Optimal Fault-Tolerant Computing on Two Parallel

Processors
John Bruno E. G. Coffman, Jr.
Computer Science Dept. AT&T Bell Laboratories
University of California Murray Hill, New Jersey 07974

Santa Barbara, California 93106
October 10, 1994

ABSTRACT

Suppose two identical processors, both subject to random failures, are available for run-
ning a single job of given duration 7. The failure law, whose mean is normalized to
1 for convenience, is operative only while a processor is active. To guard against the
loss of accrued work due to a failure, checkpoints can be made, each requiring time §;
a successful checkpoint saves the state of the computation, but failures can also occur
during checkpoints. The problem is to determine how best to schedule checkpoints if the
goal is to maximize the probability that the job finishes before both processors fail.

We solve this problem under the assumption of an exponential failure law. In particu-
lar, for given 7 and ¢ we show how to determine an integer £ > 0 and time intervals
Ii,..., Ixyq such that an optimal procedure is to run the job on one machine, check-
pointing at the end of each interval I;,7 = 1,...,k, until either the job is done or a
failure occurs. In the latter case, the remaining processor resumes the job starting in the
state saved by the last successful checkpoint; the job then runs until it completes or until
the second processor also fails. We give an explicit formula for the maximum achievable
probability of completing the job for any fixed £ > 0. An explicit result for k,,;, the
optimum value of k, seems out of reach; however, we give upper and lower bounds on
kope that are remarkably tight; they show that only a few values of £ need to be tested
in order to find k.. We also derive the asymptotic estimate

kopt —1/27/6 = O(1) as 6§ — 0.

Finally, we calculate conditional expected job completion times and discuss several open
problems.

Optimal Fault-Tolerant Computing on Two Parallel

Processors
John Bruno E. G. Coffman, Jr.
Computer Science Dept. AT&T Bell Laboratories
University of California Murray Hill, New Jersey 07974

Santa Barbara, California 93106

1. Introduction

Assume we are given a single job with a known processing time 7 > 0, and that we are
to run the job on a system of two identical processors subject to failures. A processor can
fail only while it is running a job, not when it is idle. Times to failure of the processors
are independent, identically distributed random variables with an exponential failure
law F(t). For convenience, we take the mean failure time as the time unit so that
Flty=1-¢1t>0.

The objective is to schedule the job so as to maximize its completion probability, i.e.,
the probability that the job completes before both processors fail. To reduce the amount
of lost work owing to failures, and to increase the completion probability, checkpoints may
be introduced. A checkpoint on a processor running the job simply saves the state of the
computation and makes it available to the other processor. The checkpoint procedure,
also subject to a processor failure, requires a fixed amount of time denoted by ¢ > 0.

To illustrate the use of a single checkpoint, identify one of the processors as primary
and the other as back-up. For some given z, 0 < 2 < 7, we start the job on the
primary processor, attempt to run it for x time units, and then attempt to checkpoint
the computation during [z, 2+6]. If a failure occurs in [0, z46], the job is simply restarted
on the back-up processor; otherwise, the job is continued on the primary processor in
an attempt to complete the remaining 7 — 2z > 0 time units by time 7 + é. If this
latter attempt fails, then the back-up processor repeats the attempt, i.e., it starts in the
checkpointed state and attempts to complete the last 7 — x time units.

The above policy can be extended in the obvious way to any number of checkpoints on
the primary processor. Checkpoints are made at appropriate intervals to guard against
the loss of too much accrued work in the event of failure. The back-up processor is used

only if the primary processor fails, in which case it resumes the job at the most recent

successful checkpoint. We will see that, for any § > 0, the use of checkpoints entails
a compromise, since the probability that the primary processor fails before completing
the job increases with the number of checkpoints. Thus, our specific goal will be to find
the number of checkpoints and the times they are made which maximize the completion
probability.

It is easy to see that the completion probability can not be increased by adopting
a policy not of the above sequential type. In particular, running the processors in
parallel can not increase the completion probability. Indeed, the completion probability
will decrease if the back-up processor is started before the last checkpoint, if any, is
successfully made on the primary processor. On the other hand, finishing a schedule by
running both processors after a last successful checkpoint has no effect on the completion
probability and has the advantage of reducing the conditional job completion time, given
that the job completes. The conditional job completion time under this variant is studied
in Section 4; until then we keep with the simpler policies that use the processors in
sequence, the back-up processor being used only in the event of a failure on the primary
processor.

