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ABSTRACT

We consider N processors communicating unidirectionally over a closed transmission
channel, or ring. Fach message is assembled into a fixed-length packet. Packets to be
sent are generated at random times by the processors, and the transit times spent by
packets on the ring are also random. Packets being forwarded, i.e., packets already on the
ring, have priority over waiting packets. The objective of this paper is to analyze packet
waiting times under a greedy policy, within a discrete Markov model that retains the over-all
structure of a practical system, but is simple enough so that explicit results can be proved.
Independent, identical Bernoulli processes model message generation at the processors, and
i.i.d. geometric random variables model the transit times. Our emphasis is on asymptotic
behavior for large ring sizes, N, when the respective rate parameters have the scaling A/N
and pu/N. Our main result shows that, if the traffic intensity is fixed at p = A/u < 1,
then as N — oo the expected time a message waits to be put on the ring is bounded by
a constant. This result verifies that the expected waiting time under the greedy policy is

within a constant factor of that under an optimal policy.
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1. Introduction

Communication among M processors takes place counterclockwise along a slotted cir-
cular transmission channel, or ring. A processor generates messages, receives messages, and
forwards messages between other processors. Each message is a packet of fixed duration.
One time unit is required for a packet to be sent or forwarded from one processor to its
counterclockwise neighbor. Packets are generated randomly at the processors according to
i.i.d. arrival processes. The integer times spent by packets on the ring, packet transit times,
are i.i.d. random variables. Packets being forwarded on the ring have priority: while a
processor has a packet to be forwarded, it can not place one of its own waiting packets on
the ring. A packet waiting for transmission is held in a queue at the processor where it was
generated.

The details defining a practical implementation of a processor ring are many and var-
ied. Indeed, the applications and analysis of communication rings form a rather large and
growing literature; see van Arem and van Doorn (1990), Barroso and Dubois (1993), and
Georgiadis, Szpankowski, and Tassiulas (1993) for brief surveys and many references. As a
concession to mathematical tractability, we adopt here the simple discrete Markov model
in Fig. 1, where the ring is partitioned into cells, each capable of holding a single packet.
The cells rotate counterclockwise past the processors in discrete steps, 1 step per unit of
time. Packets are generated at each of the N processors by a Bernoulli process at rate A/N
0 < A < N, per time unit (step); the total arrival rate is then A. The packet transit times
are geometrically distributed with rate parameter u/N, N > p > A. Thus, at any given

step, a packet on the ring departs with probability u/N and stays for at least one more step



with probability 1 — /N, independent of how long the packet has already been on the ring.
We will explain shortly the reason for the scaling of arrival and transit-time parameters by

the ring size.

/

Figure 1: The rotating ring model.

In each step, the ring system undergoes a transition according to the following sequence:

(i) The ring rotates one position while processor queues accept new arrivals, if any (at

most 1 per queue in each step).

(ii) Packets on the ring that are opposite their destinations are delivered, i.e., removed



from their cells.

(iii) Fach processor with a nonempty queue opposite an empty cell then puts a waiting

packet into this cell.

This gives the nonblocking model; reversing (ii) and (iii) would give the blocking model: a
departing packet can not be replaced in the same time step by a waiting packet. As we shall
see, our asymptotic results apply to both models. The above sequence gives the greedy cell
admission policy, placing waiting packets on the ring as soon as empty cells are available.

As discussed in Coffman et al. (1993), the greedy policy has the undesirable effect of
occasionally “freezing out” certain processor queues for long periods of time; long trains
of occupied cells pass by such processors denying them access to the ring. The results of
this paper will show that, for large rings within our probability model, the greedy rule is
remarkably efficient, and that in fact the above behavior is quite rare.

Our specific objective is to analyze packet waiting times under the greedy policy. (Here-
after, unless noted otherwise, waiting times always refer to times spent waiting in processor
queues.) An exact analysis of the ring system appears to be quite difficult. A Markov-chain
approach suggests the difficulties to be encountered; the state of a Markov chain must in-
clude the number in each queue and the state, occupied or empty, of each cell of the ring.
Thus, we turn to asymptotic estimates for large ring sizes, N, with A and p fixed. This
is why we introduced the scalings A/N and p/N; as we allow N to increase, the traffic
intensity will remain fixed at p = A/pu, the usual product of arrival rate and average service
(transit) time. To prepare for our main theorem, we need a little more notation. Let QN (¢)
denote the number in the i*" processor queue at integer time ¢ > 0 in a ring of N cells. Let
Q" have the stationary distribution common to all queue lengths QN (¢), assuming that it

exists. Let W be the waiting time of a packet in the stationary regime.

Theorem 1.1. Fiz A\ and p with A\ < . Then the stationary distribution of QN (t) ewists
and has an expectation

E[QY]=O(1/N).

Thus, by Little’s theorem,
EWN =0(1) .



The fact that the ring process is ergodic when A < p and hence p < 1 has already been
proved by Coffman, et al. (1993). Also, there is no need to spend time on the proof of the
lower bounds, for these are easy to see, as follows. Consider the entire ring as an N-server
system with a total arrival rate A and maximum departure rate u. Then by Little’s theorem,
the arrival rate A times the average time spent on the ring, i.e., N/u, must be equal to the
expected number of packets on the ring in the stationary regime, i.e., pN. It is easily seen
that if a fraction p > 0 of the ring is occupied on average, then E[WN] = Q(1) and hence
QN = Q(1/N).

