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Extended Abstract

Since the pioneering work on multi-dimensional packing by Karp, Luby, and Marchetti-
Spaccamela [KLM] in 1984, stochastic matching problems in two and three dimensions have
surfaced in the analysis of a surprising number of algorithms and systems, with applications
in operations research, electrical engineering, and computer science. Thus, the related theory
has provided an important analysis tool, one that, unfortunately, has yet to be applied by
more than a handful of researchers. Of the several variants of stochastic matching that we will
discuss, the following two have played fundamental roles. Let n plus points and n minus points
(i.e., points labeled with +’s and —’s) be chosen independently and uniformly at random in the
unit square. Let M, denote a matching of the plus points to minus points and let (P~, PY)

denote a pair of matched points (or an edge) in M,.

Euclidean Matching: Let d(P~, P*) denote the Euclidean distance between P~, PT  and
let M, be a matching that minimizes the total distance between matched points, D, =

S d(P~, PT). Find E[D,].
(P—,Pt)eM,
Up-Right (or Ordered) Matching: Consider only up-right matchings M, such that (P~, P*) €
M, only if PT is up and to the right of P~ i.e., if P~ = (x1,y1), PT = (w3, 12), then 21 < x5,
y1 < y2. Let U, be the number of unmatched points in an up-right matching of maximum
cardinality. Find E[U,].

As stated, these problems have proven to be quite difficult, a property that is inherited in
particular cases from the problems in which stochastic matching finds application. However,
tight asymptotic bounds have been derived. Specifically, for Euclidean matching, Ajtai, Kom-
los, and Tusnddy [AKT] proved that E[D,] grows like v/nlog n for large n; to be more precise,

we can express this in the standard ©(-) notation,

E[D,] =0(y/nlogn) .

For up-right matching, Shor [Sho], Leighton and Shor [LS] and Rhee and Talagrand [RT]



proved that
(+) E[U,] = O(v/nlog™*n) .

Subsequent, simpler proofs were given by Coffman and Shor [CS] and Talagrand [Tal]; see
Chapter 3 in [CLu] for a general treatment. Asymptotic bounds on tail probabilities are
also available; indeed, it is often the case that such bounds provide the desired estimates of
expected values. The result in () has also been generalized to the ordered matching problem
in d > 3 dimensions. (If (P~, P%) is in a d-dimensional ordered matching, then in every
dimension the coordinate of P~ must be at most that of P*.) As shown in [KLM], one obtains
E[U,] = 0(nl=D/?) d > 3.

As is common with asymptotic results of this sort, the absence of information about mul-
tiplicative constants is compensated by a greater generality of the results. Obvious examples
of robustness are rescalings: n can be replaced by an for any given a > 0 and, in the planar
case, the unit square can be replaced by an a x b rectangle for any given a, b, > 0; such changes
modify only the hidden multiplicative constant. For less obvious examples, we note that the

following changes to problem instances also leave (*) unchanged:

(i) the numbers of plus and minus points are independently Poisson distributed with mean
n; or the total number of points is Poisson distributed with mean n, and each point is

equally likely to be a plus or minus independently of the others;

(ii) the points are restricted to lie on an n x n lattice, or the problem is similarly discretized

in just one of the dimensions; or

(iii) n plus points are fixed at the vertices of a \/n x \/n lattice and n minus points are chosen

at random as before.

These lectures will take results of the above type as background theory (proofs of such
results would require at least four lectures by themselves). Instead, we concentrate on tech-
niques that exploit these results in analyzing a variety of mathematical models of engineering
problems. The techniques require only a modest background in applied probability, e.g., cer-
tain basic probability inequalities, elementary results from the theory of random walks, central
limit theorems, and Chernoff bounds.

As illustrated in the problems below (e.g., see Problem 1), stochastic matching often arises
quite naturally in the analysis; in such cases, some form of matching can usually be recognized
in the sample functions of the underlying stochastic process. In other cases, however, as in

Problem 2 below, the matching problem may be well disguised; it can be seen only after a



substantial problem reduction has been made. Even after a stochastic matching problem has
been identified, a nontrivial analysis may still be required to account for new variations in
problem instances. For example, in Problem 3 below, an instance of up-right matching arises,
but the horizontal components of the minus points do not have a uniform distribution, except
in a certain asymptotic sense.

The lectures will expand at length on the above matters, as they emerge in the analysis
of the problems listed below. If time permits, we shall also discuss a matching problem in

processor-ring communications.

Problem 1. A Selection-Replacement Process on the Circle [CGS].