To illustrate calculations, let Qr(7) = Qi(7,d) denote the completion probability

under an optimal k-checkpoint schedule. Trivially
(1.1) Qo(r)=1—(1—e)P =2"T—¢e2", 72>0.
For one checkpoint (see Fig. 1), we have

(1.2) Qi(r) = sup [(1—e e 4 = HIQ(r —2)], 720,
0<z<r
where the bracketed function is the completion probability assuming the checkpoint is

made at time x. To see this, note that (1 — e_(x""s))e_T is the joint probability that

Figure 1: One Checkpoint

(i) the primary processor fails to complete z units of service plus the checkpoint, and

(ii) the back-up processor completes the job starting from scratch. The second term,
e+ Qo (1 — z), is the joint probability that (i) the primary processor completes the
checkpoint, and (ii) the processors, without making any additional checkpoints, complete
the remaining 7 — z time units required by the job.

Routine calculus shows that the supremum in (1.2) is reached at the unique point

x = T7/2, s0 that
(1.3) Q1(7) = (1 — e~/ 4 =248 (7 /2) .

A comparison of (1.1) and (1.3) shows that one checkpoint is better than none, i.e.,
Q1(7) > Qo(7), if and only if

For ¢ sufficiently small, more than one checkpoint will be better than either one
checkpoint or no checkpoints. Indeed, in Section 3 we show that, for fixed 7, the optimal
number of checkpoints grows like \/27/6 as § — 0. The limit itself is artificial if one
considers a primary processor checkpointing infinitely often on a set of measure 0 and
dense in [0, 7]. But in this set-up the probability of failures during checkpoints is 0, and
the work that has to be repeated on the back-up processor in the event of a failure has

measure 0. Thus, the completion probability is
(1.5) - / (1= e Nde = (7 + 1)eT .
z=0

Section 3 verifies analytically that the optimum completion probability tends to (1.5) as
6 — 0.

Much of the literature in fault-tolerant scheduling deals with a repairable processor
so that the probability of completing a job is 1. Checkpoints are still used to avoid losing
too much work, but the objective is to minimize the expected completion time of the job
[2,5, 6, 7]. Recently, fault tolerant scheduling in a multiprocessor, online environment has
been studied in [1]. In this model there are m processors and a collection of n jobs whose
processing times are known only when they complete their processing. The processors
are subject to either permanent or transient failures and various objective functions are
considered. Competitive analysis [8] is used to evaluate possible algorithms. In the
case of permanent failures it is assumed that no more than a constant fraction of the

processors fail and so all the jobs are eventually completed.

The paper by Geist, et al. [10] considers job completion probability in a single-
processor system in which the processor can undergo a limited number N of repairs,
where N is a random variable. Checkpoints are spaced at uniform intervals 7/k where
k is the number of checkpoints. Various alternatives for N, the number of repairs, are
considered. For example, if timeliness is an issue, then the number of repairs could
depend on the total time spent in processing the task and repairing the processor. A
similar model is considered in [4] in which a more general checkpointing strategy is
allowed and each failure has probability 1 — @ of being permanent. The objective is to
maximize the probability of completing the job before the first permanent failure of the
processor. The checkpointing strategies depend on the distribution of the time-to-failure
random variable; however, in many cases, including the exponential failure law, optimal
checkpointing is done at intervals which are, for the most part, uniformly spaced.

Section 2 fixes k and treats the general problem of determining the optimal schedule
of k checkpoints, i.e., the durations of the k£ + 1 time intervals bounded by checkpoints,
with the first and the last such interval beginning and ending at times 0 and 7 + ké,
respectively. We give explicit formulas for the durations of these intervals, to be called
checkpoint intervals, in the optimal k-checkpoint schedule.

Explicit results for the optimum number of checkpoints as a function of é and 7
appear to be out of reach. For this reason, Section 3 turns to bounds. Upper and lower
bounds are derived which are remarkably tight for most parameter values of practical
interest. This means that the numerical search for the optimum number of checkpoints
usually tests very few possible values.