This paper is a sequel to the work of Coffman et al. (1993) who proved the weaker
theorem E[QN] = o(1), N — oo, as their main result. They also presented results of an
experimental study, which led to interesting conjectures and open problems, the problem
solved here being one of them. Theorem 1.1 on the convergence rate uses the same combi-
natorial set-up, which is presented in the next section, but the probabilistic analysis here is
far more intricate. The law of large numbers was the basic tool in Coffman et al. (1993).
Here, however, we will need more powerful asymptotic bounds (e.g., those of Chernoff type)
on the tail probabilities for sums of independent random variables and the excursions of
Lindley processes; these appear as lemmas in Section 3. The proof of the upper bound
E[QN] = O(1/N) is given in Sections 4-6. The paper concludes in Section 7 with a brief

discussion of extensions and open problems.

2. Prior Results

Consider the packet at the head of any given nonempty queue. Since travel times are
geometrically distributed with parameter p/N, the probability that this packet is placed on
the ring in the current time step is at least p/N; the conditional probability is precisely p/N
if the cell is occupied on arrival and it is trivially 1 if the cell is empty. Thus, one expects
that, in statistical equilibrium, an individual queue length va is bounded stochastically by
the length of a single-server Markov (i.e., M/M/1) queue in discrete time with arrival and
service rate parameters A\/N and u/N. Moreover, this bound should hold independently
for each queue. Indeed, these observations are but a special case of Theorem 2 in Coffman

et al. (1993). An easy analysis of the discrete time M/M/1 queue then proves



Lemma 2.1. For each i independently, va is stochastically smaller than a non-negative

integer random variable R with P(R = n) ~ (1—p)p™ as N — oo for everyn > 0, and with
(2.1) P(R>n)=0("")
where v =1n1/p > 0.

It is useful to think of the departure process as being implemented by the following
mechanism. In every time step all cells independently sample a binary random variable G
with P(G =1) = pu/N and P(G =0)=1—pu/N. All samples are independent of the past,
so successes (G = 1), to be called enabling events, form independent, identical Bernoulli
processes at the N cells. An enabled, occupied cell releases/delivers its packet and then
replaces it with a new packet if it is in front of a nonempty queue. Enabling events at cells
that are empty and hence already enabled, have no effect. It is obvious that this mechanism
for releasing packets from the ring leads to geometric transit times with parameter p/N, as
stated.

Hereafter, we take the equivalent point of view that the queues rotate past the ring of
cells, which remains fived. As shown in Fig. 2, in any given time interval [0,7T], the ring
process can be represented by events on a cylindrical lattice cut at some cell position and
laid out as a rectangle. For simplicity, we assume that the cylinder is cut between cell N
and cell 1. Along the top of the rectangle the QN (0), 1 < i < N, give the initial state of
the queues, and the crosses (x’s) indicate the initial cell states: a cell with a x at time 0
is empty, otherwise, it is occupied. Again for simplicity, we assume queue 1 is at cell 1 at
time 0. Within the rectangle, circles (o’s) and X’s give a random sample of new arrivals and
enabling events, respectively. Although not illustrated in the figure, a x and o can appear
at the same lattice point; the probability of such an event is O(1/N?) and hence relatively
low.

The greedy policy is represented by a suitable matching of x’s to o’s (new arrivals) and
to packets in the initial state. An example is shown in Fig. 2. The broken matching line
drawn between a matched packet and a X has a diagonal part describing the motion of the
packet in time and space and a vertical part extending to a X in the cell where the packet

is placed. A diagonal part is broken into two pieces when it extends past cell N, one ending



cells: 1 2 3 4 5 6 7 8 9 10 N =11
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time
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Figure 2: Greedy Matching



at the right boundary and one beginning at the same time at the left boundary.

We distinguish the vertical part of a matching line from its vertical component; the
latter refers to the vertical component of the diagonal part, which has the interpretation of
waiting time during [0, T].

Note carefully that some x’s must go unused in general. This is because the vertical
part of a matching line can not pass through a x. For example, the arrival at time 10 in
column 6 can not be matched to either of the two unmatched x’s in column &; this would
imply that the arrival is placed into cell 8 at time 12 while it is still occupied by the arrival
at time 8 in column 5. This proscription does not apply to o’s that can appear on matching
lines, or to x’s that can appear on diagonal parts of matching lines.

Let I denote the set of enabling events over the N cells during [0,7], and define K =
KoUK, where Ky is the set of packets in the initial queue state and K, is the set of arrivals
during [0,T]. In the following, ¢ denotes a packet and ¢ denotes an enabling event.

In Fig. 2, K and L can be taken as a random instance for any of a large class of admission
policies, in particular any policy that, like the greedy rule, never removes a packet from
the ring except when it departs for good. Each such policy will induce a matching between
some subset K/ C K and an equal cardinality subset L' C L which specifies the packets
admitted to the ring in [0, T]. To ensure a valid matching, we require that, if packet ¢ € K’
is matched to ¢ € L', then

(i) the diagonal part of the matching line starting at ¢ must extend below ¢ at some

time no later than T,

(ii) the vertical part of the matching line terminating at ¢ must pass through no enabling
¥ #
We call such policies hot potato policies consistent with the use of this term in studies of
processor interconnection networks where packets must be kept in motion on the network
until they depart once and for all (a packet can not be removed temporarily and placed in
some queue along the way).

Now define the total customer waiting time in queue during [0, 7],

(2.2) S(T)= 3 w(9),



where w(¢) = w(¢,T) is the waiting time in [0, T] of packet ¢. Coffman et al. (1993) prove

the following deterministic optimality result for the greedy admission policy.

Lemma 2.2. For given sets K and L, the greedy policy has the smallest sum of waiting

times S(T) among the class of hot potato policies.

