Mutual Exclusion Scheduling

Brenda S. Baker
Edward G. Coffman, Jr.

AT&T Bell Laboratories
600 Mountain Avenue
Murray Hill, NJ 07974

bsb@research.att.com

egc@research.att.com

March 5, 1996

Abstract

Mutual exclusion scheduling is the problem of scheduling unit-time tasks non-preemptively
on m processors subject to constraints represented by a graph (7, such that tasks repre-
sented by adjacent vertices in G must run in disjoint time intervals. This problem arises in
load-balancing the parallel solution of partial differential equations by domain decomposi-
tion. Minimizing the completion time is NP-hard even if either the number of processors or
the completion time is fixed but greater than two. However, polynomial time is sufficient to
produce optimal schedules for forests, and simple heuristics perform well on certain classes
of graphs. For graphs derived from the two-dimensional domain decomposition problem,
heuristics yield solutions within 4¢ — 7 time units of optimal, where ¢ is the maximal num-
ber of regions that touch each other at a single point in the domain decomposition; these
solutions are within a constant factor of optimal.

1. Introduction

This paper studies the problem of scheduling tasks constrained by a mutual exclusion
graph GG in which each vertex represents a task requiring one unit of running time. The tasks
must be scheduled nonpreemptively on m > 2 identical processors so that tasks represented by
adjacent vertices in GG run in disjoint (mutually exclusive) time intervals. The problem, which
we call MUTUAL EXCLUSION SCHEDULING, is to minimize the makespan, or completion
time, of the schedule, subject to the mutual exclusion constraints.

Mutual exclusion scheduling arises in load-balancing the parallel solution of partial differ-
ential equations (pde’s) by domain decomposition. The two or three dimensional domain for
the pde’s is decomposed into regions, each region corresponding to a subcomputation. The
decomposition may be chosen so that the predicted subcomputation times are approximately

equal. The subcomputations are to be scheduled on m processors so that subcomputations

Mutual Exclusion Scheduling 2

corresponding to regions that touch even at a single point are not performed simultaneously,
and so that the makespan is minimized. Such a system for the parallel solution of pde’s is being
developed by Bjgrstad, Coughran, and Grosse [5]. In their implementation, they require a
static schedule that will be reused for multiple iterations to avoid having communication costs
dominate the run time. The domain decomposition scheduling problem is transformed into
MUTUAL EXCLUSION SCHEDULING by extracting a graph G from the domain decompo-
sition, such that each region of the domain decomposition is represented by a single vertex in
the graph, and two vertices in the graph are adjacent if and only if the corresponding regions
touch at one or more points.

An example of an application area is semiconductor device simulation, in which the pde’s
apply to irregular physical structures of different sizes and composed of different materials.
The regions obtained through decomposition may be irregular in shape and of different sizes
even though computation times are expected to be approximately equal. Different regions
may touch different numbers of other regions; in particular, a region corresponding to the
underlying substrate may touch many other regions, while interior regions may not. Thus,
the graph for the resulting MUTUAL EXCLUSION SCHEDULING problem has an irregular
structure.

MUTUAL EXCLUSION SCHEDULING without the processor constraint (m > n for all
instances) becomes a scheduling (timetabling) problem studied nearly 30 years ago by Welsh
and Powell [12]. Note that the decision version of this unconstrained problem is equivalent
to CHROMATIC NUMBER (see, e.g., [8, p. 191]). We will return shortly to the obvious
connections between coloring algorithms and MUTUAL EXCLUSION SCHEDULING.

We can decide complexity issues for MUTUAL EXCLUSION SCHEDULING by examining
the complexity of its decision version; in terms of graphs, the latter is called BOUNDED
INDEPENDENT SETS: For given m and t, determine whether G can be partitioned into at
most t independent sets with at most m vertices in each. Bodlaender and Jansen [6] introduced
this problem, but as the decision version of a complementary scheduling problem. Their initial
interest was in COMPATIBILITY SCHEDULING which has the same instance and makespan
objective function as MUTUAL EXCLUSION SCHEDULING but which places a different
meaning on adjacency in G if two tasks are adjacent in GG then they ca not be run on the same
processor, i.e., they are incompatible. Thus, in mutual exclusion schedules an independent set

is comprised of the tasks running in a time unit, whereas in a compatibility schedule, it is

Mutual Exclusion Scheduling 3

comprised of the tasks running on a processor.

Lonc’s results [10] showed that, for split graphs, BOUNDED INDEPENDENT SETS can
be solved in polynomial time. However, Bodlaender and Jansen [6] established that the prob-
lem was NP-complete when G is restricted to cographs, bipartite graphs, or interval graphs.
They also proved the following results: If either ¢ or m is a fixed constant, then BOUNDED
INDEPENDENT SETS is in P for cographs; if ¢ is a fixed constant, then the problem is in P
for interval graphs, and if m is a fixed constant, then it is in P for bipartite graphs. BOUNDED
INDEPENDENT SETS remains NP-complete for bipartite graphs and any fixed ¢t > 3, and
for interval graphs and any fixed m > 4. The problem for interval graphs and m = 3 is open.
Finally, the problem for co-interval graphs can be solved in time linear in the number of tasks.

In the next section, we extend these complexity results by considering general graphs with
fixed m or ¢ and graphs restricted to be forests. We show that BOUNDED INDEPENDENT
SETS is in P for m = 2 or t = 2, but is NP-complete for fixed m > 3 and (from the above
bipartite graph result) for fixed ¢ > 3. We prove that if G is restricted to forests, then an
optimal mutual exclusion schedule can be found in O(n + m?logm) time, where n is the
number of tasks and m is the number of processors. The former results are relatively easy, but
the result for forests requires some effort. As part of the forest result, we find that O(n) time
suffices to find optimal mutual exclusion schedules for trees.