Section 4 calculates the conditional expected job completion time, given that the job
completes, and studies the trade-off between this metric and the completion probabil-
ity. Numerical results indicate that in many circumstances a small sacrifice (decrease)
in the completion probability yields a substantial decrease in the conditional expected

completion time.
2. How to Use k Checkpoints

In this section we determine an optimal k-checkpoint schedule for any fixed k. Be-
cause of the memoryless property of the exponential distribution, we can express Qx(7)

as the solution to a finite-stage stochastic dynamic program [3]; if the primary proces-

sor successfully completes the first checkpoint in an optimal k-checkpoint schedule, then
the schedule after the first checkpoint is an optimal (k — 1)-checkpoint schedule on the
remaining time. For k > 1 we have,

(2.1) Qr(t) = sup [(1 —e @)™ 4 =G, (r—2)], 7>0.

0<a<r

The bracketed term in (2.1) is the sum of the joint probability that (i) the primary proces-
sor fails prior to completing the checkpoint and (ii) the back-up processor completes the
job starting from scratch, and the joint probability that (i) the primary processor com-
pletes the first checkpoint and (ii) proceeds according to an optimal (k — 1)-checkpoint

schedule on the remaining 7 — 2 time units (see Fig. 2). Equation (2.1) is known as the

Figure 2: Qx(7)

optimality equation; together with Qo(7) in (1.1), it gives us in principle a method for
solving for Qx(71), k > 1.

In the previous section we calculated)1(7) and found that in the optimal 1-checkpoint
schedule the primary processor, if it has not failed by 7/2, attempts to make the check-
point beginning at time 7/2. We note for future reference that this result implies that,
for all £ > 2 as well, the last two checkpoint intervals are equal length in an optimal
checkpoint schedule.

Let us carry the calculation one step further. Setting & = 2 in (2.1), differentiating
the bracketed term with respect to x, setting the resultant expression equal to zero, and
solving yields # = 7/3 4+ 26/3. The second derivative of the bracketed term in (2.1)
is negative for all = and, consequently, x = 7/3 4+ 26/3 is the unique point at which
the supremum occurs. However, the supremum in (2.1) is over z satisfying 0 < 2 < 7.
Accordingly, for 6 < 7 the supremum is achieved at @ = 7/3 + 26/3 and for § > 7 the

supremum is achieved at @ = 7 (see Fig. 3). Therefore, if § < 7,

Q2(T) — (1 B 6—(7/3+56/3))6—T + 6—(7/3+56/3)Q1(2T/3 _ 26/3) 7

T I_é T
}Efr%‘S 578 5—%#
| |
$ § T+ 26
Case 6 <1
-
) T+ 26
Case 6 > 7

Figure 3: Q2(7)

and if 6 > 7> 0,
QQ(T) — (1 _ 6—(T+5))6—T + e—(T-I—S)Ql(O))

Clearly, the checkpointing in Fig. 3 for the case 7 < é serves no useful purpose. The
optimal schedules for k = 1,2 also illustrate the easily verified fact that, if § > 7, then a
schedule with no checkpoints has a maximum achievable completion probability.

The determination of the completion probability for optimal k-checkpoint schedules
using (2.1) gets increasingly complex with increasing k. The following result is key to
understanding the structure of optimal k-checkpoint schedules. Let I be a checkpoint
interval. Then ||7]| denotes the length of I.

Lemma 2.1. Let I and J be consecutive checkpoint intervals in an optimal k-checkpoint
schedule with I occurring before J and J not the last interval, i.e., the interval ending

at T+ ké. If ([T +||T]| > 6 then [[I|| = [|T|| + & and if ||| + [|]]| < & then ||.T|| = 0.

Proof. If ||I|| 4 || J|| = 0 the lemma is trivially true. Assume [|I||+||J|] = w > 0. Let 7/
denote the job processing time that remains at the start of checkpoint interval I. We will
calculate the effect of moving the checkpoint (7, the one between checkpoint intervals I

and J, on the completion probability. Let x denote the distance from the beginning of

I to (5. Since we are only interested in the effect on the completion probability of the
location of checkpoint (y as it is moved between (; and (k, the value of z ranges from

0 to w (see Fig. 4). Let ¢(z) denote the completion probability of the schedule which is

Cr ¢ (K

Figure 4: ¢(2)

identical to the optimum k-checkpoint schedule except for the location of checkpoint (.