3. Probability Bounds

We begin with a useful Chernoff bound that combines Theorems A.12 and A.13, pp. 237—
238, in Alon and Spencer (1991).

Lemma 3.1. Let 7 = 71 + ...+ Z,, where the Z; are independent Bernoulli random
variables with P(7Z; = 1) = p;, P(Z; = 0) = 1 —p;. Then for any € > 0, there exists a § > 0
such that

(3.1) P(1-E[Z) < Z < (1+€)E[Z]) =1 - 0(e PFIZ]y

Next, we consider a Lindley process, starting at the origin and defined by
(3.2) o=0, G=(Ga+T)",

with U; = X;—Y;, where { X;} and {Y;} are independent sequences of i.i.d. random variables.
In our application, Y; is a 0-1 random variable and X is the number of arrivals to a queue in
bN time steps, where b is a given constant. Thus, for large N, X; is approximately Poisson
distributed with mean Ab. Tt is easy to check that X; and hence U; has an exponential tail

probability, i.e., there exists a k > 0 such that
(3.3) PU; >xz)=0(e™ ") .

The process {(;} is said to have negative drift if P(Y; = 1) = E[Y;] > E[X;] and hence
E[U;] < 0. The next result follows from standard theory (e.g., see Asmussen (1987)). Let
the U; be distributed as U.

Lemma 3.2. If E[U] < 0, then F[(;] is bounded by a constant uniformly in i > 0. The
distributions of the (; converge in total variation geometrically fast to the distribution of a

random variable { with moments of all orders.



In addition to Lemma 3.2, we will need certain probability bounds on excursions of {(;}.

These will be derived in terms of corresponding bounds for the unrestricted process
(3.4) =&+ U, i>1,

with the U; defined as before, and with a given initial state £y. Hereafter, we assume a
negative drift F[U] < 0.

The probability bound on excursions of {¢;} that we will use in the analysis of {(;} is
developed as follows. Since E[U] < 0, and P(U > 0) > 0, there exists an ag > 0 such that

E[e®U] = 1. Define the process £ = e®& ;> 0, with the property

E[6 4 | &= Bl | &)= R[] = € .

Together with our assumptions on U, this shows that {£} is a uniformly integrable mar-

tingale, so we have

P (sup &> w) = P (sup &> ew)
>0 >0
(3.5) < eTOTE[E) = E[em0lrmo)]

where the inequality follows from Doob’s martingale inequality (see, for example, Section 35
in Billingsley (1986)).

We now use (3.5) to get similar bounds for the busy periods of {(;}. In analogy with
queueing applications, we say that steps iy through ¢, i9 > 4y, comprise a busy period if
{¢;} moves away from the origin at step ¢; > 1 and makes its first subsequent return to
the origin at step iy, ie., (;;-1 = 0, 5 > 0, i1 < j < 19, and ¢;, = 0. The process is
idle while it resides at the origin. We want a probability bound on the maximum value of
the process during a busy period B. For this purpose, we make use of the fact that, away
from the origin, {(;} behaves as an unrestricted random walk. In particular, the conditional
probability that, given the first jump U;, > 0, {(;} exceeds level = before its next return to
the origin is the same as the probability that, starting in state U;,, the unrestricted version
{&;} exceeds level x before its first passage to a point at or below the origin. As an easy
consequence of (3.5), we have that, for a randomly chosen busy period B of {(;},

(3.6) P (sup G > w) < E[em0@=U+)] = g(e=07) |
1€B



where U4 has the conditional distribution of U given that U > 0.

Our primary interest is in the behavior of {(;} over a finite (and large) number of steps.
It is convenient to let N denote the number of steps, since in later applications of the results
below, N will also denote the ring size. For example, a bound on P(Suplgz’gN ¢ > aln N),
a > 0, will be useful. To get such a bound, note that there are at most N/2 busy periods
in the first N steps of {(;}. Then by (3.6)

1<i<N i€B

P ( sup (G > w) < %P (sup ¢ > 96) = O(e~c0z+nNy
Thus, for any v > 0, we can choose 2 = z(N) = aln N with a = a(y) sufficiently large that
(3.7) P ( sup (; > aln N) =0(e "Ny = O(N 7).
1<i<N

Consider next the duration D of a randomly chosen busy period B.

Lemma 3.3. There exists an ng > 0 such that
P(D >y)=0(e ™).

Proof: Let {U;} be the common sequence generating both {(;} and {&;}, (o = & = 0, and
suppose the first busy period By of {(;} begins at step ¢ > 1. Let Dq be the duration of
By. Tt is easy to check that, for any integer y > 1, the event {(; > 0 for all i,{ < i< (+y}
implies the event {£1, > & }. Busy periods are i.i.d. and P(&4, > &) does not depend on
£, so

P(D >y)=P(D1>y)

(3.8) i P&y > &)

P& >0),
By Lemma 3.1, we obtain that, for any € > 0, there exists an a > 0 such that

(3.9) P(& > (1= OF[E)) = O(e*PB) |

with E[¢,] = yE[U] < 0. To see this, we need only observe that the U; and hence £, can be
expressed as sums of independent 0-1 random variables. Put ¢ = 1 in (3.9) and conclude

that, for some ay > 0,

(3.10) P(&, > 0) = O(exvEU]y
Together with (3.8), this proves the lemma. .

