second inequality of (5.13) bounds this sum in a way that includes some

elements twice. M

The integral formula (5.5) for T}; is not convenient for calculations. Introduce

/\n-l—l 1
J, = / e M dt .
0

n!



Gated, Infinite-Server Queue 17

Since Jo=1—e*and J, = J,_; — e A" /n!,

M N
Jo=l—e ) m=e > 5 (5.14)
k=0 k=n+1
Express the integral in (5.5) in terms of .J, and J, 41 to obtain
Akti=2 —k—j— 1Nk
Tiy=e N 2 (r : J k) - (5.15)

The finite sum (5.14) could have been used to express T}; in finite terms, but the series

(5.15) converges rapidly and is less sensitive to roundoff errors.

Table 1 gives bounds, obtained from (5.13), on |a—4&|/|a|. The calculations used p(T) <
41 for all A. The table shows that good accuracy is obtainable from only moderately large

truncated systems.

Starting from (5.13), the following explicit, though crude bound is proved in the Ap-

pendix:

_ A 1/4 _ _\2).—)\/4
la — & < 1 ( 2 ) 8A—324 (32— X)e ‘ (5.16)

4 ~1—p(T) \zN \3/2
This bound shows that, for all N > 1, the relative error tends to 0 both as A — 0 and as

A — o00. It also verifies that the relative error tends to 0 uniformly in A as N — oc.
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Table 1: Bound on relative error |a—4|/|a| caused by truncating (5.3) to an N X N system.

N\A 2 4 8 14 20
2 |.0958 3041 .4648 .3133 .1835
4 |.0207 1188 2982 2614 .1662
6 | .0037 .0404 1799 .2243 .1600
8 |.0006 .0120 .0988 .1857 .1539
10 | .0001 .0031 .0490 .1448 .1449
14 0002 0090 .0707 .1149
18 0011 .0256 .0743
22 0001 .0070 .0381
30 0002 .0051
40 .0001
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Appendix
Proof of (5.16)

The trace in (5.13) is a sum of squares of the elements of T — T(N), i.e., a sum ZT,@

where only elements outside the principal N x N minor are summed. From (5.5),

trace{(T — T2} < 235 N1 e T
= V[ o U= (1= ) Dy BT

(Al)
n (A1) the sum on k is e** — 1 < ¢**. The sum on j is
2 (Ayz) ! A N
Z ( y;z) = /\yzeAyZ/ e~ ATY2 7( acy;'z) dx | (A2)
G=N+1 7] 0 N

as repeated integration by parts will verify. The integrand of (A2) is greatest at 2 =
N/(Ayz), so the integral in (A2) is bounded by (N/e)N/N! < 1/v/2xN. These bounds
simplify (A1) to

trace{(T — TN))?} < /\SF/ / MuF2=2v2) (1 — y)(1 — 2)y2dyd:= .

In the exponent, 2yz < y2 + 22, SO

5 2

1/2
trace{(T — T2} < A3 — 2/0 e~ MI=9) (1 — y)dy

Replace y(1—y) in the exponent by a linear lower bound y/2; then evaluate the integral to
complete the proof of (5.16). W