We can write
g(z) = P+ R[(1— e 0)e™™ 4 e770[(1 — emwtodyemmHo 4 pmwba=ig])

where P is the joint probability that (i) the primary processor fails before reaching (7 (if
I is the first checkpoint interval then starting the job immediately after (; corresponds to
starting the job from scratch) and (ii) the back-up processor successfully completes the
job; R is the probability that the primary processor successfully completes checkpoint
(r; and S is the conditional completion probability of the schedule following checkpoint
(x given that (x is successfully completed. The probabilities P, R, and S do not depend
on z, the position of checkpoint ;. Differentiating ¢ = ¢(2), we get
Z_g _ Rl g2l

Since R > 0, 3—; = 0 if and only if 2 = 6-|-Tw‘ Since 3273 < 0 for all z, if ‘”’Tw < w then

the maximum of ¢(2) occurs at z = M—Tw; otherwise, 5-|-Tw > w and the maximum occurs
at © = w. Accordingly, if § < w we have that [|[I|| = &2 ||J]| = w — &2 = 225 and
11| = ||7]] + 6. Otherwise, ||I|| = w and ||.J]| = 0.]

Theorem 2.1. Let I; denote the jth checkpoint interval of an optimal k-checkpoint

schedule, where I; precedes I;11, 1 < j < k. Fither

(i) there exists an integer b, 2 < b < k, such that

I =

a+(k—=b+1-4)8, 1<j<k-b+1,

where

a =

e

satisfies 0 < a < 6, or
(71) no such b exists and ||L;|| = [Ip41|| + (K — 7)6, 1 < j < k, with

1 (k—=1)k
-) .
k—l—l[T 5]>0

[Tkl =

Proof. It is immediate from Lemma 2.1 that ||I1||, || I2||,. .. is a nonincreasing sequence.
Thus, all zero-length checkpoint intervals appear consecutively and at the end of an
optimal k-checkpoint schedule.

Next assume that there is at least one zero-length checkpoint interval. Let b be

equal to the number of zero-length checkpoint intervals (see Fig. 5). In this case b

bo

T+ kb

o

Figure 5: Case (i)

ranges from 2, when the last two checkpoint intervals are zero length, to k, when all
except the first checkpoint interval are zero length. In the latter case the first checkpoint
interval has length 7. Let a denote the length of the right-most nonzero checkpoint
interval, I. We claim that a is less than or equal to §. Otherwise, ||I|| 4 ||.J|| > ¢, where
J is the checkpoint interval immediately following I. By Lemma 2.1, the completion
probability can be increased by moving the checkpoint between I and J to the left such
that ||7]| = ||J|| + 6. This is a contradiction and therefore 0 < @ < 6. By Lemma 2.1

the lengths of all of the nonzero length checkpoint intervals increase by § as we move

toward the beginning of the schedule. Summing the lengths of the checkpoint intervals
and setting this equal to 7 yields case (i) of the theorem.

Next we assume there are no zero-length checkpoint intervals. As noted earlier, since
the last two checkpoint intervals and the last checkpoint form an optimal 1-checkpoint
schedule, the last two checkpoint intervals have the same length, a = ||[Tx41]| > 0 (see

Fig. 6). The length of each of the remaining checkpoint intervals increases by ¢ as we

— a+(k—1)6 I I a4+ 26 Ia—|—6I a I a
\

0 T+ kb

Figure 6: Case (ii)

move toward the beginning of the schedule. Summing the lengths of the checkpoint
intervals and setting the sum equal to 7, we get case (ii) of the theorem. [|
The next result gives an explicit formula for the maximal completion probability for

any fixed k > 0.