10



We need a final observation on the age (or elapsed time) AN of the busy period, if
any, in progress at a given time step N, i.e., AN = N — j where j, 0 < j < N, is the
largest integer no greater than N such that (; = 0. For large N, the behavior of the
process is approximately stationary around N. Standard estimates show that, for N large
enough, AV is stochastically less than a random variable with the elapsed-time (or residual-

life) distribution ¢; = 1;[?1’;]1, ¢ > 1, where F; is the cumulative distribution function of

the duration D of a random busy period. By Lemma 3.3, 1 — F;,_y = O(e‘”oi) so that

Yoisn gi = O(e7™™). We conclude that, for every N large enough
(3.11) P(AN > y) = O(e™Y) |
i.e., we obtain the same bound as in Lemma 3.3, within a constant factor.

4. Proof of Theorem 1.1: Overview

As we will be concerned with asymptotics in N, a superscript N will relate important
quantities to the ring size in the remaining sections. The proof of Theorem 1.1 estimates
the expectation of the sum SV = §(TV) of waiting times in an interval of length ©@(N?),
assuming that the state of the queues at the beginning of the interval is a sample from the
stationary distribution. For convenience, we take [0, 7] as the interval. To make use of

this estimate, observe that

TN N
(4.1) SM=3 QN =Y we),
t=0 =1 peEKN

where KV is the set of packets with waiting times wholly or partially in [0, 7V]. When the
system is stationary, E[QN(1)] = E[Q™], so E[SV] = NTVE[QN] and

E[SN]
NTN

(4.2) E[QMN =

We will prove that, under a matching admission policy to be defined in the next section, the
sum of waiting times SN over [0, TV] satisfies E[SN] = O(N?). By Lemma 2.2 E[SV] <
E[SN]; substitution into (4.2) then proves E[QN] = O(1/N), since TN = Q(N?).

We give a brief outline of the proof based on Fig. 3, as follows. As shown in the figure,

the interval [0, 7] is divided into 3 stages. For positive constants b and ¢ to be determined,

11






Fach H] is V/eNIn N x v/eNIn N

0 N
° °
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° °
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° HZ»]}T’S o
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N
HO
bN oy
° ° °
Stage 3 C ® ° °
° ° °
N
bN ay,_,
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Figure 3: Partition of [0,7V] x {1,...,N}.
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HY | and have a O(N) expected total waiting time.

The total waiting time of packets in KN will then be O(N?) with high probability; from

this fact, we will have no difficulty in proving the expected value results of Theorem 1.1.

5. Proof of Theorem 1.1: Algorithm MATCH

After defining MATCH, we will discuss the matchings it produces and verify that they
are valid. MATCH consists of a thinning phase followed by a matching phase. The purpose
of thinning is to remove a subset of X’s in such a way as to guarantee that the matchings
constructed in the matching phase will be valid; in particular, the vertical parts of matching
lines do not pass through enablings (see condition (ii) in Section 2). Since the steps of the
thinning phase are determined by the requirements of the matching phase, the reader may
find it helpful to study the matching phase first, referring to the thinning phase as necessary
to verify that matchings are valid. As part of the probabilistic analysis of MATCH in the
next section, we prove that the number of x’s lost in the thinning phase is negligible.

The thinning phase is given in Fig. 4. For this phase (see Step 3a) and the matching
phase, the header strip of each H,iv, 0 <k < N?—2,is defined to be the first 3v/eNIn N
time steps across the N columns.

In what follows, we adopt circular indexing implicitly, i.e., when we refer to a block
H;;ipor Hij—p, 0 <k <N, theni+k > N is to be takenas i+ k- N and i —k <0
is to be taken as N + (7 — k). The matching phase defined in Fig. 5 is divided into stages
corresponding to the stages of [0, TV] illustrated in Fig. 3. The algorithm refers to corner
blocks of H,iv, 1 <k < N? —1; these are small blocks in the lower left corners consisting of

the last v/¢N In N time steps and the first veNIn N columns; see Fig. 8 for an illustration.

14



MATCH: Thinning Phase
L. (Block rows 1,..., Iy + 3 of the H)’s)
a. In each column segment that spans the first 3 block rows, delete all but one Xx;

the x retained is chosen at random from two or more.

b. In any sequence, scan top-down each column segment spanned by block rows 4
to block row Iy + 3. Whenever a X is encountered, say in Hg, 4 <1< I+ 3,

leave it if there is no x directly above it in blocks Hg, Hi]il,j? Hﬁm, or Hi]i&j;
otherwise, delete the x.

2. (Block rows Iy + 1 to 21y)
a. First mark every d* column beginning with column d and ending with column
N/d.

b. Thin the unmarked column segments of block rows Iy 4+ 4 to 2Ix just as in 1b
above, continuing 1b where it left off.

c. Thin the marked column segments in block rows Iny + 1 to 215 by deleting all
but one X, if any, in each segment; the x retained is chosen at random from two
or more.

3. (Blocks HY, 0 <k < N?-2)

a. Remove all x’s from the header strips of every H,iv, 0<k<N?Z-2

b. In each column segment that spans HY, delete all but one x, if any; the x
retained is chosen at random from two or more.

c. Finally, for k = 1,..., N? — 2, scan top-down each column segment that spans
H,iv; whenever a X is encountered, say in H,iv, it is retained if and only if there
is no x directly above it in H,iv or H,iv_l.

Figure 4: Algorithm MATCH, thinning phase.

15



Matching Phase
Stage 1 (block rows 1 to Iy)

N

a. Foreach 4,7, 1 <: < Iy, 1 <j < Jy, match o’s in HZ];T in any way to x’sin H;% ,

until either the former or the latter are exhausted, whichever occurs first.

b. For each j, 1 < j < Iy, match the packets in the queues Qf\;—l)IN‘Fl’”"Q%N

above HZ];T to X’s that remain in the respective blocks of the spiral sequence H{Yj-l-?’