For arbitrary graphs, it is natural to seek polynomial-time approximation algorithms. We
will verify that, unfortunately, there is a § > 0 such that there does not exist a polynomial
time approximation algorithm A that achieves A(G,m,t)/OPT(G,m,t) < n’® for a graph G
with n vertices unless P = N P.

The independent sets obtained by coloring algorithms can be used as the basis of approxi-
mate solutions; indeed, this approach has been taken in the literature on domain decomposition
[5]. A simple algorithm of this type colors the graph with at most d 4+ 1 colors, where d is
the maximum degree of the graph. Using a greedy algorithm, each successive vertex is given
a color different from that of any neighbor already colored. This algorithm runs in time linear
in the number of edges in . The independent set corresponding to a color class of r vertices
can be trivially scheduled on m processors in makespan [r/m]. A mutual exclusion schedule
for the whole graph is obtained by taking the schedules for the various colors in succession.
The makespan of the resulting schedule is at most |n/m]| + d + 1, where n is the number of

vertices, and d is the maximum vertex degree. As an example, for planar graphs, which are

Mutual Exclusion Scheduling 4

4-colorable in polynomial time [2], coloring-based scheduling comes within 4 of optimal. The
literature on coloring algorithms for general graphs also includes more computation-intensive
polynomial-time algorithms such as the Berger-Rompel algorithm [4], which colors any k-
colorable graph using O((n/log)'=1/(*=1)) colors, and polynomial-time algorithms that color
random k-colorable graphs optimally with high probability. (For a discussion of the latter
approach, see [1].)

In the final part of Section 2, we describe a simple greedy heuristic, called Greedy Mu-
tual Exclusion (GME), which improves on the performance guarantee of the coloring-based
scheduling heuristic. With a given ordering of the vertices, GME schedules vertices one at a
time into the earliest time unit such that mutual exclusion constraints are met and at most m
vertices per time unit are scheduled. GME runs in time linear in the number of edges. If the
vertex ordering is by decreasing degree, then for m processors and any graph G with n vertices,
GME generates a schedule with makespan at most O PT +deg(vy), with k = [n/m] +1, where
vy is the vertex of kth largest degree, deg(vy) is its degree, and where O PT is the makespan
of an optimal schedule. Note that the additive constant of the bound has been reduced from
one plus the maximum vertex degree for greedy coloring-based scheduling to the kth largest
degree for GME.

For specific GG, the performance of GME can be much better. For example, if G is a forest,
then time linear in the number of vertices is sufficient to find a vertex ordering under which
GME achieves a makespan within one of optimal; the algorithm is much simpler than the
complicated optimization algorithm given in Section 2.1. Outerplanar graphs give another
example. (Recall that these are planar graphs that can be laid out so that every vertex is on
an exterior face.) For an outerplanar graph, time linear in the number of vertices is sufficient
to order the vertices so that GME obtains a mutual exclusion schedule having a makespan
within 2 of optimal.

Section 3 explores mutual exclusion scheduling for the two-dimensional domain decompo-
sition problem defined by Coughran and Grosse. The mutual exclusion graph created by a
two-dimensional domain decomposition is generally nonplanar. However, it is a natural dual
to the planar decomposition, although not the standard graph-theory definition of dual, which
would yield a planar graph. For such a mutual exclusion graph, if the maximum number of
regions touching at a single point is ¢ > 2, and there are n regions, our algorithm produces an

m-processor mutual exclusion schedule with makespan at most [n/m]4+4c—7 < OPT +4c—-T.

Mutual Exclusion Scheduling 5

Since O PT > ¢, this bound is within a constant times optimal.

To compare this result with the [n/m|+4d+1 bound of the greedy coloring-based scheduling
algorithm, recall first that the maximum degree d of G represents the total number of regions
that touch any single region at a point or edge. Thus, if some interior region has e edges, and
each edge endpoint is on the boundary of ¢ > 2 regions, then d > e(c¢ — 2) and the worst-case
bound for the makespan produced by the coloring algorithm is at least |n/m] 4 e(c —2) + 1,
whereas the worst-case bound for our algorithm is at most [n/m] 4+ 4(c — 2) 4 1.

The following notational conventions are observed throughout the remainder of the paper.
We reserve m for the number of processors, and G = (V, F) for the mutual exclusion graph,
where V and F are the sets of vertices and edges in (. For any mutual exclusion scheduling
algorithm A and graph G, let A(G) be the makespan produced by A for G. For a vertex v in
a graph, let deg(v) be the degree of v. We assume that graphs are represented by giving a list

of edges for each vertex.

2. Results

Section 2.1 focuses on new complexity results. Section 2.2 concludes with performance

bounds on heuristic methods.

2.1 Complexity Reducibility from coloring problems suffices to prove the NP-completeness
of BOUNDED INDEPENDENT SETS. Indeed, since 3-COLORABILITY is NP-complete even
for planar graphs [8], the result holds with G restricted to planar graphs. The following two

theorems give a more detailed picture.

Theorem 1. For any graph G, an optimal 2-processor mutual exclusion schedule can be found
in polynomial time. However, for any m > 3, the problem of finding an optimal schedule is

NP-complete.

Proof. Construct the complement of G, in which two vertices are adjacent if and only if
they can be scheduled simultaneously. Observe that, for m = 2, a maximal matching in the
complement graph yields an optimal mutual exclusion schedule. Since a maximal matching
can be found in polynomial time, the theorem follows for m = 2.