Theorem 2.2. Let k>0, 7 >0, and 27/6 > k(k —1). Then

1 — e—(k-|—1)5

1—e®

B2 oy KE0))

(2.2) Qr(t) = e~ (ko) 4 =7 () —(k+ 1)6_<k+1 20h41)

Proof. The proof is by induction on k. The case k = 0 is easy to verify (see (1.1)).
Assume k£ > 0 and that the theorem holds for all nonnegative values smaller than k.
Since we have by assumption that 27/6 > k(k — 1), case (ii) in Theorem 2.1 holds.
This means that the lengths of all the checkpoint intervals in an optimal k-checkpoint
schedule are positive and, using Theorem 2.1, we can compute x1, the length of the
first checkpoint interval, viz., v1 = 75 + %6. Since z1 is the point at which the

supremum is attained in (2.1), if we substitute z; for 2 in the bracketed term and use

the induction hypothesis for Qr_1(7 — x1), the theorem follows. [|

3. Finding the Optimum Number of Checkpoints

Define the optimal completion probability to be Q(71) = max Qk(7), and define k., to
be the smallest value of k such that Q(7) = Qr,,, (7). It follows from Theorem 2.1, that
the optimal k-checkpoint schedules of interest are those for which k(k — 1) < 27/6,
for otherwise the completion probability could be increased by eliminating a check-
point. Thus, a search for k,,; can be confined to the nonnegative integers smaller than
(1+ /1+87/8)/2. Below we will narrow this search significantly. First, consider the

case kope = 0.

Theorem 3.1. We have kop; = 0 if and only if 6 > In H_T/Q

Proof. If k,,+ = 0 then Q(7) = Qo(7) > Q1(t). But then § > In 1-|—6+T/2 from (1.4). Tt
remains to show that if 6 > In 5 _T/2 , then Qo(7) > Qr(7) for all £ > 1. For k = 1 this
is immediate from (1.4), so kopt can not be 1. Suppose k., > 2, and let 7’ denote the

remaining processing time of the job after the next-to-the-last checkpoint in the optimum

2
14e=7"/

we can improve this alleged optimum schedule by removing the last checkpoint. This

schedule. Since 7’ < 7, we have § > In 1+52—T/2 > In 5. It follows from (1.4) that

contradiction proves that k., = 0 must hold. |
Notice that In - _T/2 < In2 holds for all 7 > 0. Therefore we have the following

condition, zndependent of T, that implies the optimality of zero checkpoints.
Corollary 3.1. If 6 > In2 then zero checkpoints is optimum.
By Corollary 3.1, we need only consider ¢ in (0,1n 2).

Theorem 3.2. Let 0 < § < In2. If6 > 7 then Q(7) = Qo(T). Otherwise, 6 < T and

Q(r) = [L]<k<LHJ Qr(T), where
H = —1/2+w/ £
U ——ﬂ+¢ —Hﬁ+%—%

with § = 21n 55

Proof. Since it never pays to make a checkpoint if 6 > 7, assume § < 7. By Theorem 2.1,

we can restrict our minimization to nonnegative values of k satisfying k(k — 1) < 27/6.

10

This inequality can be strengthened by noticing that if the duration of the last checkpoint
interval of an optimal k-checkpoint schedule is less than or equal to é then the completion
probability can be increased by eliminating the last checkpoint. Accordingly, we have
ITe+1]] > 6 (Theorem 2.1, case (ii)). Simplifying this inequality, we get k*+k+2 < 27/4.
Since 7 > 8, k2 +k+2— %TT = 0 has a positive and a negative root. Therefore £ is bounded
above by | H |, the floor of the positive root.

By (1.4), the remaining processing time after the last checkpoint in an optimal k-

checkpoint schedule must not be too large for otherwise we could add a checkpoint and

2
[E
14+e™ 2

this relation to bound || I;41]| and applying Theorem 2.1 case (ii), we get k? + (28— 1)k +

increase the completion probability; in particular, we must have 6 > In Using
26— %TT > 0. It is not difficult to show that 3 is an increasing function of ¢ in (0,1n2) and
is bounded below by 4 (note that %in%ﬁ = 4). Tt follows that k% + (26— 1)k + 8 — 22 = 0
has two real roots and k is bounded from below by [L], the ceiling of the larger of the

two roots. |

65
2—ed”

Corollary 3.2. Let0 < § <In2and§ < 7. Then |H|—[L] < 3—1 where 3 = %1n

Proof. By Theorem 3.2 we have

2 2 1
H—L:ﬂ—1+¢§—7/4— THB 38

Since | H| — [L] < H — L, the first radical is smaller than \/27/8, and the second radical
is greater than \/27/4, the corollary follows. [|

Figure 7 below shows 3 as ¢ varies from 0 to In2—0.05. Since 5(In2-0.05) =9.2.. .,
the difference between |H| and [L] is at most 8 over almost all of the interval (0,In 2)

and for 6 in (0,0.47) the difference is at most 4.
Corollary 3.3. kot —/27/6 = O(1) as 6 — 0.
Corollary 3.4. %in% Q(r)=(r+1)e™".

