Controlling Robots of Web Search Engines

J. Talim — Z. Liu — P. Nain
INRIA, B.P. 93, 06902, Sophia Antipolis Cedex, France
{jtalim, liu, nain}@sophia.inria.fr

E. G. Coffman, Jr.
Bell Labs, Lucent Technologies
Murray Hill, NJ 07974, USA
egc@bell-labs.com

May 20, 1999

Abstract

Robots are deployed by a Web search engine for collecting information from different Web
servers in order to maintain the currency of its data base of Web pages. In this paper, we
investigate the number of robots to be used by a search engine so as to maximize the currency
of the data base without putting an unnecessary load on the network. We use a queueing model
to represent the system. The arrivals to the queueing system are Web pages brought by the
robots; service corresponds to the indexing of these pages. The objective is to find the number
of robots, and thus the arrival rate of the queueing system, such that the indexing queue is
neither starved nor saturated. For this, we consider a finite-buffer queueing system and define
the cost function to be minimized as a weighted sum of the loss rate and the fraction of time that
the system is empty. Both static and dynamic policies are considered. In the static setting the
number of robots is held fixed; in the dynamic setting robots may be reactivated/desactivated
at some particular points in time. Under the assumption that arrivals form a Poisson process,
and that service times are independent and identically distributed random variables with an
exponential distribution, we obtain a closed-form expression for the optimal number of robots
to deploy in the static setting, and we compute the optimal policy in the dynamic setting by
using tools from Markov decision process theory.

Keywords: Web search engines; Web robots; Queues; Markov decision process.

1 Introduction

To be modified

The World Wide Web has become a major information publishing and retrieving mechanism on
the Internet. The amount of information as well as the number of Web servers has been growing
exponentially fast in recent years. In order to help users find useful information on the Web, search
engines such as Alta Vista, HotBot, Yahoo, Infoseek, Magellan, Excite and Lycos, etc. are available.
These systems consist of four main components: a database that contains web pages (full text or
summary), a user interface that deals with queries, an indexing engine that updates the database,
and robots that traverse the Web servers and bring Web pages to the indexing engine. Thus,
the quality of a search engine depends on many factors, e.g., query response time, completeness,
indexing speed, currency, and efficient robot scheduling.

Our interest here focuses on the function served by robots: establishing currency by bringing new
pages to be indexed and bringing changed /updated pages for re-indexing. We investigate the prob-
lem of choosing the number of robots to meet the conflicting demands of low network traffic and an
up-to-date data base. The specific model, illustrated in Figure 1, centers on the indexing engine,
which is represented by a finite, single-server queue/buffer, and multiple robots acting as sources
of arriving pages. The times between successive page accesses are independent and identically
distributed for each robot; the robots themselves are identical and function independently. The
indexing (service) times are independent, identically distributed, and independent of the arrival
processes.

When a robot arriving with a page for the indexing buffer finds the buffer full, the page being
delivered is lost, at least temporarily. In this situation, a potential update or new page has been
lost, and network congestion has been created to no benefit. On the other hand, if the buffer is ever
empty, and hence the indexing engine is idle, data base updating is at a standstill waiting for the
robots to bring more pages. To reduce the probability of the first of these two events, we want to
keep the number of robots suitably small, but to reduce the probability of the second, we want to
keep the number of robots suitably large. To make the objective concrete, we will formulate a cost
function as a weighted sum of the probabilities of an empty buffer and a full buffer. We will then
study the problem of finding the number of robots that minimizes this cost function.

There is a large literature on search engines and their components. The search engines themselves
may well be their own best source of references; we recommend this entree to the research on
any aspect of the subject. In particular, much can be found on the design and control (including
distributed control) of robots. However, we have found very little on the modeling and analysis of
robot scheduling and the indexing queue. The work in [2] is the only such effort we know about.
In [2], the authors propose a natural model of Web-page obsolescence, and study the problem of
scheduling a single search engine robot so as to minimize the extent to which the search engine’s
data base is out-of-date.

Section ?? introduces the probability model, sets notation, and formalizes the optimization problem.
Section ?7? solves the optimization problem for exponentially distributed service times and presents
an explicit computation of the optimal number of robots. The sensitivity of the results to various
model parameters is also addressed.

T D=
= 0 4
] Site3
Site 2
Robot 1
Robot 2

Indexing

Engine

Database where the information
collected by the robots is stored

e O—

Source 2 Server with afinite buffer

Figure 1: Model of search engine with 2 robots

Section 6 concludes with a brief discussion of ongoing research and open issues.

2 Static approach

The search engine is modeled as a single server finite capacity queue. The system capacity is K > 2
(including the position in the server). There are N > 1 robots: each robot brings new pages to
the queue according to a Poisson process with rate A > 0. These N Poisson processes are assumed
to be mutually independent and independent of the indexing (service) times. Hence, new pages
are generated according to a Poisson process with intensity AN. An incoming page finding a full
queue is lost. Indexing times are assumed to be independent and identically random variables with
negative exponential distribution with mean ¢ > 0. Define y = 1/5.