It is easy to see that, with m fixed at 3, the complexity of MUTUAL EXCLUSION
SCHEDULING is the same as that of the NP-complete PARTITION INTO TRIANGLES

[8] in the complement graph. Then we can show NP-hardness for all m > 3 by induction,

Mutual Exclusion Scheduling 6

with m = 3 as the basis. For, the m-processor problem is polynomial-time reducible to the
(m+ 1)-processor problem. To see this, simply add a clique of ¢ vertices as a new component to
the graph GG in an instance for m processors. The new graph has an (m+ 1)-processor schedule

with makespan ¢ if and only if G has an m-processor schedule with makespan ¢. Obviously,

MUTUAL EXCLUSION SCHEDULING is in NP for all m. O

Theorem 2. The problem of determining for an arbitrary graph G = (V, F) and a positive
integer m whether there is a mutual exclusion schedule with makespan t = 2 is solvable in

O(|E| 4+ m?logm) time. However, the problem is NP-complete for any fived t > 3.

Proof. Suppose t = 2, and assume G is bipartite and n < 2m, since otherwise a schedule of
makespan 2 is not possible. The 2 color classes of a connected bipartite graph are unique, so if
(G is connected, then makespan 2 is achievable if and only if each color class has at most m tasks.
If GG is not connected, then the addition of 2m — n independent tasks to G can not change the
decision, so we now assume n = 2m for simplicity. We use a standard dynamic programming
approach, an extension of the pseudo-polynomial time algorithm for PARTITION given in [8,
pp- 90-91].

Let Gy,...,G-, 7 > 1, be the connected components of GG, and let j;, k; denote the color-
class sizes of G, 1 < i < 7. Define the Boolean function f(¢,7,%) to have the value TRUE if
and only if there is a coloring of Gy, ..., G; such that the two color classes of this subgraph of
G have sizes 7 and k. In terms of f, the answer YES to our decision problem applies if and

only if f(r,m,m)= TRUFE. The function f can be tabulated by evaluating the recurrence

f(0,j,k) = TRUFifandonlyif j=k=0

fl, g, k) = fl—1,7—gik—k)V fli—1,7—kik—j), 1<i<r.

For any ¢, there are at most m + 1 nonzero table entries f(¢,7, k) with j, & < m It is easy
to verify that, if a balanced tree is used to manage the nonzero elements of the table, the
evaluation of f(7,m,m) can be done in O(m?*logm) time. Together with the fact that the
bipartite property of G can be determined in time linear in the number of edges, this result
proves the theorem for ¢t = 2.

It remains to observe from the results in [6] that NP-completeness holds for fixed ¢ > 3
even when G is restricted to bipartite graphs. O

The next theorem shows that forests can be scheduled optimally in polynomial time.

Mutual Exclusion Scheduling 7

Theorem 3. For a forest G of n tasks, an optimal mutual exclusion schedule on m processors
can be computed in O(n+m?logm) time. If the forest is just a single tree, then the computation

can be done in only O(n) time.
Proof. We begin with two claims disposing of easily proved cases.
Claim 1. The theorem holds if n < 2m.

Proof. Since a forest is bipartite, this claim is an easy consequence of Theorem 2. In particular,
for the case n < 2m, it is routine to convert the dynamic programming algorithm in the proof
of Theorem 2 to an optimal m-processor mutual exclusion scheduling algorithm requiring
O(m?logm) time, or O(m) time in the case of trees. The details are left to the interested
reader. O

The remainder of the argument assumes a two-coloring of G, which is always possible since
(' is a forest and hence bipartite. The coloring uses the colors red and blue, with » = (&) and
b = b(G) denoting the respective numbers of reds and blues, i.e., red and blue tasks. Without
loss of generality, we assume a coloring such that r < b and all isolated tasks are blue. Note
that the coloring of G' can be done in O(n) time.

Schedules produced by the following algorithm will be called Aq-schedules.

Algorithm A,

1. Schedule the reds, if any, in time units 1,..., [Z], with m reds in each of the first | L |

time units, and with the reds in time unit [X-] being of the smallest degree.
2. Then, schedule the blues in any order, placing each such blue B into the earliest unfilled

time unit having no red adjacent to B.
Claim 2. The theorem holds if r modm = 0 or if r > m and hence b > m.

Proof. We show that, in these two cases, the Ay-schedule has the minimum makespan {%1
This is trivial to see if r mod m = 0, so assume that m < r» < b and r mod m > 1.
Let dy < --- < d,, p=r modm > 1, denote the degrees of the p < m reds scheduled in

time unit [L].

P
Case 1. d, < 1. We have }_ d; < p, so at most p blues are adjacent to the reds in time unit

1=1
[Z]. Since b > m, there are at least m — p blues independent of the reds in time unit [L].

n

Then Step 2 fills time unit [Z] and the resulting schedule has the minimal makespan [Z2].

m

Mutual Exclusion Scheduling 8

Case 2. d, > 2. Since r > m, there are m reds scheduled in time unit | £ | = [Z] — 1. Let ¢
be the subforest induced by the reds in time units | = |, [L] (a blue of G is in G" if and only
if it is adjacent to one of these reds). The number of edges in G’ is at least md, + Zp: d;, since
the reds in time unit | L] have degrees at least that of any red scheduled in timézllmit [Z].
The number of vertices in a forest exceeds the number of edges, so the number n’ of tasks in

(' is bounded by
P
n’:m—l—p—l—b’>mdp—|—2di ,

=1
where b’ is the number of blues in G’. Then
P
o' > m(d,— 1)+ (di— 1),

=1

so if b" is the number of blues not adjacent to reds in time unit [Z], then

b”Zb’—zp:di>m(dp—1)—p2m—p,
=1
since d, > 2. This implies that Step 2 always fills time unit {%], which again implies that the
Aj-schedule makespan is [Z].