Proof. This follows from Theorem 2.2 and Corollary 3.3. Substitute /27/¢ for k in
Qr(7) and evaluate the constant term of a Taylor series expansion at VE = 0. [|

Note that Corollary 3.4 justifies the limit claimed in (1.5).

11

Figure 7: g = %111 <’

2—eb
4. The Conditional Expected Job Completion Time

In this section we restrict our attention to optimal k-checkpoint schedules where
k < |=1/24+/27/8 — 7/4]| (Theorem 3.2). Experiments suggest that, for small § > 0, the
completion probability increases as the number of checkpoints increases to the optimum,
kopt. This increase is accompanied by an undesirable increase in the conditional expected
time to complete the job, given that it completes. To study this trade-off, we compute
the conditional expected completion times as follows.

Consider an optimal k-checkpoint schedule with checkpoint interval durations z; =
||1;]| for i =1,...,k+ 1. We will assume a scheduling/checkpointing policy such that,
if k checkpoints are ever successfully made, then both processors are used thereafter
until either the job finishes or both processors fail. (If & = 0, then both processors
start immediately.) It is easy to see that this will stochastically decrease conditional job
completion time and will have no effect on the completion probability, Qx(7).

Let failure interval [be the I* of the k +2 intervals spanning R that are defined by
the k checkpoint completion times and the time 7+ ké; failure interval [has length z;4 6,
l=1,...,k; failure interval k+1 has length z41; and failure interval k42 is [T+ ké, 00)
(each interval is taken to be closed on the left and open on the right). Let ¢(*) be the
event that the job successfully completes, and let fl(k) be the joint event that the failure
on the primary processor is in failure interval [and the job successfully completes. We

have ¢®) = fl(k), so if E[C®)|£()] denotes the conditional expected completion
1<I<k42

12

time under an optimal k-checkpoint schedule, then
(4.1) E[CWIEM) = 37 BeMIgM e 1e®) .
1<I<k+2
Given that a failure on the primary processor occurs in failure interval [, 1 <[< k+ 1,

the conditional distribution of the failure epoch is uniform over the interval. Then,

(4.2) E[c®eP) =

9”2—+5+(1—1)5+r, 1<i<k.

If all £ checkpoints are made before a failure occurs on the primary processor, then since

the two processors run in parallel after a successful k" checkpoint, we have
k k
(4.3) E[C®eM 1= E[c®eP) 1= 7 4+ k6 .

Note that, in the case of no checkpoints, we obtain the minimum conditional completion
time

(4.4) E[CONO] =7,

a result that also holds if 6 = 0. It remains to compute the conditional probabilities,
k

P& 1EM).
We have P(£09)) = Qi(7). A routine calculation then shows that, for k > 1,

e—(7+(l—1)6)(1 _ e—(xz+6))

(k)| (k)Y _
(4.5) Pe)e®) = e L 1<i<h
—(7+k9) -7k
(k) (k) _ € (1 €)
(4'6) P(fk+1|5) - Qk(T) ”
—(7+k9)
(4. PELIED) = s

Substitute (4.2), (4.3), and (4.5)—(4.7) into (4.1), use z; = 21 — (I — 1)§, and simplify to

obtain

—r 1
E[CW)e®)—7 = ‘ —(zq + 18)(e7 V=08 — e=(m148)) | pse=RE (2 — emox
O = i | 32 e 0) (2)

(4.8)
for the increase in conditional expected completion time over the minimum achievable

value 7. Working out the sum in (4.8) gives

- 2Qk(T) o 1 —e ¢

1— (k4 1)e™* 4 ke~ (1)
(1—e%)2

-7 k6
49 HOEO) <= i = b B

+ 6

with 21 = 75 + %6. Substitution of k = k., yields an expression for E[C|{] — T,
the increase in the conditional expected completion time for a checkpointing schedule
that maximizes the completion probability.