The search engine is therefore modeled as the well known M/M/1/K queue. In this notation we
define the cost function as the weighted sum of two terms:

e the fraction of time that the system is empty, hereafter referred to as the starvation probability;

e the expected number of times when an arriving robot finds a full system per unit time, hereafter
referred to as the loss rate.

Let X (resp. X™) be the stationary queue-length at arbitrary epochs (resp. stationary queue-length

at arrival epochs) in a M/M/1/K queue with arrival rate AN and service rate p.

With p:= NA/u > 0 and for v > 0 the cost function is then defined as

C(p,7,K)=9P (X =0)+ ANP (X" =K) (1)

with P (X = 0) and ANP (X* = K) the starvation probability and the loss rate, respectively. Since
P(X*=i)=P(X =1i)fori=0,1,... ,K from the PASTA property [6], (1) rewrites as

C(p,7, K)=7P (X =0)+ ANP (X = K). (2)

In next sectionn we will resort to queueing theory to compute C(p,~,K) and to optimize this
quantity as a function of p, or equivalently of N, the number of robots.

2.1 Optimizing the number of robots

In the M/M/1/K with trafic intensity p the stationary queue-length probabilities at arbitrary epochs
are given by [3]:

) 1—p
P(X=i)= 1 3)
for i =0,1,... , K. Therefore,
o _ (1 =p) (v + ™t
C(p777IX) = 1_ pK+1 : (4)

In particular, C(p,~, K) = (v + u)/(K + 1) when p = 1.

Lemma 1 shows the existence of a unique minimum for C(p, v, K) considered as a function of p.

Lemma 1 For any v > 0, K > 2, the mapping p — C(p,v,K) has a unique minimum in [0, c0),
to be denoted p(~y, K). Furthermore, 0 < p(v,K) < 1 if v < v(K), p(v,K) =1 if v = v(K) and

p(v, K) > 1 if v > ~(K), with v(K) := p(K +2)/K. o
Proof. Throughout the proof f; (z1,...,,) denotes the partial derivative of f(x1,...,z,) W.r.t.
ri,t=1,2,...,n.

Differentiating (4) with respect to p gives

R(p,v,K)

Cp(ﬂa%K) = m

with
R(p, 7. K) = pp” ") — (7K + p(K +2)) p" T+ (K + 1) (n+7) p" — . (6)

Note that p = 1 is a zero of order two of R(p,v,K)) (R(1,7,K) = R,(1,7,K) = 0) so that the
r.h.s. of (5) is well-defined for all p > 0.

Differentiating now R(p,~, K) with respect to p gives
Ry(p, 7, K) = (K +1)p"~" S(p,7, K)
with
S(p, 7. K) = 2pp™F? — (VK + (K +2)) p+ K (pn + 7).

Let

VK + pu(K + 2))1/”"“)

p[](’)/71() = < 2:“’(K+2)

be the unique zero of the mapping p — S,(p,v,K) in [0,00). We see that S,(p,7,K) < 0 for
p < po(v, K) and S,(p,7, K) > 0 for p > po(v, KK).

Let us determine the sign of R,(po(7,K),v,K), or equivalently the sign of S(po(v,K),v,K). To
this end, consider the mapping T' : v — S(po(7y, K),7, K). We have

Ty(y) = K(1 = po(7, K)) Vv >0. (7)

Define v(K) := pu(K + 2)/K. Since po(v,K) < 1if v < y(K), po(7, K) = 1 if v = 4(K) and
po(7,K) > 1if v > ~(K), we conclude from (7) that T, (y) > 0if v < y(K), T, (y) = 0if v = y(K),
and T,(y) < 0 if v > y(K).

Therefore, the mapping v — T(v) is strictly increasing in (0,v(K)) and strictly decreasing in
(7(K),00). Since T(v(K)) = 0, we deduce that T'(y) < 0 for v > 0 with T'(y) = 0 iff. v = v(K), or
equivalently from the definition of T'(v), that S(po(7y,K)) < 0 for v > 0 with S(po(y, K)) = 0 iff.
v = v(K) or equivalently po(vy, K) = 1.

The results obtained so far and their consequences are collected in Tables 3-5 in Appendix B, from
which the lemma follows.

We now return to the original problem, namely the computation of the number N of robots that
minimizes the cost function C(p,v,K) with p = AN/u. The answer is found in the next result
which is a direct corollary of Lemma 1.

Proposition 1 For any v > 0, K > 2, let N(v, K) be the optimal number of robots to use.
Then,

N(v, K) = argmin, C(nA/u,7, K) (8)

withn € {|p(v, K)u/M], [p(v, K)p/N]}, where for any real number x, |x| (respectively [x]) denotes

the largest (respectively smallest) integer less (respectively greater) than or equal to x. o

In the next section we investigate the impact of the parameter v on the optimal number of robots.