Since the coloring requires O(n) time, it remains only to observe that the steps of algorithm
Ay require O(n) time. This is obvious for Step 2. It follows easily for Step 1 from the fact
that, for any given k, the red with the k*" smallest degree can be found in O(n) time. O

By Claims 1 and 2 the remaining cases satisfy n > 2m, 1 < r < m < b. The algorithm
that covers these cases needs additional data structures computed from . In a coloring of
the forest G, the leaf set of the i*" red is the set of blue leaves adjacent to the i*" red, and
is denoted 5;. We assume that the reds are indexed so that |S;| > --- > |59, > 0. Define rq
and rq as the respective numbers of reds with no blue leaves and exactly one blue leaf, and let
r« = T — 79— rq1 count the number of leaf sets with at least two blues. The reds counted by rq,
r1 will be called 0-reds and 1-reds, respectively.

If I denotes a list of sets, then |L| denotes the number of sets in I and # I denotes the
number of elements in the union of the sets in L. Now partition 5q,...,95,, into two lists
LM, L2 by the following greedy rule: Initialize M = v, L = w. For j = 1,...,r: if
#L 4 |1 < #13) 4 |LO)] then append S to LM): otherwise, append S; to L3, The
quantity #L0) + |L(2)| can be interpreted as the total number of blues in leaf sets of L(1) plus

the number of reds with leaf sets in L(2). The blues and reds thus counted can be scheduled in

Mutual Exclusion Scheduling 9

the same time unit, as can those counted by #L(2) + |L(1)|. This fact is exploited in algorithm
Aq below.
Let L) = S{l), .. .,Sgl), L = 5{2), .5 be the final greedy partition, and define

A= LD+ [LO) = [#LP 4 L] = L0 = #L -2

Since r < m in the remaining cases, the time to compute the 5;, 1 < ¢ < r, and then order
them in (n) time by placing them in n buckets representing numbers of leaves; and the time
to construct L), L(?) is O(n).

We conclude the proof by showing that the following algorithm is optimal for n > 2m,

1<r<m<hb.

Algorithm A,

Let ¢; denote time unit <.
1. Schedule 7y 1-reds in ?; and their adjacent blue leaves in t5.

2. If A # 0, put min{rg|A|} O-reds in #; or ¢t according as A < 0 or A > 0, respectively.

Then, if rg > |A|, schedule the remaining 0-reds, [TO_TMW in t; and VO_TWJ in ty.
3. Schedule in #; the r, — s reds with leaf sets SZ»(Z), and in t, the s reds with leaf sets SZ»(I).

4. In t1 schedule the blues, if any, in S{l), .. .,Sgl), taken in that order, until ¢y is filled or
Sgl) is exhausted, whichever occurs first. Repeat this procedure for t5 with blues taken

from 5{2), .8 in that order.

CHTrx—S80

5. Schedule the remaining blues, if any, placing each such blue B into the earliest unfilled

time unit not having a red adjacent to B.

For the optimality proof, define the following counts of tasks available for scheduling in #,
tz:
q(l) — 7‘(1) _I_ Z |SZ(1)|7 q(2) = 7‘(2) _I_ Z |SZ(2)| R

1<i<s 1<i<ra—s
where () is the number of reds (including 0-reds and 1-reds) in #;, 7 = 1,2, at the conclusion
of Step 3, and (V) 4+ #(2) = » < m. Note that Steps 1-4 schedule all reds in t, ¢, and a total
of min{m, q(i)} tasks in #;, i = 1,2. Tt is easy to see that, if ¢(Y), ¢?) > m, then the makespan

of the As-schedule is [Z£]. The same conclusion holds if one or both of these inequalities is

Mutual Exclusion Scheduling 10

violated, but Step 5 fills the gaps left by Step 4. Thus, in what follows, we assume that ¢(9) < m

for i = 1 or 2, and at least one of ¢y, t5 is unfilled at the conclusion of the algorithm.

Case 1. ¢V, ¢ < m with strict inequality for ¢(") or ¢(2). Since at least one of ¢, and 5 is
unfilled in the final schedule, Step 4 must have scheduled all blue leaves in ¢y, ¢, and Step 5
must have scheduled all isolated blues in t1, 5. Thus, the blues not scheduled in ¢{, 3 must be
interior blues. Consider the subforest induced by the r reds and the b;,; interior blues. Since
there are at least 2 edges per interior blue, and since the number of tasks in the subforest must

exceed the number of edges, we have r + b;,s > 2b;,+ + 1 and hence
(1) bimg S r—1.

Since r < m, a third time unit will accommodate the blues not scheduled in #{, ;. The final

makespan will be 3, which is minimal, since n > 2m.

Case 2. ¢(V) > m, ¢® < m. For this case to hold, the leaf set Sgl) must contribute at least
one but not all of its blues to t1; all other leaf sets must be scheduled entirely in ¢, to5, by
the greedy partition. Note also that, since ¢y is unfilled in the final schedule, all isolated blues
must have been put in t5 by Step 5. Thus, the number of blues scheduled after ¢5 is at most
the number b;,; of interior blues plus the number b,.,, < |S£1)| of blues remaining from Sgl)
after Step 4.

We first show that, if s > 2, then b,.,, < m —r 4 1. Together with (1), this implies that
brem + biny < m. Then only one additional time unit is required by Step 5, and the makespan
is 3 as in Case 1.