An asymptotic bound on the increase in the conditional expected completion time

as 6 — 0 is available from earlier results. First, from (4.1) write

(k)£ (k) (k)| (k) < T E 8
B[O < 15?3%2(]5[0 G < —5— kit T,
since 1 > -+ > 2. Then
)
E[C|£]_T < $12-|- ‘|‘kOpt(S 5

where 1 is the duration of the first checkpoint interval of the optimal k,,;-checkpoint
schedule.
Corollary 3.3 then shows that, for fixed 7,

(4.10) E[C)E]-7=0(6r) as §—0,

where the hidden multiplicative constant is independent of 7 as well as 4.

In the figures below we plot Q4(0.2) and E[C®|£()] as we increase k from 0 to
kopt for values of 6 equal to 0.01, 0.001, and 0.0001. These plots were obtained using
Mathematica and equations (2.2) and (4.9). Although the equations are meaningful only
for integral values for £, for ease of rendering and because the equations can be evaluated

for nonintegral k, we let k vary continuously from 0 to k..

Figure 8: Q4(0.2) and E[C™)|¢M)] with § = 0.01

14

An obvious feature of these plots is that the curves for Q1(0.2) are relatively flat in the
region approaching k., and the curves for E[C(k)|£(k)] are increasing as k approaches
kopt. This suggests we can reduce the number of checkpoints below k,,; at the cost
of only a slight decrease in the completion probability and at the same time decrease
E[CW|E®]. Tn the figures we give the values of Q1(0.2) and E[C®)|¢W)] for k = k,p
and one other value of k. For example, when 6§ = 0.001, k,p;y = 18. However, if we
use k = 4, the completion probability decreases by 0.0014 and E[C'¥)|¢()] decreases by
0.0107. This is a 0.14 percent decrease in the completion probability and a corresponding

5 percent decrease in the expected finishing time.

Figure 9: Qx(0.2) and E[C®)|¢W)] with § = 0.001

15

Figure 10: Q4(0.2) and E[C®)|¢M)] with § = 0.0001
5. Final Remarks

The results in this paper, particularly Theorems 2.1 and 3.2, provide the basis for
an effective engineering solution to the optimal-checkpointing problem set in Section 1.
However, there are interesting, unresolved theoretical issues. A prime example is the
detailed functional dependence of the completion probability on the number & of check-
points. One might expect that this probability would increase monotonically as k in-
creases from 0 to k.p¢ and then decrease monotonically thereafter. Whether this is in
fact true remains an open problem.

There are also many interesting generalizations and extensions of the original prob-
lem. For example, one could consider m > 2 processors, assume a more general failure
law, have processors of different speeds, include more than one job, have a stochastic job
completion time, or look at other criteria, such as maximizing the probability that the
job completes by a given deadline. Most of these problems seem hard, if explicit results
such as those of this paper are the objective. However, a discretization of the problem
may lead to effective computational approaches. For example, consider the model of this
paper extended to m > 2 processors, where even for three processors our formulation via
stochastic dynamic programming is confounded by the lack of an explicit formula for the
optimum number of checkpoints for two processors as a function of 7 and . We describe

below a discrete model and its salient results; because of space constraints, many details

16

must be left to the full version of the paper.

For m > 2 processors, consider a discrete-time model in which all events and deci-
sions take place at epochs which are uniformly spaced in time. Consider a single job
with a known processing time n > 0 where n is an integer. Associated with each pro-
cessor is a time-to-failure random variable which takes on positive integer values. The
time-to-failure random variables are independent and geometrically distributed with the
parameter p = 1 — ¢ denoting the probability that a processor fails in one time unit
(0 < p < 1). The checkpoint procedure takes a fixed amount of time denoted by é where
0 is a positive integer. If a processor fails the job may be resumed by some other proces-
sor beginning at the latest successful checkpoint. For convenience, we assume there is
an initial checkpoint corresponding to zero accumulated processing time for the job. As
before, the objective is to maximize the probability of completing a single job assuming
a fixed number of processors.

