Probabilistic Analysis of Packing and Related Partitioning Problems

E. G. Coffman, Jr., D. S. Johnson, and P. W. Shor
AT&T Bell Laboratories
Murray Hill, NJ 07974
G. S. Lueker
Dept. of Information and Computer Science
University of California

Irvine, CA 92717

July 19, 1999

Abstract

In the last 10 years there have been major ad-
vances in the average-case analysis of bin-packing,
scheduling, and similar partitioning problems in
one and two dimensions. These problems are
drawn from important applications throughout in-
dustry, often under the name of stock cutting. This
chapter briefly surveys many of the basic results,
as well as the probabilistic methods used to obtain
them. The impact of the research discussed here
has been two-fold. First, analysis has shown that
heuristic solutions often perform extremely well on
average, and hence can be recommended in prac-
tice, even though worst-case behavior can be quite
poor. Second, the techniques in applied probability
that have developed for the analysis of bin packing
have found application in completely different are-

nas, e.g., statistics and stochastic models.

1 Introduction

Problems. The problems studied here all involve
the partitioning of a set of positive numbers into
a collection of subsets satisfying a sum constraint.
The following two problems are among the most

fundamental. They have wide-ranging applications

throughout computer science and operations re-

search [C3],[C4],[D1].

Bin Packing (BP). Given ¢ > 0 and a set S =
{X1,.... Xp} with 0 < X; <e¢, 1 <i<n,
partition S into a minimum number of subsets
such that the sum of the X;’s in each subset is

no more than c.

The X;’s are usually called items or pieces and
are thought of as being packed into bins By, Bg, .. .,
each with capacity ¢; the items packed in a bin
comprise one of the subsets in a solution to the

optimization problem.

Multiprocessor Scheduling (MS). Given an integer
m > 1 and a set S = {Xq,..., X}, parti-
tion S into m subsets such that among all such
partitions, the maximum subset sum is mini-

mized.

Note that the MS problem is complementary to
the BP problem in that the objective function and
the given parameter are interchanged. The items
are now called tasks or jobs, with running times
or durations instead of sizes. The bins become
processors Py,..., P,, and the partition becomes

a schedule of S on m processors that minimizes



the makespan c, i.e., the completion time of a lat-
est finishing task. Because of the sequential na-
ture of most heuristics, it is convenient to assume
that the set to be partitioned is given as a list
L,=(Xy,..
scheduled one by one. If H denotes an MS heuris-
tic, then H(L,,m) denotes the makespan of the

m-processor schedule generated by H for the tasks

., Xp) from which items are packed or

in L,. In the BP problem, the bin capacity is only
a scale factor, so we take ¢ = 1 without loss of gen-
erality. Thus, if H denotes a BP heuristic, then
H(L,) denotes the number of unit capacity bins in
which H packs the items of L.

Merely deciding whether a list of numbers can
be partitioned into two subsets with equal sums is
NP-complete, so as one would expect, both the BP
and MS problems are NP-complete. Thus, one is
unlikely to find an algorithm that will solve these
problems exactly and efficiently.! For this reason,
a large literature has built up over the past 20
years on the design and analysis of heuristic or ap-
proximation algorithms. Such algorithms are de-
signed to generate optimal or nearly optimal solu-
tions for most problem instances. Quantifying this
last statement is the goal of analysis.

Analysis. Farly research on BP, MS, and related
problems concentrated on combinatorial, worst-
case results, as reflected in the survey by Coffman,
Garey and Johnson (1984). For example, a schedul-
ing heuristic H would be assessed by determining
for each m a least upper bound over all ,, and n
on the ratio H(L,,m)/OPT(L,,m), where OPT
stands for an optimal algorithm, i.e., OPT(L,,m)
denotes the makespan of a solution to the MS
problem for the problem instance (L,,m). Simi-
larly, the ratios H(L,)/OPT(L,) were bounded for
BP heuristics H. Such results are inherently pes-

simistic, so probability models were introduced in

'For a comprehensive treatment of NP-completeness and
its implications, see the text by Garey and Johnson [G1].

order to learn more about the probable or average-
case behavior of heuristics.