Given n points on a circle, a selection-replacement operation removes one of the points and
replaces it by another. To select the removed point, an extra point P, uniformly distributed,
arrives at random and starts moving counterclockwise around the circle; P removes the first
point it encounters. A new random point, uniformly distributed, then replaces the removed
point. The quantity of interest is d = d(n), the distance that the searching point P must
travel to select a point. In particular, consider the mean of d in the stationary version of the
selection-replacement process. Sample functions of the process can be represented by 4+ and
— points on a cylinder representing the product space of the circle and a time axis; +’s denote
the selected points on the circle and —’s indicate the points P that remove selected points.
Up-right matchings of —’s to 4’s pair off points P with the points they remove. The expected
horizontal component of the distance between matched points gives E[d] = © (%), as
shown in [CGS].

In a computer application, the circle represents a track on a disk memory, P is a read-write
head, the n points mark the beginnings of n files and d determines the time wasted as the
head moves from the end of the last file processed to the beginning of the next. The number
n is a parameter of the service rule (the next service goes to one of the n customers waiting

the longest).

Problem 2. First Fit Bin Packing with Discrete Item Sizes [CISW].

A list L of n items is to be packed into a sequence of unit capacity bins. The first-fit (FF)
rule packs each successive item into the first bin of the sequence that has room for it. We
discuss an average-case analysis of FF in the discrete uniform model: the item sizes are drawn
independently and uniformly at random from the set {1/k,...,(k — 1)/k}, for some k > 1.
Let FF(L) denote the wasted space in the FF packing of L, i.e., the total space still available
in the occupied bins. Tt is proved in [CIJSW] that E[FF(L)] = O(V/nk), i.e., there exists a



constant ¢ > 0 such that E[FF(L)] < ev/nk for all n, k sufficiently large. In the proof of this
result, items in a problem instance are represented by points in 2 dimensions, one denoting
the item’s index in the list L and the other denoting its “folded” size, i.e., an item of size s
is plotted as a — with coordinate s if s < 1/2 and as a + with coordinate 1 — s if s > 1/2.
(Note that a 4 item can fit in a bin with a — item only if the size coordinate of the + is larger
than that of the —.) A certain class of up-right matchings of problem instances corresponds
to the matchings produced by a modified FF rule that packs at most two items in a bin and
never uses fewer bins than FF. The bound on E[FF(L)]is then obtained from a bound on the

expected number of unmatched points in such up-right matchings.

Problem 3. Dynamic Storage Allocation [CLe].

A computer storage device is represented by a sequence of adjacent cells with sizes s;
nondecreasing in ¢ = 1,2,.... Files arrive and depart by Poisson processes, with each item
placed at its time of arrival into a smallest empty cell large enough for the item. The known,
average number of files in storage in the stationary regime is denoted by n, and assumed to be
an integer. One assumes a given distribution of file sizes such that s;, 1 < ¢ < n, can be chosen
so that a file size is equally likely to fall in any of the intervals [0, s1], [s1,82], ..., [$n—1, $n]; for
all ¢ > n, one chooses s; = s,,, a largest file size. Trajectories of the stationary storage process
are represented in the two dimensions of time ¢ and cell index 4; a — point at (4,1) denotes a new
arrival at time ¢ with a size in (s,_1,8;], so = 0. At plus point at (¢,¢) denotes a departure from
cell ¢ at time . Up-right matchings pair arriving files (—’s) to the departures (+’s) creating
the empty cells in which the files are placed. Of interest is the expected number of interior
unused cells, i.e., the number W, of empty cells among the first m, where cell m is the highest
indexed occupied cell. An analysis of the up-right matchings gives E[W,] = O(y/nlog®*n),

as shown in [CLe].

Problem 4. Probabilistic Analysis of a Vehicle Routing Problem [BCSS].

Consider n points distributed uniformly at random in some rectangular region. The points
represent customers with demands for some commodity supplied by a depot, which is repre-
sented by an additional point with a given location in the region. An unlimited number of
equal capacity vehicles are available at the depot for delivery of customer demands. Vehicles
are to be routed to the n customers, with each customer being visited by at most one vehicle,
and all vehicles making a round-trip tour, so that all demands are satisfied and the total route
length L, of all vehicles is minimized. The demands are i.i.d. uniform draws from [0, 1], each

giving the required fraction of a vehicle’s capacity.



In a third (vertical) dimension plot customer demands directly above the corresponding
customer locations in the (horizontal) plane, using the folding convention of Problem 2 to
decide whether a point is labeled with a + or —. Now construct a (three-dimensional) upward
matching of +’s and —’s that minimizes the number of unmatched points; the only requirement
that must be met by matched + and — points is that the + must be above the —. This yields
an obvious heuristic routing algorithm. Vehicles serve at most two customers in a round-trip
tour; matched customers are served by the same vehicle, and unmatched customers are served
by vehicles that serve no other customer. It is proved in [BCSS] that E[L,] = nE[d]+ 0 (n*/?),
where E[d]is the average distance between the customers and the depot. Moreover, it is shown
that this is a best possible asymptotic result in the sense that the expected total route length

under an optimal routing algorithm is also equal to nE[d] + ©(n*/3).
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