Hé\,fj-l-i%’ .. '7H}>7V7j+IN+17 i.e., foreach £ = 1,..., Iy match initial packets in QZ_1)1N+£
to leftover x’s in Hé]\fj+£+1 until the former or the latter is exhausted, whichever occurs
first.

Stage 2 (block rows Iy + 1 to Iy and block HJY)

a. For the second Iy rows of blocks Hg,

with one exception: use no X in a column whose number is a multiple of d; these are

perform the same matching as in la above,

the marked columns of step 2a of the thinning phase.

b. Scan the N columns left to right in the time interval spanned by HJ', beginning
with column 1. To each o encountered, match the leftmost unmatched X, if any, in
a marked column segment directly above or above and to the right of the column
containing the o.

c. If there are unmatched o’s leftover, match these in any way to the leftover x’s, if any,
in block HQJ\}N , until either the former or the latter are exhausted, whichever occurs

first. The matching order of o’s in the same column of HJ' can be arbitrary.

d. Eliminate all matchings made in 2b or ¢ whose matching lines extend below the header
strip of H{Y; the corresponding o’s are left unmatched.

Stage 3 (blocks H¥, 1 < k < N?—2)

a. Fork=1,2,...,N?—2, scan the columns of H,iv as in 2b, matching o’s to x’s directly
above or above and to the right in a column segment of H,iv_l, where the x can be in
any such segment (not just the marked ones as in 2b).

b. If there are unmatched o’s leftover, match these in any way to the unmatched x’s, if
any, in the corner block of H,iv_l until either the former or the latter are exhausted,
whichever occurs first. As before, the matching order of o’s in the same column can
be random.

c. Eliminate all matchings made in 3a or b whose matching lines extend below the header

strip of H,i\_fl_l, when k < N2 — 2, or below TV when k = N? — 2; the corresponding

o’s are left unmatched.

Figure 5: Algorithm MATCH: Matching Phase.
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With the help of Figs. 6-8, it is easy to verify that all matchings are valid. Consider
Stage la illustrated in Fig. 6. As can be seen, a diagonal down from any o in HZ];T must
pass under all x’s in Hi,]\;-l-?' The vertical parts have lengths ranging from 0 to 4v/cN In N
and, because of the thinning process, no vertical part can pass through a X in Hﬁ27j+2’
Hﬁ_&jm, or Hﬁ_47j+2 (all of the x’s shown in the figure must be in different columns). The
vertical components, or waiting times, are bounded by 3veNIn N. A similar figure could
be drawn for blocks Hg, H%+2, in Stage 2, but the x’s matched would be confined to
unmarked columns. Note also that matching lines from o’s in the last two rows of blocks
HZ];T can extend down into the header strip of H}Y, but the vertical parts of such lines can
not be in marked columns and they can not extend below the header strip of H(Y.

Figure 7 illustrates the matching of initial packets, in this case, 2 packets in the queue
over the third cell of H{\; to x’s left over from Stage 1a in the third block of the shaded
diagonal sequence. Extensions of the remarks above show that the matching lines are valid.
The vertical parts range from a minimum of 0 to a maximum of 3y/¢N In N and the waiting
times are bounded by TlN 1+ 2¢/eNIn N (matching lines can extend down into the first two
block rows of Stage 2).

An example of H,iv, k > 1, in Stage 3 is shown in Fig. 8. Note that vertical parts
are bounded by 26N, and that by the thinning process a X in column j in H,iv_l disallows
a X in column j of H,iv, so vertical parts can not pass through x’s. Note also that the
diagonal parts of o’s in H,iv matched to x’s in the corner block of H,iv_l wrap around from
the right edge to the left edge. A similar illustration could be given for HJ'; however, the
x’s matched would be restricted to the marked columns in Stage 2 extending from block

row Iny + 1 down to the top of Hév.

6. Proof of Theorem 1.1: Probabilistic Analysis

It remains to prove the estimate E[SN] = O(N?) of the expected total waiting times
under MATCH. Let §ZN be the total waiting time contributed by packets in Stage ¢ of
the matching phase, ¢ = 1,2,3. We will prove that E[S‘ZN] = O(N?) for each 4, so that
E[SN] = E[SN]+ E[SN]+ E[S)] = O(N?), as desired. Tt will be convenient to analyze the

stages in the order 1,3, 2.
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"y ", VeNIn N
Q X
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Figure 6: Matching of new arrivals in Hg, Stage 1. Only o’s in HZ];T are shown and only
x’s in the (5 + 2)" column of blocks are shown.
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Figure 7: Matching initial packets.
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X X : Hliv—l
/ X>< % T . x X// deleted in Step C
corner of Stage 3
blocks || - 7707 iiiiiiii AN I Ci)ia

<—— header

block

Figure 8: Matching new arrivals in H,iv, k > 1. Only the o’s are shown in H,iv and only the
x’s are shown in H,iv_l.
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Stage 1 Consider an arbitrary block H in Stage 1. Let K N denote the set of new arrivals

served by x’sin HY  i.e., Ix is the set of o’s in H/Y

i and let Q denote the set of initial

1j— 23
packets in the queue served by H»N. Define n° = | K N| and let n* be the number of x’s in

. Our aim is to find the expected total waiting time of the packets ¢ € Ix U Q served
by

We begin with 3 claims, the first two giving bounds on the conditional expected total

waiting times of packets in Qf}f and Kf}f, given the event
(6.1) Eij={n"=n°>dcln N}

for some 4, 0 < 6 < gt — A. The third claim shows that &; occurs with high probability.
With these claims in hand, the remainder of the proof that E[SN] = O(N?) will be very

short. Tn what follows, @ denotes waiting times in [0, 7] under MATCH.