2.2 Impact of v on the optimal number of robots

Recall that the parameter v is a positive constant that allows us to stress either the probability
of starvation or the loss rate. Part of the impact of v on p(v, K), and therefore on N (v, K), the
optimal number of robots, is captured in the following result.

Proposition 2 For any K > 2, the mapping v — p(v,K) is nondecreasing in (0,00), with
limy_—.oe p(7, K) = 00. o

Proof. Pick two constants 0 < 71 < 72 and define

A(p771a’Y2aK) = C(ﬂa’}/%l()_c(pfylaK)

1-p
W(Wz—’h)-

We assume that p(y2, K) < p(71, K) and show that this yields a contradiction.
Under the condition 71 < 72 the mapping p — A(p, 71,72, K) is strictly decreasing in [0, c0).
Therefore,
0 < Alp(v2, K),71:72, K)
—Ap(y1, K),m,72, K)
= [Clp
+[C

(72a I()a Y2, I() - C(P(’Yl, I()a 72, I()]

(,0('}’1, I()a Y1, I() - C(p(727 I()a 71, I()] <0 (9)
where the last inequality follows from the definition of p(y, K'). Since the mapping p — A(p, y1, 72, K)
is strictly decreasing on [0,00) we deduce from (9) that p(y2, K') > p(y1, K) must hold, which con-
tradicts the assumption that p(vs, K) < p(71, K). Therefore p(v9, K) > p(71, K) and the mapping
v — p(v, K) is nondecreasing in [0, c0).

Assume now that liminf, .o p(v,K) := L. There exists a sequence (v,), with lim, .o v, = 00
such that lim,, .o p(vn, K) = L. Observe first that L > 1 since we have shown in Lemma 1 that
p(v,K) > 1 for v > u(K + 1)/K. Substituting p for p(vy,,) and 7 for 7, in (6) and using the
identity R(p(7n, K)) = 0 that holds by definition of p(vy, K), gives

0 = pp(n, K)*EHD — (4, K + (K +2)) p(yn, K)ET 4 (K + 1) (1 +) p(yn, K)E — 5. (10)

Letting n — oo in (10) yields

(KLAH — (K +1)L% +1) lim 4, = pL® (L*™ — (K +2)) L + (K +1)). (11)
n—oo

Since L > 1 it is easily seen that K L¥+! — (K +1)L¥ + 1 > 0 which implies that the Lh.s. of (14)
is infinite. Therefore, (14) cannot holds if L < co and lim,_.o p(7, K) = oco. This concludes the
proof.

Proposition 2 has a simple physical interpretation. As the parameter v increases the probability
of starvation becomes the main quantity to minimize. The minimization is done by increasing the
arrival rate or, equivalently, by increasing the number of robots. Figure 2 provides two numerical
examples, illustrating the monotonicity of the optimal number of robots.

12 ! ! ! ! !

Figure 2: The mapping v — N(v, K) (u/A = 5.7)

THIS FIGURE MUST BE MODIFED WITH THE NEW COST

The next section focuses on the impact of the buffer size K on the optimal number of robots, as
K — oc.

2.3 Impact of K on the optimal number of robots

In this section, we examine the behavior of p(v, K') as a function of K.

Lemma 2 The mapping K — p(v, K) is

e nondecreasing in [2,00) if 0 < v < p;

e nondecreasing in [2, Ky) and nonincreasing in [Kg,00) if if v > p, where Kq is given by

Proof. From (6) we find

R(p(v,K),v. K +1) = p(v,K)R(p(v,K).v, K)
H(1 = p(y, K)) (—up* 3, K) + (4) plr, K)EHL =)

= (1= p(1.K)) (=up™ P, K) + (n+7)p(v, K)H =) (12)

since R(p(v, K),v, K) = 0 by definition of p(y, K).

Assume first that 0 < v < p. Then, the results is proved if one can show that
R(p(7.K),7, K +1) <0

Any ideas?

The next lemma examines the limiting behavior of p(y, K).

Lemma 3 For any v >0, K > 2

lim p(y, K)=1. (13)
K—oo

Proof. Assume first that liminfyx .o p(7, K) = L # 1. There exists a sequence (K,), with
lim,, .00 K}, = 00 such that lim,, .o p(v, K,) = L.

Substituting p for p(vy, K,) and K for K, in (6) and using the identity R(p(vy, K,)) = 0 that holds
by definition of p(vy, K), gives

0 = pp(y, Kn)?ErtD) — (Y, + u(FKy + 2)) ply, o) 4 (K + 1) (4 7) p(3,) = . (14)

Letting n — oc in (14) we see that the r.h.s. of (14) converges to —v if L < 1 and converges
to infinity if L > 1, thereby showing that necessarily L = 1. The same approach shows that
limsupy_. o, p(7, K) = 1. Therefore, limg .~ p(7v, K) = 1, which concludes the proof. 1

In other words, Lemma 3 shows that the optimal arrival rate converges to the service capacity when
the buffer size increases to infinity.