Probabilistic analysis began about 10 years ago,
and gained considerable momentum when some
striking new results were developed a few years
In the standard probability model, the

X,;’s are taken as independent samples of a ran-

later.

dom variable X with a given distribution F(z).
The goal is then an estimate of distributions such
as P{H(L,) < =z}, or what is sometimes easier
to obtain, expected values such as E[H(L,,m)],
where the expectations are over all n-item samples
L, =(X1,...,X,).

Typically, exact analysis of probability models is
quite difficult, especially for the more efficient algo-
rithms, so asymptotic techniques have been used.
These techniques estimate behavior for large prob-
lem instances, i.e. for large n. Also, the estimates
often take the form of expressions with terms that
are precise only within unspecified multiplicative
constants. For example, let F(z) be the uniform
distribution on [0, 1].
there are BP heuristics H for which it has been
proved that F[H(L,)] = n/2+4 O(y/n). Here, the

O(-) notation is simply a relaxation of the concept

Then as illustrated later,

“is proportional to.” Precisely, f(n) = O(g(n))
means that there exist constants «, 3 > 0 such

that for all n large enough,

ag(n) < f(n) < fg(n).

If we only know the existence of 3 > 0 such that
the right-hand inequality is satisfied for all n large
enough, then we write the familiar f(n) = O(g(n)).
A similar restriction to a and the left-hand inequal-
ity is denoted f(n) = Q(g(n)).

We emphasize that usually very little is known
about the multiplicative constants hidden in the
O(-) terms.

bounds for these constants, but in most cases there

One can almost always find some

is reason to believe that the bounds are very crude.



In the remainder of this section we present a

number of fundamental algorithms together with
a sampling of results that measure the quality of
the packings or schedules produced.
BP algorithms. We begin by describing three
algorithms that pack the items in the sequence
Xi,...,X,. An item is packed when it is encoun-
tered; once packed, it is not moved thereafter. The
algorithms are said to be on-line because, for each
1, 1 <1 < n, the rule that decides where X; is
packed is independent of the number and sizes of
.y Xp. All three algo-
rithms begin by packing Xy into Bj.

The simplest of the three algorithms is Next Fit,
abbreviated NF. In packing X;, ¢ > 2, NF first
checks the highest indexed, nonempty bin, say B;,
Jj > 1. X; is packed in B; if it fits, i.e., if X plus

the sum of the items already packed in B; is at

the remaining items X;4q,..

most 1. Otherwise, X; is packed into B;4q, which
then becomes the new highest-indexed, nonempty
bin.

The two algorithms, First Fit (FF) and Best Fit
(BF), improve on NF by checking all nonempty
bins before starting a new bin, i.e., FF and BF
pack an item X; into an empty bin if and only if
X; does not fit into any nonempty bin. FF packs
X;, 1> 2, into the lowest indexed, nonempty bin,
if any, in which X; fits, while BF packs X; into a
nonempty bin, if any, in which X; fits best, i.e.,
with the least unused capacity left over. Ties are
resolved by BF in favor of lower indexed bins.

Improved, off-line versions of these algorithms
are obtained by first sorting the X;’s into decreas-
ing order; the corresponding NFD, FFD, and BFD
algorithms (D stands for decreasing) are simply
NF, FF, and BF applied to the list (X, ..., X(1)),
where X(;y denotes the "0 smallest item in L,.

The sidebar summarizes a number of the basic
results that have been derived for the above al-

gorithms under the assumption X ~ U(0,1), i.e.,

F(z) is the uniform distribution on [0, 1]. The per-
formance metric shown is the expected wasted space,
(L) (L)) =

= E[H(Ln)] -

E[H(L,) -0

(Ln)]
2

bl

where o(L,,) denotes the sum of the item sizes in
L,. Note that FF and BF and their counterparts
FFD

Bin Packing (BP): X ~ U(0,1)
Next Fit: E[WNF(L, )] ~ 2 [C8]
First Fit: E[WFF(L,)] = 0(n?/?) [S1], [C1]
Best Fit: E[WB(L,)] = 0(y/nlog®*n) [S1]
Next Fit Decreasing:
E[WNFD(L, )] = (.145..)n [H3], [C10]
First Fit Decreasing (FFD), Best Fit
Decreasing (BFD), and Optimal (OPT):
EIWH(L,)] = O(,/7)

for H = FFD [B2], BFD [B2], or OPT [L5]

and BFD are all asymptotically optimal in the
sense that the ratio of expected wasted space
E[WH] to the expected occupied space E[o(L,)] =
n/2 tends to 0 as n — oo. This is in sharp contrast
to worst-case bounds which show that, for infinitely
many n > 0, WH(L,)/o(L,) can be as large as 15
for H = FF or BF and as large as %forH =FFD
or BFD [J1].