Claim 1. For ¢ large enough

E| Y w(é)| & =O0(NI*N) .
PEQ)

Proof: Matched packets in Qf}f have a waiting time bounded by ¢NIn N + 2v/eNIn N,
which is the duration of Stage 1 plus the duration of the top two block rows of Stage 2;
and unmatched packets in Qf}f have the trivial waiting-time bound TV < bN3. For the
former we use the simpler bound 2¢NIn N (assuming N is large enough) and define, for
any 6 satisfying 0 < 6 < pu — A,

. 2meNIn N, 0<m <écln N
(6:2) :{ 262N 1In N + (m — écln N)bN3, m > écln N .

Then &; implies (we use the independence between Qf}f and n°, n*),

F Z ﬁ] 2] <Zwm |Q2] - )

PEQN m20
By Lemma 2.1, |Qf}7| is bounded stochastically by R™N. Therefore, since ,, is nondecreasing

in m, we have (see Ross (1983), p. 252)

E|S a(e)|&;] <> wnP(RY =m) .

$€Ql mz0



Substitutions then give

E| > w(¢)|&;| < OWI>N)+bN? > (m—écln N)P(RY =m)
(beQig m>6cIn N
(6.3) < O(NIn*N)+bN? > mP(RN > m +6cIn N)
m>0

by (6.2) and a change of variables. Then (2.1) shows that
(6.4) P(RN >m+delnN)y=e"". O(e‘”‘SClnN) —e V. O(N—vﬁc) 7

so the sum in (6.3) is O(N=7%¢) 3 ome ™™ = O(N~"%¢). Then the second term on the
right of (6.3) can be made as small as desired by taking ¢ sufficiently large. The claim

follows. n

Claim 2.

E| Y ()| & =0(NW*2N) .

N
(bel‘i]

Proof: When &;; holds, all new arrivals in H%_Q are matched, and by the Stage—1 matching

procedure, each has a waiting time bounded by 3v¢NIn N (see Fig. 5). There can be at

most n° matched packets in Kf}f, 80

(6.5) E| > w(¢)|&;j| <3VeNInN E[n°|&;].

¢6Ki1>’
But n° is a positive random variable, so F[n° | n® < z] < F[n°] = AcIn N for all 2. Thus,

En° | &;] = O(In N). Substitution into (6.5) proves the claim. ]
Claim 3. For any ¢ > 0 and any ¢ satisfying 0 < 6 < u— A, there exists a 3 > 0 such that
P(n* —n° < écln N)y=1- P(&;) = O(N~F).

Proof: Let nf € {0,1}, 1 < k < ¢NlIn N, denote the number of arrivals at the Eth grid
point of H%_Q, under any given enumeration of these points. Then n° = ", n}. Applying
Lemma 3.1 with n = ¢N1In N and p; = A/N for all 7, we have that, for any ¢ > 0, there

exists a 3’ = #'(¢) > 0 such that
(6.6) P(n® > (1+€)AelnN) = O(e_ﬁlAcmN) — O(N—B’AC) ‘
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A similar bound can be obtained for n*, but because of the thinning procedure we count
the x’s differently. Let n, 1 <k < VeN1In N, denote the number of x’s in the & column
segment of Hg, so that n* = 3", n; . By the thinning procedure, the n; are independent
0-1 random variables. Let ¢ > 3 for simplicity; the arguments for ¢« = 1,2, 3 require trivial

modifications. T L§L ﬂt h e



Claim 3 shows that if we choose ¢ large enough, then the second term on the right of (6.9)

will be negligible by comparison with the first, so that

E|l Y. ()| =0(N’N).

PEQNUK]Y

Finally, since there are N blocks HZ];T in Stage 1, we obtain E[SIV] = O(N?) as desired.

Stage 3 Let K,]f denote the set of o’s in H,iv and define M,iv to be the subset of these

N

N2_y completely,

packets that become matched in Stage 3. For simplicity, we will ignore H
since unlike the other Stage 3 blocks, H%Q_z it is not followed by a header strip. We lose

nothing by this, since

(6.10) E| > ()| = O(N?)
¢6K%2_2
follows from the AbN bound on the expected number of arrivals in H%Q_z and the bN bound

on the waiting time of each.
Our approach will be to add bounds on the expected total waiting times, computed
separately, for the matched packets and the unmatched packets. Claim 4 below shows that,

for b sufficiently small and ¢ sufficiently large,

E| Y w(¢)| =0(N), 1<k<N?*-3.
peMN

Then Claim 5 will show that for any v > 0 we can take ¢ large enough so that the probability
of the event & that the Stage-3 matching procedure leaves one or more o’s in K,]f unmatched
is O(N~7). The number of grid points in H,iv is bN2, so with the bN? bound on any waiting
time, we have a trivial b52N° bound on the total waiting time of packets in K. Together

with Claims 4 and 5, this shows that

(6.11) E| > (o) = O(N)+b*N°P(E) = O(N) .
peKY

Multiplying by the number N2 — 3 of blocks, we conclude that
E[53]=0(N?),
as desired.
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Claim 4. Choose b so that 0 < b < % “M_QA. Then there is a ¢ sufficiently large that