The limiting result (13) can be used to find an approximation for the optimal number of robots to
be deployed when K is large. Indeed, the relation

lim N(vy,K)= lim ar

min CAn/p,y, K), 15
Koo A arg o Jin gy CAnm 7 K) (15)

which follows from (8) and (15), suggests the following approximation, for large K

[1/A] i C(p4,7,00) < C(p-,7,00)
N(v, K) ~ (16

/A if Cps,v,00) > Cp—, 7, 00)

ALL FIGURES MUST BE MODIFIED WITH THE NEW COST

1

0.9

0.8

0.7

0.6

0.5

0.4

0.

[
o RN U W S U VRN S S

BB s e

Figure 3: The mapping K — p(v, K)

11

S E 05
14— ¥ = 2.0-+
(a) p/A = 5.7
’ T =005
14 v = 2.0-4
b
(b) u/A=6

-gamma =0.5 — |
gamma=2.0 ---— !

F————=—n

Figure 5: The mapping /A — N(v,0)

12

3 Dynamic approach

In this section we assume that the number of active robots may vary in time according to the
backlog in the queue and to the number of robots already active. To address this situation we will
cast our model into the Markov Decision Process (MDP) framework [1, 4, 5.

3.1 Notations

The indexing engine is again modeled as a finite-capacity single-server queue. Service times still
constitute independent random variables with common negative exponential distribution (with mean
1/p) and the buffer may accomodate at most K > 2 customers, including the one in service, if any.
There are IV available robots and each of these robots, when activated, brings pages to the server
according to a Poisson process with rate \. We assume that these N Poisson processes are mutually
independent and further independent of the service time process.

The new feature in this section is that the number of active robots may be modified at any arrival
and at any departure epoch. When an arrival occurs, the incoming robot is desactivated at once;
the controller may then decide to keep it idle or to reactivate it. When a departure occurs the
controller may either decide to activate one additional robot, if any available, or to do nothing (i.e.

the number of active robots is not modified).

The objective is to find a policy (to be defined) that minimizes a weighted sum of the stationary
starvation probability and the loss rate.

We now introduce the MDP setting in which we will solve this optimization problem. Since the
time between transitions is variable we will use the uniformization method [1, Sec. 6.7].

At the n-th decision epoch t,, the state of the MDP is represented by the 3-uple x, = (¢n, 7, sn) €
{0,1,... ,K} x{0,1,... ,N} x{0,1,2}, with ¢, and 7, the queue-length and the number of active
robots just before the n-th decision epoch, respectively, and s,, the type (arrival, departure, fictitious

— see below) of the n-th decision epoch.

The successive decision epochs {t,,n > 1} are the jump times of a Poisson process with intensity
v := AN + pu, independent of the service time process. In this setting, the n-th decision epoch ¢,
corresponds to an arrival in the original system with probability Ar,/v (in which case s, = 1), to
a departure with probability u/v provided that ¢, > 0 (s, = 0) and to a fictitious event with the
complementary probability ((N — r,)X + u)/v (s, = 2).

Let a,, € {0,1} be the action chosen at time ¢,. We assume that a, = 1 if the decision is made to
activate one additional robot, if any available, and a,, = 0 if the decision is made to keep unchanged
the number of active robots. By convention we assume that a, = 0 if the n-th decision epoch
corresponds to a fictitious event (s, = 2).

From the above definitions we see that states of the form (e,0,1) and (0, e, 0) are not feasible, as an
arrival cannot occur if all robots are inactive and a departure cannot occur if the queue is empty,

13

respectively. Therefore, the state-space for this MDP is
{(q,7,5),0<g<K.0<r<N,5=0,1,2} = {(0,7,0).(¢,0,1),0 <g < K,0<r < N}

However, this set contains one absorbing state, the “fictitious” state (0,0,2). To remove this unde-
sirable state we will only consider policies (see formal definition below) that always choose action
a = 1 when the system is in state (1,0,0) so that (0,0,2) can never be reached. This is not a severe
restriction since a policy that never activates robots when the system is empty is of no interest. In
conclusion, the state space for this MDP is

X :={(¢,7,5).0 < q<K,0<r<N,s=012}
_{(0a072)7(077'70)’(%071)70 <¢<K,0<r< N}

and the set A, of allowed actions when the system is in state x = (¢,r, s) € X is given by

{0} ifs=2
{0,1} otherwise.

To complete the definition of the MDP we need to introduce the one-step cost ¢ and the one-step
transition probabilities p. Given that the process is in state © = (¢, r, s) and that action a is made,
the one-step cost is defined as

c(z) =71{g=0)+r1i(¢g=K s=1), (18)

independent of a. We will show later on in this section that this choice for the one-step cost will
allow us to address, and subsequently to solve, the optimization problem at hand.