The shortcomings of the O(-) results are appar-
ent, since the average-case results do not distin-
guish between FFD, BFD, and OPT. On the other

hand, the average-case results do show that for all n



sufficiently large, F[FF(L,)] > E[BF(L,)]; a com-
parable distinction does not appear in the worst-
case results.

MS algorithms. We describe three algorithms.
The simplest is the on-line List Scheduling (LS)
algorithm, which schedules the tasks in the given
sequence X1i,..., X, on the processors Py,..., P,
with Xy starting on P;. LS schedules X;, ¢ > 2,
on that processor having a smallest workload in the
schedule for X4, ..

of lower indexed processors. By the workload of a

., X;_1, with ties broken in favor

processor, we mean the total duration of the tasks
already scheduled on that processor. As before, .S
can be improved by first sorting L, into decreasing
order. LS along with the initial sorting is called
the Largest Processing Time (LPT) algorithm.

The third MS heuristic was originally proposed
for a somewhat different optimization problem:
With the instances (L,,m) the same as in the MS
problem, the objective of the set-partitioning (SP)
problem is to find a schedule that minimizes the
difference in the maximum and minimum proces-
sor workloads. Clearly, one expects a good heuris-
tic for SP to be a good heuristic for MS; indeed,
the two problems are obviously identical for m = 2.
The heuristic described below is a set-differencing
method [K2]. Tt can be extended to all m > 2, but
we confine ourselves to the case m = 2, since it is
easier to describe and analyze.

Two tasks X and Y in list L are said to be dif-
ferenced in I when a new list L' is formed from
L by replacing X and Y with a task having dura-
tion | X —Y|. The Largest-First Differencing (LFD)

heuristic applied to L, = Lg) for m = 2 begins by

(1)

differencing the largest two tasks in L;’ to form
Lg). Then the largest two tasks are differenced in
Lg) to form LS’). This procedure continues until a
list L%n) of one task remains. LFD defines a sched-
ule for L, by requiring that the tasks differenced

in Lg), 0 < i < n—1, be scheduled on different

processors and by requiring that the final proces-
sor workloads differ by the duration of the task in
L%n). This schedule is easily developed by working
backward through the sequence of differencing op-
erations. First, the task in L%n) is put on one or the
other of the two processors. Suppose the schedule
for Lg), 2 < ¢ < n, has been formed, and let X
and Y be the tasks differenced in Lgf_l). Then the
schedule for Lgf_l) is formed from the schedule for
&) by removing a task of duration |X — Y|, then
scheduling X and Y on different processors so as
to preserve the processor workload difference, i.e.,
the duration of the task in L%n).

In analogy with (1.1), typical illustrations of
probabilistic results can be found in the analysis
of the processor idle time averaged over the m pro-

cessors,

(12) A =

We assume m = 2, so that A7(L,,2) is simply
half the difference between the two processor fin-
ishing times in the schedule produced by H. A
satisfactory analysis of LD remains an open prob-
lem, but Karmarkar and Karp [K2] have studied a
randomized, more easily analyzed modification of
LFD that we denote LFD*. Results for .S, LPT,
and LFD* with X ~ U(0,1) are shown in the side-
bar. In the order given, the algorithms are increas-
ingly more complicated and increasingly more dif-
ficult to analyze, but they yield schedules that are

increasingly more efficient for large n.