To prove that s > 2 implies b, < m—r—+ 1, consider the iteration of the greedy rule when

Sgl) was appended to L(1). At that time, there must have been u complete leaf sets already
assigned to L), with 1 < u < r, — s. (See Fig. 1.) By the greedy rule,

(2) brem < |SIV <1S(] .
But Si(f) is the smallest of 5{2), .. .,Si(f), so its size is bounded by

1 (2)
(3) 53] < = 157
u lgzziu

To bound the sum in (3), we count the tasks scheduled in #; (see Fig. 1 for an illustration). In

the (unsuccessful) attempt to balance the greedy partition, all rg 0-reds were scheduled in 5.

Mutual Exclusion Scheduling 11

(1) /
q
k/////m ¢

S8

e}
e]
©
\\
L
o
3

ey
Sg2) w =2 Sgl)

st 0

(2)
S S

§=2 re —8= 2
re —8s =23 }522
To To

(a) 9 >m, ¢ <m ®) ¢ <m, ¢®>m

Figure 1: Examples, Cases 2, 3.

The 7y blues from singleton leaf sets and the s reds with leaf sets S{l), .. .Sgl) are also in t,.

(2)

Counting the blues in the leaf sets S;’, we then have, since ¢? < m,

ro+rits+ Y 157 <m,
1<i<ry—s
and since r = ro + 71 + 74,
Z |SZ,(2)|§m—7‘—|—r*—s— Z |SZ»(2)|.

1<i<u u<t<ry—s

But |SZ»(2)| >1,1<i<r.—s,80 Y |SZ»(2)| > r, — 8 — u. Substituting, we get

u<t<ry—s
(2) _
(4) SIS <m—r4u.
1<i<u
Then (2)-(4) give
bmm<w§m—r—l—l, uw> 1,
u

which is what we set out to prove.

Mutual Exclusion Scheduling 12

Next, suppose that s = 1, i.e., only blues from S{l) are scheduled in ¢;. Let R be the red
with leaf set S{l). Since ¢(2) < m, all leaf sets S5,...5,, will be scheduled entirely in t5 along
with R. All 0-reds, all singleton leaf sets, all isolated blues, and all interior blues not adjacent
to R are also scheduled with R in t;. We claim that in any schedule of GG, the time unit in
which R is scheduled can have no more than the total of ¢(2) tasks listed above. To see this,
consider the other possible tasks for t5; these can only be reds in ¢;. But all of these reds have
leaf sets with at least one blue scheduled in t5. Thus, if one of these reds were moved to t,, at
least one blue would have to be moved out of 3. The claim follows. Since time units 1,3.4, ...
contain a minimal makespan schedule for the subset of tasks run in these time units, the claim

implies that the full schedule is optimal.

(2)

Case 3. ¢V < m, ¢? > m. Arguments similar to those in Case 2 apply. For this case, Sels
is the partially scheduled leaf set, with all other leaf sets scheduled entirely in #1, 3. Note that,
by the greedy partition, the algorithm always puts Sy in ¢y, so we have r, —s > 2, s > 1 in
this case. Thus, we need only the argument for s > 2 in Case 2. As before, define Si(}) as the

last leaf set assigned to L(1) before 52

s, Was assigned to ;. Clearly, u > 1, so the reasoning

of Case 2 gives

2) | <1 < 1 (1)
(5) bT@m < |S7’*—S| — |Su | _— Z |Sz | :

1<i<u

A count of the tasks in #; shows that (see Fig. 1)

ro+ri+re—5+ Z |SZ»(1)|<m.
1<i<s

Then |SZ»(1)| >1land r =rg+ 7+ 7, imply
m-—r+s— 5. |SZ»(1)|

1 < m—-r4+u
— Z |Si(1)|§ RS < + <m-r+1, u>1,
u L U U

1<i<u

which together with (5) gives bye, < m—7r+1. Then by (1), brem +bint < m and the makespan
is 3. The optimality of algorithm A, is proved.

Recall that the time required to compute the coloring, the ordered leaf sets, and the lists
JAOR ADRT O(n). Algorithm Aj clearly requires O(n) time, so in conjunction with Claims 1
and 2 an optimal mutual exclusion schedule can be computed in O(n 4+ m?logm) time for a

forest, and in O(n) time for a tree. O

Mutual Exclusion Scheduling 13

2.2 Heuristics We verify first that one can not expect approximation algorithms with good

worst-case performance.

Proposition 1. There exists a 6 > 0 such that there is no polynomial-time algorithm A for
MUTUAL EXCLUSION SCHEDULING that achieves A(G,m)/OPT(G,m) < n® unless P =
NP.

Proof. As noted earlier, a graph GG with n vertices has an n-processor schedule with makespan
t if and only if GG can be colored in ¢ colors. But the proposition holds for the coloring problem,
as shown by [11]. O

In spite of this negative result, a simple, linear-time greedy rule performs well for a large
class of graphs, even in the worst case. Given a list I of vertices in G, the algorithm Greedy
Mutual Frclusion (GMFE) schedules the vertices of G on m processors as follows. Call a time
unit full if m tasks have been scheduled in that time unit. For each successive vertex v in
L, GME schedules v in the earliest time unit that is not full and that contains no already-

scheduled vertex adjacent to v. If L is in decreasing order of vertex degree, then the algorithm

is called Decreasing Greedy Mutual Exclusion (DGME).

Lemma 1. Let I be a list of the vertices in G, and define sy, = max, pr(v), where pr(v) is
the number of vertices preceding v in L that are adjacent to v in G. Then GME(G,m) <
[n/m+ sp(m —1)/m].
Proof. Let ¢t = [n/m + sp.(m — 1)/m] and suppose pr(v) = r. Since GRE schedules each
vertex in the earliest time unit consistent with the mutual exclusion constraints, v is scheduled
in time unit ¢ + 1 only if the first ¢ time units are full, except for the at most r time units
containing vertices adjacent to v. Therefore, at least mt — r(m —1) > mt —sp,(m—1) > n
vertices have already been scheduled, a contradiction. O

With this result, we can prove that GME is always near-optimal for forests and outerplanar

graphs (see Figure 2).