For x € X, the one-step transition probabilities p, ,/(a) are given by

(ﬁ1(q>1) if ' = (¢ — 1, min{r + a, N{,0)
v
Ar e .
Do (@) = ~ if o/ = (¢ — 1, min{r + a, N}, 1) (19)
1 1)— A
1- £ (g>1) = r if 2/ = (¢ — 1, min{r + a, N},2)
\ v
ifs=0,a=0,1;
(1 e . .
-~ if /' = (min{¢+ 1,K},r +a—1,0)
v
AMr+a—-1) e . -
Do (@) = 4 — if #/ = (min{¢+ 1, K},r+a—1,1) (20)
A -1
1_,u—|— (r+a-1) if o/ = (min{g+1,N},r+a—1,2)
{ v

14

ifs=1,a=0,1;

[E1(g>0) if ' = (¢, 7,0)
v
A
pes(0) =4 = if o’ = (¢.7.1) (21)
1 0 A
Ll—u (q>y)+ r if 2’ = (¢q,7,2)

if s = 2. All other transition probabilities are equal to 0.

Without loss of generality we will only consider pure stationary policies since it is known that
nothing can be gained by considering more general policies [4, Ch. 8-9]. Recall that in the MDP
setting a policy 7 is pure stationary if, at any decision epoch, the action chosen is a non-randomized
and time-homogeneous mapping of the current state [1, 4, 5]. We define an admissible stationary
policy as any mapping 7 : X — {0,1} such that =(x) € A,.

For later use introduce P(7) := [pgo(7(7))](2,2)ex X the transition probability matrix under the
stationary policy .

Let P be the class of all admissible stationary policies. For any policy = € P introduce the long-run
expected average cost per unit time

n

Z c(zi) |z = x] , xr € X. (22)

i=1

Wo(z) = lim ~E,

n—oo N

The existence of the limit in (22) is a consequence of the fact that 7 is stationary and X is countable
[4, Proposition 8.1.1].

We shall say that a policy 7* € P is average cost optimal if

W (x) = in;; Wr(x) Vo € X. (23)
e

In order to use results from MDP theory for average cost models we first need to determine to which
class (recurrent, unichain, multichain, communicating, etc.) the current MDP belongs to. Consider
the following example: N = 2 and let w be any stationary policy that selects action 1 in states
(e,7,1) for r € {1,2} and in state (1,0,0), and action 0 otherwise. It is easily seen that this policy
induces a MDP with two recurrent classes (X N {(e,1,¢)} and XN {(e,2,)} and a set of transient
states (X N {e,0,0}).

We therefore conclude from this example that the MDP {x,,,n > 1} is multichain [4, p. 348]. It
is shown in Lemma 4 in Appendix B that this MDP is actually multichain communicating (see

definition in Appendix B).

The next result follows Lemma 4 and Proposition 4 in [1, Sec. 7.1]:

15

Proposition 3 There exists a scalar 6 and a mapping h : X — R such that, for all x € X,

0+ h(r) = clx) + min 3" puas(a) hia) (24

with 0 = infcp Wr(x) for all x € X, while if 7*(x) attains the minimum in (24) for each x € X,

then the stationary policy ©* is optimal. o

The optimal average cost 6 and the optimal policy #* in Proposition 22 can be computed by using
the following recursive scheme, known as the relative value iteration algorithm.

Proposition 4 Let & be a fized state in X and 0 < 7 < 1 be a fired number. For k > 0, v € X,
define the mappings (hy, k > 0) as

hiy1(z) = (1 = 7)hg(x) + 7 (T(hi)(z) — T'(hi)(Z))

with

T(hi)(x) = c(x) + min Y paw(a) hp(a'),

where ho(&) = 0 but otherwise hg is arbitrary.

Then, the limit h(x) = limg_.o hi(z) ezists for each v € X, § = 7T(h)(&), and the optimal action
7*(x) in state x is given by 7*(x) € argmingc o, > iex Paar (@) h(2). ©

Proof. Since the MDP is communicating (cf. Lemma 4) the proof follows from [4, Sec. 8.5,9.5.3]
(see also [1, Prop. 4, p. 313 |). 1

We now return to our initial objective, namely, minimizing a weighted sum of the stationary starva-
tion probability and the loss rate. To see why the solution to this problem is given by the solution
to the MDP problem formulated in this section, it suffices to show that the average cost (22) is a
weighted sum of the stationary starvation probability and the loss rate. It should be clear, however,
that this result cannot hold for policies that induce an average cost (22) that depends on the initial
state = as, by definition, the stationary starvation probability and the loss rate are independent of
the initial state. We will therefore restrict ourselves to the class Py C P of policies that generate a
constant average cost, namely, Py = {7 € P : Wr(z) = Wy(2'),Vz € X}.

The set Py is non-empty as it is well-known that it contains, among others, all unichain policies [4,
Proposition 8.2.1|. Among such policies is the static policy 7wy that always maintain N robots active,
namely, 7y (x) =1 for all x = (e,0,5) € X with s = 0,1 and 7wy (x) =0 for all =z = (e,,2) € X.

We may also note that reducing the search for an optimal policy to policies in Py does not yield

any loss of generality as it is also known that there always exits an optimal policy with constant
average cost in the case of communicating MDP’s |4, Proposition 8.3.2].