A policy 7 is a rule that specifies the number of epochs until the next checkpoint,
given the number m of available processors and the remaining job processing time, n.
If 7(m,n) = 0 then no checkpoint is to be made; otherwise, if 7(m,n) = k > 0, then
the next checkpoint is to be made after processing the job for k additional epochs. We
assume that 7(1,n) = 0, since there is no point in making a checkpoint if there are no
backup processors.

Let Q-(m,n) denote the completion probability under 7. Then
(i) Qr(m,0)=1 for all m > 1.
(ii) Q-(1,n)=¢" for all n > 1.
(iii) Let m > 2 and n > 1. If 7(m,n) = 0 then
Qr(m,n)=¢"+(1-¢")Qr(m—1,n) .
Otherwise, 7(m,n) = k > 0 and

Q?T(m7 n) = (1 - qk+6)Qr(m - 17 n) + qk+6Qﬂ'(m7 n— k) .

Let Q(m,n) = sup{@x(m,n)}. It is easy to see that Q(m,n) is determined by the

following set of optimality equations:
(i) Q(m,0)=1 for all m > 1.

17

(ii) Q(1,n) = ¢" for all n > 1.
(iii) Q(m,n)= max[V, W] where

Vo= ¢ +(1-¢)Q(m—1,n) and

= anax [(1=¢")Q(m = 1,n) + ¢ Q(m.n — k)] .

The range for k in W does not include zero since it does not pay to begin with another
checkpoint and k is never greater than or equal to n — ¢ since starting a checkpoint of
length é when there is no more than ¢ left to go on the job is never better than omitting
the checkpoint.

The above specification of the function Q(m,n) suggests an obvious computation
with O(m - n?) running time. The O(n?) component is contributed by the calculation of
W. We have devised an improvement that computes the maximum in O(In n) steps for all
practical cases and thus the overall running time of our implementation is O(m - nlnn).
This estimate assumes unit costs for arithmetic operations, which is not the case if we
use exact arithmetic.

Based on our calculations it appears that the number of checkpoints increases with the
number of processors. This can have the effect of dramatically increasing the conditional
expected job completion time. Trade-offs with the completion probability can be worked

out in analogy with Section 4.

18

References

[1]

[2]

[11]

B. Kalyanasundaram and K. R. Pruhs, Fault-Tolerant Scheduling (Extended Ab-
stract), Proceedings, Symp. Th. Comput., ACM Press, New York, 115-124, 1994.

L. B. Boguslavsky, E. G. Coffman, Jr., E. N. Gilbert, and Alexander Y. Kreinin,
Scheduling Checks and Saves, ORSA Journal on Computing, Vol. 4, No. 1, Winter
1992.

S. M. Ross, Introduction to Stochastic Dynamic Programming, Academic Press,

1983.

E. G. Coffman, Jr. and E. N. Gilbert, Optimal strategies for Scheduling Saves and
Preventive Maintenance, IFEF Transactions on Reliability, 39, 9-18, 1990.

A. Duda, The Effects of Checkpointing on Program Execution Time, Information
Processing Letters, 16, 221-229, 1983.

V. G. Kulkarni, V. F. Nicola, and K. S. Trivedi, Effects of Checkpointing and
Queueing on Program Performance, Commun. Statist.-Stochastic Models, 6(4), 615
648, 1990.

P. L'Ecuyer and J. Malenfant, Computing Optimal Checkpointing Strategies for
Rollback and Recovery Systems, IEEFE Transactions on Computers, 37(4), 491-496,
April 1988.

D. Sleator and R. Tarjan, Amortized Efficiency of List Update and Paging Rules,
Communications of the ACM, 28, 202208, 1985.

I. S. Gradshteyn and 1. M. Ryzhik, Table of Integrals, Series, and Products, Fifth
Edition, Academic Press, 1994.

R. Geist, R. Reynolds, and J. Westall, Selection of a Checkpoint Interval in a
Critical-Task Environment, IEEE Transactions on Reliability, 37(4), 395-400, Oc-
tober 1988.

A. Goyal, V. Nicola, A. Tantawi, and K. Trivedi, Reliability of Systems with Limited
Repairs, IFFFE Transactions on Reliability, 36, 202-207, 1987.

19