Theorem 4. If G is a forest, then its vertices can be listed in an order such that
GME(G,m)<OPT(G,m)+ 1

and if G' is an outerplanar graph, then ils vertices can be listed in an order such that

GME(G,m)<OPT(G,m)+ 2

Mutual Exclusion Scheduling 14

N

Figure 2: An outerplanar graph, i.e., a planar graph that can be laid out so that all vertices
are on the exterior face.

Remark

Note that in Theorem 4 the lists of vertices can be constructed in time linear in the number
of edges and GME runs in time linear in the number of edges. Thus, the GME heuristic is much
simpler and faster than the optimization algorithm of the previous section, but the makespan
is worse by only one time unit.

Proof. For a forest, a list is easily generated in which each vertex is adjacent to at most one
previous vertex. The bound for forests then follows from Lemma 1.

Now suppose G is outerplanar. For convenience, the term ‘bridge’ refers to a face with
one edge. From [3], the connectivity of the interior faces of an outerplanar graph G can be
represented by an ordered tree in which each vertex represents an interior face of GG, such that
two tree vertices are adjacent if and only if the corresponding faces of G share a vertex or an
edge. (In an outerplanar graph, two interior faces cannot share more than one edge and two
vertices.) This tree can be constructed from G in time linear in the number of vertices. Pick
any vertex of the tree as the root, and list the tree vertices according to a preorder traversal of
the tree. Construct a list L of vertices of G as follows. For each face of GG in order of the list of
corresponding tree vertices, start at a vertex shared with the previous face (or with any vertex
in the case of the first face), and list all as-yet-unlisted vertices of this face in counterclockwise
order. Thus, a vertex is scheduled with the first face scheduled that contains it. Since each
face is a cycle or a bridge, when a vertex is scheduled, it is adjacent to at most one vertex
already scheduled, unless it is the last vertex scheduled in a cycle, in which case it is adjacent to
two vertices already scheduled. Therefore, from Lemma 1, GM F can schedule an outerplanar
graph with makespan 2+ [n/m|. O

For graphs not known to be of a special type such as forests or outerplanar graphs, for which

a list can be created with a constant bound on how many neighbors can precede each vertex,

Mutual Exclusion Scheduling 15

putting the list of vertices in decreasing degree order yields a better guarantee than the bound
of OPT + d implied by Lemma 1, where d is the maximum degree. In particular, we have the

following improved bounds. Let the vertices v; of G be indexed so that deg(vy) > ... > deg(v,).
Proposition 2. With k = [n/m], we have

DGME(G,m) < [n/m+ deg(vi)(m —1)/m] < OPT(G,m)+ deg(vy)
A similar bound holds for k = max{j | j < deg(v;)}.

Proof. For any k, set ¢, = [n/m + deg(vi)(m — 1)/m]. We claim that if k& <j, the schedule
produced by DGME will be at most t;. For the first k& vertices are scheduled within %y,
and if vertex v;, ¢ > k, cannot be scheduled by tj, there are at least mity — (m — 1)deg(v;)
> mty — (m — 1)deg(vy) > n vertices already scheduled, a contradiction. To complete the

proof, note that for the two values of k specified in the proposition, k£ < ;. O

3. An Application to Domain Decomposition

This section investigates scheduling of mutual exclusion graphs resulting from the two-
dimensional domain decomposition problem of Bjgrstad et al. We define a domain decompo-
sition to be an embedding of a 2-connected planar graph G in the plane.

The edge dual Dg(G), or simply Dg if G is understood, is obtained from G as follows. For
each interior face of (7, Dg(() has a distinct vertex, and two vertices of Dg((') are connected
by an edge if and only if the corresponding faces of the embedding of ¢ share at least one edge.
This definition is equivalent to the geometric dual in the terminology of [9, p. 113], except
that we do not create a vertex for the exterior face. The restrictions on G imply that Dg(G)
has no self-loops or multiple edges. Furthermore, the planar embedding of G determines one
of Dg(G). A domain decomposition ¢ and its edge dual are shown in Figure 3.

The vertex dual Dy (G) of G, or simply Dy if G is understood, is obtained from the edge
dual Dg by adding edges to create a clique within each face of the planar embedding of the
edge dual. Figure 4 illustrates an edge dual and the corresponding vertex dual. Two vertices
of Dy(G) are connected by an edge if and only if the corresponding faces of the embedding of

(& share at least one vertex.

Theorem 5. For any two-dimensional decomposition with n regions and any positive integer

m, it is possible to find a mutual exclusion schedule for the vertex dual Dy with makespan

Mutual Exclusion Scheduling 16

Figure 3: A planar decomposition (solid lines) and its edge dual (dotted lines).

[n/m]+4c—T7 < OPT +4c—T7, where ¢ is the size of the mazimal number of regions touching

at a single point in the planar decomposition and O PT is the makespan of an optimal schedule.

Proof. To schedule a vertex dual, we make use of the underlying structure of the edge dual
Dpg. The following discussion refers to the edge dual. In Dpg, label the vertices with level
numbers as follows: label all vertices on the outermost face as level 1 vertices; and for each ¢,
after removing all vertices of level i or less, label the vertices now on the outer face as level
v+ 1 vertices. A level assignment is illustrated in Figure 5.