16

Fix m € Py. Introducing (18) into (22) yields Wy (x) = vSz(z) + L () with

1 n
S = i — L= —
(1) nll—{gonEw E 1(gi =0)| x4 x]
=1
.1 - .
L,(x) = v lim —E; E 1(¢s=K,s;,=1)|x; :x])
n—oo N
=1

In the following we will drop the argument z in S;(z) and L,(x) since these quantities do not
depend on x from the definition of Py.

Let us now interpret S; and L,. S, is the stationary probability that the system is empty at
decision epochs. Since the decision epochs form a Poisson process, we may conclude from the
PASTA property [6] that .S, is also equal to the stationary probability that the system is empty at
arbitrary epoch with is nothing but the stationary starvation probability.

Let us now consider L.. Recall that {¢,,n > 1}, the successive decision instants, is a Poisson
process with intensity v and assume without loss of generality that ¢; = 0 a.s. Define A(¢) as the
total number of customers that have arrived to the queue up to time ¢, including customers which
have been lost, and let Q(¢) be the queue length at time ¢. We assume that the sample paths
of the processes {A(t), t > 0} and {Q(¢), t > 0} are right-continuous with left limit. With these

definitions and the identity E[t,] = n/v we may rewrite L, as

. E, [fot" 1Q(t—) = K) dA(t)
Lz = lim Eltn]

In other words, we have shown that L, is the ratio, as n tends to infinity, of the expected number
of losses during the first n decision epochs over the expected occurence time of the n-th decision
epoch.

The interpretation of L, as a loss rate now follows from the identity
B, [1Q(-) = K) dA®)]

: o1 T
Ly = lim ol = Tlgr;o T E, [/0 1(Q(t—) = K)dA(t)| , V€ Py,

(25)

upon noticing that the latter quantity represents the mean number of losses per unit time or the loss
rate. The latter identity in (25) is a direct consequence of the theory of renewal reward processes
[5, Theorem 7.5] and of the definition of the set Py.

The optimal policy has been computed for different values of the model parameters. Figures 6-
8 display the optimal policy for N = 16, K = 5, A = 0.1, ux = 1.0 and for different values
of v (v < y(K) =14, v = v(K) and v > 7(K)). The results were obtained by running the
value iteration algorithm given in Proposition 4 with the stopping criterion maxgex |(hgs1(z) —
hi(2))/h(x)] < 1075 was used (254, 255 and 256 iterations were needed to compute the optimal

17

r r
16| - 00 00O 16/ 000 00O
15| - 0000O0 15000000
14, - 110000 14 0000O
13 - 110000 13| 1|0 0 0 0 O
12/ - 11|00 0 12| 1|0 0 0 0 O
11 - 1 1/0 00 11 1 110 0 0 O
10/ -11 1|00 10/ 1 110000
9/ -111|00 9l 1 1 000
8/ -111|00 /111000
7/-1111|0 77111000
6/ -1111|0 6/111100
5(-11111 5/ 1111

4, - 11111 4111111
3] -11111 31111111
2[-11111 21111111
1/-11111 11111111
0 -11111 ol S-TT Tl

012345¢ 012345 q
s=0 s=1

Figure 6: Optimal policy (gamma =1.0, Cost = 0.20907, Iterations number = 254)

policy displayed in Figures 6, 7 and 8, respectively). We see from these figures that the optimal
policy is a monotone switching curve, namely, there exist two monotone (decreasing here) integer
mappings fs : {0,1,... ,N} — {0,1,2,...}, s € {0,1}, such that 7*(x) = 1(fs(r) > ¢) for all
x = (¢,m,s) € X with s = 0,1 (we must also have fo(0) > 1 so that 7*(1,0,0) = 1 as required).
We suspect that the optimal policy always exhibits such a structure but we have not able been to
prove it.

4 Static versus dynamic policies

In this section we compare the performance of static policies to that obtained under dynamic policies.

The results are reported in Table 1. Throughout the experiments u was fixed and set to 0.5. For
different sets of parameters (A, K,) we first computed the optimal number of robots Ny (given by
Proposition 1) to be used in the static case and computed the associated average cost Cs (given in
(4)).

In a second step, for each set of parameters (A, I,), we set the value of N to N and determined,
through the relative value iteration algorithm given in Proposition 4 (with 7 = 0.99999 — the closer
7 is from 1 the faster the algorithm converges), the optimal average cost (23) as well as the minimun
(resp. expected) number of robots activated by the optimal policy. We stopped the procedure when

the relative error between two consecutive iterates was (uniformly) less than 1075, The number of
iterations is reported in the last column of Table 1.