E| > w(e)| =0N), k=1,...,N?=3.
peMN
Proof: Let U; = X;—Y;, 1 <i < N, where X; and Y, are the respective numbers of o’s and
x’s in the i*t column segment of H}Y and H}Y ,. Note that {X;} and {Y;} are independent
sequences of i.i.d. random variables; X; is binomially distributed with the success (arrival)
probability A/N and number of trials bN, and, by the thinning phase, Y; is a 0-1 random
variable. The Lindley process induced by {X;} and {Y;} and the left-to-right scan of the

columns in the Stage-3 matching is given by the Lindley process in Section 3,
(6.12) G =0, "= +U)r izt

It is easy to see that, among the o’s scanned during Stage 3 in columns 1,...,7, (N gives
the number as yet unmatched. Thus, if m°® denotes the number of o’s in H,iv, then m°® — C]]\\;
counts the o’s matched in the scan of the N columns, and C]]\\; counts the leftover o’s that
are matched, to the extent possible, to x’s in the corner block of H,iv_l. An easy induction
establishes that the sum of the horizontal components of the matching lines incident to the
first m® — C]]\\; matched o’s is at most (¥ + ...+ C]]\\; with equality if C]]\\; = 0. (Observation
(4.1) is essentially equivalent.) For the leftover o’s that become matched, N is a trivial
bound on the horizontal components of their matching lines. Thus, since the horizontal

component of a packet’s matching line is equal to its waiting time, we conclude that

N
(6.13) S (o) <N+ NN

(beMéV =1

We now verify that {¢/V} has negative drift so that, by definition of {X;} and {Y;}, we can
apply Lemma 3.2 to show that E[¢N] = O(1) for all 4; taking expected values in (6.13) then
proves the claim.

To prove the negative drift E[U;] < 0, we verify that, in spite of the x’s lost by thinning,
we can ensure that P(Y; = 1) = E[Y;] > E[X,]. We consider the case k > 1; the argument
for H)Y is even simpler and hence omitted. Tt is enough to observe that a single x in column

i of HY | is retained if the original sample in H}' , had at least one x in column 7 outside
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of the header strip, and if the original sample in column ¢ of H,iv_Q had no x’s at all. Then

P(Yi=1) > [1=(1=p/N)PNVNINY G /NN

(6.14) ~ (1—e ™) as N — oo .

Simple estimates show that for this to exceed E[X;] = Ab, it is e



where ¢ has been chosen so that 0 < 6§ < g — A, and where § = 5(8) > 0. Now choose ¢ so
that both S¢ > v and é¢ > « hold. Then

P(t* <alnN) < Pn* —n°<alnN)<P(n*—n°<éclnN)

= O(NP)=0(N7).

It remains only to observe that & implies that either C]]\\; >alnN or n* —n® < aln N.
Then
P(&) < PN >alnN)+ P(* <aln N)=0O(N7).

(&2). For & to occur, a vertical component and hence a horizontal component of some
matching line must exceed 3v/¢N In N which in turn implies that some busy period of {CZN}
must have a length D > 3v¢N1In N. But by Lemma 3.3 there exists an 7y > 0 such that
this event has probability O(e=VNIN) = O(N=7) for all v > 0.

(&3). The occurrence of & implies that (¥ > 0 and the last, partial busy period of {¢/V}
begins at step N — j for some j > 2¢/cNIn N (see Fig. 9). But by (3.11), there exists an
no > 0 such that the probability that the age of the partial busy period exceeds veN In N

is at most O(e~™VNIMNY — O(N=7) for all ¥ > 0. The claim is thus proved. ]

Stage 2 The analysis of Stage 2 uses precisely the same arguments as those used in the
analysis of Stages 1 and 3. We will show how to adapt the earlier results to Stage 2, omitting
details that are by now routine.

The calculation of expected waiting times for packets in Hg, In+1<i<2Iy,1<
j < Jn, proceeds as in Stage 1, but takes into account the smaller rate of x’s owing to the
unavailability of those in marked columns, i.e., every d'" column beginning with column d.
The new rate of x’s over all N columns which are available for the o’s in blocks HZ];T is now

' = pu(1—1/d). Since this must still exceed the arrival rate A of o’s over the N columns,

we require that d satisfy the lower bound

W
p=A"

(6.15) d>

Claim 3 can be used as is for the Stage-2 analysis, if we replace p by p’. To see this,

consider the probability bound for n* in the proof of Claim 3. Define n; = 0 if k is a

27



[ ]
[ ]
X

e V%
N V] N

/\K_’—\

©)

° [ ]
° [ ]
[ ]




multiple of d, so that n* now counts the available x’s in unmarked columns. The bound
in (6.7) still holds, but in applying Lemma 3.1, we must use n = (1 — 1/d)v/cNIn N; this
yields (6.8) with u replaced by p'. The remainder of the argument in the proof of Claim 3
holds as is with u' replacing pu.

With the new interpretation of n* in the event &;;, Claim 2 also holds as is. Thus

adapted, Claims 2 and 3 then give

E| S d(¢)| = OWNI2N)P(E;)+ O(N'In N)[1— P(&;)]

N
(bel‘i]

O(VNIn®? N)

in analogy with (6.9). Thus, the expected total waiting time of packets in block rows Iy + 1
to 2Ty is at most O(N3/21In N), which is at most O(N?) as desired.

It remains to verify a O(N ) bound on the expected total waiting time of packets in H}Y.
In fact, all we need is a O(N?) bound, which could be proved with cruder estimates than
those used in the Stage-3 analysis. However, it is convenient to stick with the tools already
in hand, thus proving the stronger result.