Note that all edges of D are between vertices at the same level or adjacent levels (i.e.
level i and i 4 1 for some ¢). The same statement holds for edges of Dy since the additional
edges are within faces of Dp.

Our goal is to construct a list containing all the odd vertices of G, such that in Dy each
vertex is adjacent to at most 2¢ — 4 previous vertices in the list, and to construct a similar
list for the even vertices. Then the two lists can be scheduled separately so that each schedule
achieves the bound of Lemma 1. Concatenating the two schedules results in a schedule for the
whole graph that achieves the bound of the theorem.

So we restrict our attention henceforth to odd level vertices. For distinct odd 7 and j, level
¢ vertices are not adjacent to level j vertices in Dy. Consequently, we could construct such

a list for each odd level and concatenate the lists to achieve the desired list for all the odd

Mutual Exclusion Scheduling 17

Figure 4: The edge dual (dotted lines) of Figure 2 and the corresponding vertex dual (solid
and dotted lines).

vertices. In fact, we can restrict our attention even further to the level ¢ vertices surrounded
by a single level ¢ — 1 cycle in D, since vertices enclosed by two distinct level ¢ — 1 cycles in
Dpg cannot be adjacent and again we can simply concatenate their lists to obtain the desired
list.

So consider the level ¢ vertices within a cycle formed by level ¢ — 1 vertices in Dg. The
subgraph of Dg induced by these vertices is an outerplanar graph G = (V, E). The cliques
that distinguish Dy from Dg may also include edges connecting some of these vertices in Dy,
and these edges must be taken into account in constructing our lists.

Our plan is to construct a list for V' in which each vertex v is adjacent in Dy to previously
listed vertices from at most three cliques of Dy and to show that the previously listed vertices
of two of these subsume the previously listed vertices of the third. The proof requires extensive
analysis of the structure of faces in Dg. Each clique of Dy connects vertices of a face in Dg.
A face of Dy that includes at least one vertex of (7 is either outside G or inside a face of G.
Henceforth, the terms outside and inside faces will denote these faces of Dg. Essentially, we
handle the outside faces by choosing a good order in which to process faces of G, and we handle
the faces of D inside a face F of G by choosing a good order in which to list the vertices of
F.

First, we consider the outside faces; these include at least one vertex of G and lie outside

Mutual Exclusion Scheduling 18

Figure 5: A level assignment for the vertices of the planar embedding of an edge dual.

G. The complexity of the situation is illustrated in Figure 6. which shows a particular G,
together with the faces immediately outside it. A particular vertex » may be contained in
more than one outside face. For example, a is contained in faces aC' f, aC' D, and e DFEb. and ¢
is contained in six outside faces in Figure 6. Fach outside face includes one or more successive
level 2 — 1 vertices in the enclosing level ¢ — 1 cycle and one or more successive level ¢ vertices of
(. Fach such face is connected by a clique in Dy. In constructing our list for V, the relevant
clique edges are those connecting vertices of V. Clique edges containing an endpoint at level
i — 1 do not affect adjacency within the list for V and can be ignored. Consequently, we can
ignore any outside faces containing only one vertex of V.

To deal with the outside faces of D, we construct a rooted ordered tree T representing the
face connectivity of G, as in the proof of Theorem 4. To construct the tree, we assume that G
is connected. (If not, we pretend there are additional edges that connect it while preserving
planarity.) Also, if there are any bridges, we consider them to be faces with two vertices and
two (multi-)edges. FEach vertex in T represents a face of G, and the face represented by a
vertex has at most two vertices in common with the face represented by any ancestor, any
sibling, or the descendants of any sibling, The tree for G of Figure 6 is shown in Figure 7.

We use T to construct a list I of the vertices of . We do this recursively, starting with the
root of T. For the face F' corresponding to a vertex v of T, we list all as-yet-unlisted vertices

of F in an order to be determined below, and then recurse on the children of v from left to

Mutual Exclusion Scheduling 19

Figure 6: Faces outside a level i component (. Edges between levels are represented as dotted
lines.

right.

Consider the situation when a vertex v of V is listed. Since v is listed with the first face F
of G containing it, level i vertices of at most two outside faces containing v have already been
listed: one in the clockwise direction from v, and one in the counterclockwise direction from v.

The situation within G is more complicated. A face F of G corresponds to a level i cycle
in Dg.

The vertices of F may belong to different inside faces (which we defined with respect to
Dg), because of vertices and edges of higher level that are enclosed by F in Dg. Figure 8
illustrates a level i cycle and the faces within it in Dg. Since a single vertex of G can belong to
multiple faces in Dp, we need to order our list of vertices in G based on the face connectivity
of the inside faces, even though higher-level vertices are missing in G.

In Figure 8, the face (a,p,0,h,i,j,n,m,a) includes two paths h,i,7 and m,a that lie on
the level ¢ cycle; in general, an inside face could have more than two paths that lie on the
level i cycle and are separated by vertices not on the face. However, planarity prevents two
inside faces from alternating paths; for example, in the level ¢ cycle, there cannot be vertices
belonging to face 1, then vertices belonging to face 2, then vertices belonging to face 1, and
then vertices belonging to face 2.

Therefore, the intervals corresponding to inside faces are nested, and balanced parentheses

Mutual Exclusion Scheduling 20

(9,h,1) (9,7.k)

Figure 7: A tree T representing the face connectivity of the level ¢ component G of Figure 6.
Edges are labeled with the vertex or edge shared by the parent and child faces.

can be used to describe the nesting of intervals. For the example of Figure 8, if we begin
and end at vertex a, we obtain (a(ab(bc)(cdef)fg)(gh)(h)hij(jk)(kl)(Im)ma) for the level i
cycle. A left parenthesis is used before the first vertex mentioned for each inside face in the
counterclockwise traversal, and a right parenthesis is used after the last vertex of each face.
Vertices are repeated in this list to represent inclusion in more than one inside face. This
description is linear in the number of edges adjacent in Dg to vertices of F.