18

o
o
o
o
o
o
3

15000000

14/ 110 0 0 0 O
13| 1|0 0 0 0 O
121 110000
11110000
100110000

99111000
8/ 111|000
77111100
6/111100
5111100
4111111
3]/111111
20111111
11111111

-11111
-11111
-11111
-11111
-11111
-11111
-11111

15
14
13

11
10

9
8
7
6
5
4
3
2

1
0

012345 q

0

S=

Figure 7: Optimal policy (gamma =1.4, Cost = 0.25924, Iterations number = 255)

9111000
g/1111/00
7/111100
6111100
5111111
4111111
3111111
2/111111
11111111

16 000000

-00000O0

o
o
o
o
o
—
e

14 110 000 O
13 1 10000
12/ 1 10 00 O
11/ 1 1j0 00 O
100111000

-11111
-11111
-11111
-11111
-11111
-11111
-11111
-11111

r

16

14
13
12
11

10

9
8

7
6
5
4
3

2
1
0

012345 g

012345 q

s=0

Iterations number = 256)

J

Figure 8: Optimal policy (gamma =2.0, Cost = 0.32211

19

Static Approach Dynamic Approach

A o C, N, Cy Nmin N Niter
0.01 5 04] 0.17541 73 || 0.16804 57 703 1634
- - 1.4 | 0.40000 100 || 0.38336 86 95.1 1911

- - 2.4 | 0.53834 114 || 0.51746 101 1084 2051
0.01 10 0.4 | 0.10207 86 || 0.09062 60 82.6 1794
- - 1.2 0.20000 100 || 0.17534 77T 941 1939

- - 24 0.28347 110 || 0.24798 88 102.3 2039
0.01 15 04 | 0.07177 91 || 0.05891 58 87.7 1860
- - 1.13 | 0.13333 100 || 0.10720 70 945 1953

- - 2.4 || 0.19192 107 || 0.15342 78 99.7 2024
0.0 5 04 0.17578 15 || 0.15127 7 138 338
- - 1.4 0.40000 20 || 0.34733 12 17.7 391

- - 2.4 | 0.53841 23 || 0.46583 15 20.2 422
0.05 10 0.4 | 0.10220 17 || 0.08308 5 16.2 369
- - 1.2 0.20000 20 || 0.14955 8 182 402

- - 2.4 || 0.28347 22 || 0.20541 10 194 423
0.05 15 0.4 | 0.07184 18 || 0.05514 4 174 401
- - 1.13 | 0.13333 20 || 0.09117 6 18.7 426

- - 241 0.19372 21 || 0.13895 8 19.3 438
0.1 5 04| 0.17600 71 0.15239 1 6.5 167
- - 1.4 0.40000 10 || 0.32198 4 8.6 200

- - 2.4 | 0.54067 11 || 0.44989 5 9.3 211
0.1 10 0.4 || 0.10403 9 || 0.06838 0 8.4 204
- - 1.2 0.20000 10 || 0.13854 2 9.0 218

- - 24 0.28347 11 || 0.18585 3 9.6 227
0.1 15 0.4 || 0.07184 9 || 0.05326 0 8.7 312
- - 1.13 | 0.13333 10 || 0.08538 1 9.3 359

- - 2.4 0.19458 11 || 0.09606 1 9.7 376

Table 1: Static vs. dynamic policies (with g = 1.0 and 7 = 0.99999)

5 Final Remarks

In this paper, we have applied the queueing model M /M /1/K to our problem, in a static and a
dynamic approach. The comparison between both approaches conform the natural intuition.

Useful generalizations are obtained by replacing exponential distributions by general ones. We have
done this in part by solving our optimization problem for a broad class of indexing-time distributions.

This analysis will appear in an expanded version of the paper.

Finally, a realistic model may require that robots not all be considered identical. They may operate
in different geographical neighborhoods, for example, in which case our problem could become part

of a larger problem in which the optimal location of robots is also included.

20

Static Approach Dynamic Approach

AN K v C, N, Cy Nmin N Npax
0.05 5 041 0.17578 15 || 0.13770 7 159 20
- - 1.4 0.40000 20 || 0.31712 13 19.8 27

- - 2.4 | 0.53841 23 || 0.43292 16 21.9 32
0.05 10 0.4 | 0.10220 17 || 0.04128 5 19.0 29
- - 1.2] 0.20000 20 || 0.12020 8 199 33

- - 24 0.28347 22 || 0.20541 10 20.6 36
0.05 15 04| 0.07184 18 || 0.00969 2 19.8 35
- - 113 0.13333 20 || 0.01818 4 20.0 38

- - 2.4 | 0.19372 21 || 0.02782 6 20.1 41
0.1 5 04| 0.17600 71| 0.11097 2 82 12
- - 1.4 0.40000 10 || 0.25924 4 9.8 16

- - 24 0.54067 11 || 0.35805 6 10.7 18
0.1 10 0.4] 0.10403 9 || 0.01937 0 97 18
- - 1.2] 0.20000 10 || 0.03887 1 99 20

- - 2.4 | 0.28347 11 || 0.05894 2 10.1 22
0.1 15 0.4 || 0.07184 9 || 0.00188 0 10.0 24
- - 113 0.13333 10 || 0.00368 0 10.0 25

- - 24 0.19458 11 || 0.00585 0 10.0 27

Table 2: Static vs. dynamic policies (with g = 1.0 and 7 = 0.99999)

6 Concluding remarks

Simple queueing models (the M/M/1/K and M/G/1/K queues) of search engines have been pro-
posed, analyzed, and optimized in order to find the optimal number of robots to use. The cost
function is a weighted sum of the loss probability and the starvation probability.