Since the marked columns must supply enough x’s to match the o’s in HY, d must
satisfy an upper bound as well as the lower bound in (6.15). Before giving this bound, we

discuss the Lindley process
5(]JV:07 5]]V:~]]\il+ﬁ]7 j=>1,

constructed in analogy with the process {(V} of the Stage-3 analysis. Here, only x’s
in marked columns are available for matching, so the epochs of {QZJN} occur at every dth
column ending with column N, assuming for simplicity that N is a multiple of d. We have
Uj = f(j - Yj, 1 <j < N/d, where f(j is the number of o’s in columns j(d —1)+1,...,jd,
and Y] is the number of x’s (0 or 1) in column jd,j =1,..., N/d. As before, QZJN denotes the
number of unmatched o’s that remain after scanning the first jd columns. The parameter
d becomes a scale factor for the waiting times of o’s matched during the scanning process,

and we obtain
N/d

(6.16) > w(¢)<dy (Y + NGy

peMyN
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in analogy with (6.13), where M} is the set of o’s in H}¥ that are matched.

To ensure that {QZJN} has negative drift, observe first that the expected number of o’s
counted by )N(j is dAb. Next, the expected number of X’s counted by 17] is at least the
probability of the event &£’ that, in the original sample of x’s in the j® marked column of
Stage 2, at least one x occurs in the interval from T}V + 3v/eNIn N to the start of HY ie.,
2TN. (Note that x’s may have been deleted in the marked columns of [TV, TN +3v/¢N1n N|
so as to allow for matching lines extending down from o’s in blocks HZ];T of rows 2Iy — 1

and 2Iy in Stage 1.) Thus,

P(gl) > 11— (1 _ M/N)CNIHN—-?)\/CNIHN ~ 1= N_CM, N — 0o

bl

which can be made as close to 1 as desired by choosing ¢ sufficiently large. Thus, with high
probability, at the start of HJ', all marked columns have a x available for matching. For

our upper bound on d, we require that dAb < 1, which together with (6.15) gives

1
a <d< —.

1
(6-17) -\ \b

Then for b < (u — A)/Ap, which is already assured by the choice in Claim 4, and for
¢ sufficiently large, we can choose d to satisfy (6.17) and give the desired negative drift

E[ﬁ]] < 0. As before we take expected values in (6.16) and apply Lemma 3.2 to obtain

E| Y, w(g)| =0(N)

peMy
Our final observation is that the proof of Claim 5 carries over directly to the analysis of
{QZJN} and shows that for any v > 0 we can choose ¢ large enough such that the probability
P(€) that a packet in H} is left unmatched is O(N~7). We note a minor tightening of
the argument proving P(&) = O(N~7), viz., that £* is stochastically equal to the random
variable n* — n® in Claim 3.

This completes the proof of Theorem 1.1. "

7. Final Remarks

The hidden multiplicative constants in the results of Theorem 1.1 depend on A and p.

However, a closer look at the analysis in Section 6 will provide bounds as functions of both
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N and p = A/u. In particular, one can show that there exists a universal constant a such
that for all N large enough

(7.1) EWN] < T

We sketch the proof of (7.1) below; it lacks only elementary estimates from being complete.

Note first that, by (4.2) and Lemma 2.2,

E[SNT @V
E[QN] < N[TN] = T(l—l—o(l)) as N — oo,

where @V is the average of w(¢) over all packets ¢ matched in [0, TV]. Thus,
(7.2) EWN <wV(1+0(1)) as N — 0.

But the proof of Theorem 1.1 shows that @" is dominated by the average of w(¢) for ¢ €
M,ﬁv, i.e., the ¢ matched in the random walk of Stage 3. Associating the random walk {¢V}
with a queueing process, we see that w" is at most the waiting time in a discrete-time G'/G /1
queue, where the arrivals in each time slot are independent and have a binomial distribution
with parameters (%,bN), and where the service time is geometric with parameter p’ ~
(1 — e ")e=#* by (6.14). Simple estimates show that we can approximate this queue by
an M/G/1 queue and deduce that (Kleinrock (1975), Section 5.7)
(7.3) T =0 (é) :

(1=p")
where p' = X /u' and N = Ab.

By the proof of Claim 4, if b = 6“;—2A, where € > 0 is a sufficiently small constant, it is
readily verified that 1 — p' = Q(1 — p) and ¢/ = Q(ub) = Q(1 — p). Thus, ¥ = O (ﬁ)
by (7.3), as desired. Note that, unlike classical queueing systems, the expected waiting time
is upper bounded by a function only of p, independently of the individual values of A and
i

There are a number of intriguing open problems in the analysis of ring communications.
For example, by generalizing the transit-time distribution, we have problems of two types:
stability questions and asymptotics in the ring size, N. Coffman, et al. (1993) show that,

for the greedy rule in our model, the necessary condition

A
(7.4) v Eftransit time] < 1

31



is also sufficient for stability if all transit times are 1, if all transit times are N, or if the
transit times are geometric with parameter p/N. But whether (7.4) is sufficient for any
other transit-time distribution is an open question.

Asymptotics in N also pose open problems for transit-time distributions other than
the geometric. The uniform distribution on {1,..., N — 1} is of particular interest; ex-
tensive simulations by Coffman et al. (1993) give convincing evidence that the bounds in
Theorem 1.1 hold for this case as well, but no proof has yet been found.

Finally, keeping with our Markov arrival and transit-time assumptions, it would be
interesting to study asymptotic behavior in the generalization of rings to toroidal arrays
of processors (see Leighton (1990, 1992)). Much is known about regular (open) arrays,
as can be seen from the recent work of Mitzenmacher (1994), who gives references to the
earlier work on this problem. But the analysis of toroidal arrays seems to require different

methods.
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