We first list the vertices of the outermost level of parentheses and then recurse on the
substrings within the next-outermost level of parentheses, while ignoring vertices already listed.
Thus, for the above example, we list the vertices in the order ahijmbfgcdekl.

This method guarantees that of the vertices preceding a vertex » in L, those adjacent to
v in Dy include only at most ¢ — 1 vertices belonging to a single inside face F; plus at most
2¢ — 4 vertices belonging to two outside faces Fy and F5. (Each outside face has at most ¢ — 1
vertices at level i.) Thus, we have a bound of 3¢ — 5 previously listed vertices of F adjacent to
v. However, we will strengthen this bound to 2¢ — 4 as follows.

If the vertices of I} are subsumed by those of Fy and F3, the bound of 2¢ — 4 immediately
follows. Otherwise, there is a vertex of F} not in Fj or F3, and by the parenthesization method
and the contiguity of the vertices of Fy and of Fj3, for one of these outside faces, say Fj, the
vertices of F3 — I} are listed after ». Moreover, since v is listed with F} and not before, either
F} is the first face listed, or another vertex of F3 is also in F; and was listed, or Fy contains
only v from F. Consequently, we obtain a bound of 2¢ — 4. O

We observe that the schedule of Theorem 5 is always within 5 times the makespan of an

Mutual Exclusion Scheduling 21

i k

Figure 8: Face structure inside a level ¢ face. Edges between levels are shown as dotted lines.

optimal schedule.

Also, we observe that the schedule of Theorem 5 can be computed in linear time using
data structures as in [3] for planar embeddings. In particular, pointers are stored for each
edge to identify the next edge clockwise and counterclockwise at each endpoint. With these
data structures, the planar embedding of Dy can be constructed in linear time from the planar
embedding of G and the levels, the decomposition into outerplanar graphs, and trees describing
the face structure of the outerplanar graphs can be computed in time and space linear in the
number of vertices as in [3]. Similarly, trees can be constructed in linear time to represent
the parenthesized expressions for the faces inside each level ¢ cycle. Recursing over these
trees to construct the lists takes linear time. It is not necessary to explicitly construct Dy .
Consequently, the entire computation of the list can be completed in time linear in the number
of vertices, and as discussed earlier, GME constructs a schedule in time linear in the number

of vertices as well.

4. TFinal Remarks

There are many interesting questions that remain open for MUTUAIL EXCLUSION
SCHEDULING. Further refinements of complexity would be desirable, especially for planar
graphs. For example, is the optimization problem of Theorem 5 NP-complete? What is the
complexity of BOUNDED INDEPENDENT SETS for planar graphs with m or ¢ a fixed con-

stant?

Mutual Exclusion Scheduling 22

For both the two and three-dimensional domain decomposition problems, the worst-case
bounds of our algorithms improve upon the worst-case bound of the standard coloring method.
Since the standard coloring method does not necessarily perform at worst-case level, a superior
algorithm would be to compute schedules using both methods and to take the better of the two
schedules. Tt would be interesting to know if this approach offers a substantial improvement.

Finally, the generalization of MUTUAL EXCLUSION SCHEDULING to tasks of varying
durations is of obvious interest; the complexity of number partitioning is added to the com-
plexity of coloring in this more difficult problem. Bodlaender, Jansen, and Woeginger [7] have
studied this generalization to the complementary problem of COMPATIBILITY SCHEDUL-
ING. They have worked out bounds on the performance of various approximation algorithms

for graphs GG having special structures.

Mutual Exclusion Scheduling 23

References

[1]

[10]

[11]

Noga Alon and Nabil Kahale. A spectral technique for coloring random 3-colorable graphs.
In Proc. 26th Annual ACM Symp. on the Theory of Computing, pages 346-355, 1994.

K. Appel and W. Haken. Every planar map is four colourable, part i: discharging. Illinois
J. Math., 21:429-490, 1977.

Brenda S. Baker. Approximation algorithms for np-complete problems on planar graphs.

J. ACM, 41(1):153-180, January 1994.

B. Berger and J. Rompel. A better performance guarantee for approximate graph coloring.

Algorithmica, 5:459-466, 1990.

Petter Bjgrstad, W. M. Coughran, Jr., and Eric Grosse. Parallel domain decomposition
applied to coupled transport equations. In David E. Keys and Jinchao Xu, editors, Domain

Decomposition Methods in Scientific and Engineering Computing, pages 369-380, 1995.

H. I.. Bodlaender and K. Jansen. Restrictions of graph partition problems, part i. Tech-
nical report ruu-cs-91-44, Department of Computer Science, Utrecht University, Utrecht,

Netherlands, 1991.

H. L. Bodlaender, K. Jansen, and G. J. Woeginger. Scheduling with incompatible jobs.
Discrete Applied Mathematics, 55:219-232, 1994.

M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman, New York, 1979.

Frank Harary. Graph Theory. Addison-Wesley, Reading, Massachusetts, 1969.

7. Lonc. On the complexity of some chain and anti-chain partition problems. In WG

Conference, pages 97-104, 1991.

Carsten Lund and Mihalis Yannakakis. On the hardness of approximating minimization
problems. In Proceedings of the Twenty-Fifth Annual ACM Symposium on the Theory of
Computing, pages 286-293, 1993.

D.J. Welsh and M.B. Powell. An upper bound for the chromatic number of a graph and
its application to time-tabling problems. Computer J., 10:85-86, 1967.