Extensions of these models to dynamic models where the number of active robots may change over
time as a function of the workload in the queue have been proposed in a companion paper [?].

Several interesting, open issues remain, including the situation where the robots are not homo-

geneous and/or are allocated to different parts of the network. For instance, one may wish to

determine the optimal number of robots to be allocated to a given area.

21

A Appendix

A MDP is communicating [4, p. 348] if, for every pair of states (z,2') € X x X, there exists a

stationary policy 7 such that 2’ is accessible from x (i.e., there exists n > 1 such that P} ,(7) > 0,

where P ,(7) is the (x,2’)-entry of the matrix P"()).
Lemma 4 The MDP (x,,n > 1) is communicating. o

Proof. A word on the notation. In the following (e,r,s) (resp. (¢,r,e)) will designate any state
& =(q,7,5) € X such that (7,5) = (r,s) (resp. (¢,7) = (¢,7)). We will say that =z = (¢,r,s) is at

the same level as o' = (¢', 7', s") if r = 7"

There are three steps in the proof depending whether state 2/ = (¢’,7’,s’) to be reached from

x = (q,r,s) is at the same level as x (step (1)), at a higher level (step (2)) or at a lower level (step
(3)).

(1) » = 7'. Assume first that » > 0. Then select any policy = € P such that
w(e,7,0) =0 and m(e,r1)=1.

Under that policy once the process enters level » > 0 it cannot leave that level and moreover all
states of that level are recurrent.

Assume now that » = 0. If ¢ > ¢’ then choose 7(7,0,0) = 0 for i = ¢,q+1,...,¢ +1. If ¢ < ¢
then ' cannot be reached from x without jumping at level 1 since no arrival may occur at level 0.
In this case, select a policy that goes from x to state (0,1,e) (7(7,0,0) =0 fori=¢,q+1,...,2
and 7(1,0,0) = 1), then go to state (¢’ —1,1,1) (n(é,1,1) =1 for i = 0,1,... ,¢' — 2) and then go
to state 2’ (7(¢’ —1,1,1) = 0).

(2) r <.

Choose any policy 7 € P such that
n(e,t,0) =1 and mw(e,t,1)=1 fort=rr+1...,7" —1;
m(e,7',0) =0 and w(e,7' 1) =1.

Under that policy the process will successively visit levels 7,7 + 1,... ,7’ and will stay forever at
that last level where it will visit all states infinitely often.
(3) r>r'.
If v > 0 choose any policy m € P such that
n(e,t,s)=0 fort=rr—1...,7" -1, 5=0,1;
m(e,7,0) =0 and m(e,r’,1)=1.

Under that policy the process will successively visit levels 7,7 — 1,... ,7’ and will stay forever at
that last level where it will visit all states infinitely often.

22

Assume now that 7/ = 0. Under the policy w(e,t,8) = 0 for ¢t = r,r — 1,...,2 the process
will go from z to level 1. Once level 1 is reached then move to state (K,1,1) (n(i,1,1) = 1 for
i=1,2,...,K—1) then go to state (K,0,0) (m(K,1,1) = 0) and finally go to state 2’ (7 (i,0,0) =0
fori=K,K—1,...,¢d +1). 1

23

B Appendix

P 0 p(%‘fﬁ) po(v‘ﬂl\") 1‘ o
s’ - 0 +
K(p+7) : : oo
s ‘) /
| |
l l
R |0 + 0 . 0 +
| |
l : o
R / \\/
| 0
- :
’}/ [ee]
c \ /

S’ -

R |0

+
+

0
=
=
+
2
—o--H-o- -4 o4~
8

\

|
5

|
|

Table 4: Variation of the mapping p — C(p,v, K): v = u(K + 2)/K

24

p |0 ! po(vﬁ K) p(%l K) oo
|
s’ - 0 +
|
I(%\» I N
| |
S /
| B |
| I
R o + 0 - 0 +
|

Table 5: Variation of the mapping p — C(p,v,K): v > u(K + 2)/K

References

1]

2]

3]
[4]
[5]

[6]

Bertsekas, D. P., Dynamic Programming. Deterministic and Stochastic Models, Prentice-Hall,
Inc., Englewood Cliffs, 1987.

Coffman Jr., E. G., Liu, Z. and Weber, R. R.,; “Optimal robot scheduling for web search
engines”, J. Scheduling, 1, pp. 14-22, 1998.

Kleinrock, L., Queueing Systems, Vol. I, Wiley & Sons, New York, 1975.
Puterman, M. L., Markov Decision Processes, Wiley, New York, 1994.

Ross, S. M., Introduction to Stochastic Dynamic Programming, Academic Press, New York,
1983.

Wolff, R. L., “Poisson Arrivals See Time Averages,” Operat. Res., vol. 30, pp. 223-231, 1982.

25