Makespan Scheduling (MS)

List Scheduling;:

E[AMS(L,,2)] = 1/6 [F1]

Largest Processing Time:

E[ATPT(L,,2)] € gty 102

Modified Largest Difference First:

There exists a ¢ > 0 such that, with
a probability that tends to 1 as n — oo,

ALFDY(p, 9y = O(n=1os) [K2]

2 Analytical Techniques

We describe and illustrate below a number of the
more important techniques that have been success-
fully applied to the analysis of BP and MS prob-

lems. A more extensive discussion appears in [C4].

2.1 Markov Chains

For the simpler BP and MS heuristics, it is some-
times possible to formulate a tractable Markov
chain that represents the element-by-element de-
velopment of partitions. A state of the Markov
chain must represent block sums in a suitable way;
given the state space, the transition function is de-
fined by the heuristic. Results for general n are
obtained by a transient analysis, while asymptotics
for large n are obtained by a steady-state analysis.

To illustrate ideas, consider the average-case
analysis of LS on m = 2 processors, and assume
that F(z) is the uniform distribution on [0, 1]. De-

fine V; as the (positive) difference between the pro-

cessor finishing times after the first ¢ tasks have
been scheduled. The following recurrence is easily

verified:

- |‘/i—1_Xi|7 1§Z§n7
I S

Since the X; are i.i.d. random variables, {V;}i>o
is a Markov chain. A routine analysis shows that
the density for V; is given by fi(z) = 2(1 — ), for
all 7 > 2 [F1]. Then we obtain the result cited in
Section 1, viz., E[A"S(L,,2)] = E[V,]/2 = 1/6.
Since OPT(L,,2) > o(L,)/2 and LS(L,,2) =
[V + o(L,)]/2, we also have the relative perfor-
mance bound
E[LS(L,,2)]
E[OPT(L,,2)]

EV,] 2

ST EeL T

As another example, {NF(L,,),l,},>1 is a bivari-
ate Markov chain, where [, is the level, i.e., sum
of item sizes, in the last bin of an NF packing of
L,. An analysis of this chain for X ~ U(0,1) shows
that E[WNF(L,)] = 246, n > 2 [H2], thus refining
the asymptotic result cited in Section 1. Indeed, an
explicit expression for the distribution of NF(L,)
has been derived by Hofri [H2].

Unfortunately, Markov-chain approaches seem
to be limited to the relatively simplistic, less effi-
cient heuristics; the state spaces of Markov chains
for other heuristics like FF and BF simply become

too large and unwieldy.

2.2 Bounds

The immediate advantage of bounds is that they
lead to a tractable analysis. The obvious sacrifice
is that they provide only partial information. How-
ever, this information is often sufficient to choose
between alternative heuristics. For example, the
results cited in Section 1 for FF, BF, FFD, and
BFD were all obtained by bounding techniques,
yet they show that for all n sufficiently large, we
have E[FF(L,)] > E[BF(L,)] > E[H(L,)], where



H stands for either FFD or BFD. As illustrated
below, bounding techniques have appeared in two
basic forms.
Bounding the Objective Function. In ana-
lyzing the BP heuristic H, it may be possible to
find a function ¢g(L,) such that ¢g(L,) > H(L,)
for all L, and such that F[g(L,)] is easily cal-
culated. Then we have the average-case bound
E[H(L,)] < Flg(L,)]. A similar approach applies
to the analysis of MS heuristics.

As a concrete example, we consider the LPT

heuristic and its average idle time, as defined by

(1.2). We have [L4],[F2]

AYPT(L, m) < LPT(L,,m)—o(L,)/m

1 7
max {Xu) T X(k)} -

To see the latter inequality, let ¢ be the largest in-
dex such that X ;) runs until the end of the sched-
ule. Then just after X;) is scheduled the average

(2.1)

IN

processor idle time up to the end of the schedule
is at most (m — 1)X;/m < X(;). Each task Xy
scheduled after X ;) reduces the average idle time
by X(x)/m; (2.1) follows easily.

To illustrate the use of the bound (2.1), we show
that [F2]

(2.2) AMPT(L,. m)— 0 (as.) as n— oo,

when E[X] < oo and F(z) is strictly increasing in
(0,6) for some 6 > 0. Bounding the right-hand side
of (2.1) by

Len)
1
Xlen)y + maX{Ova)—— > X(k)} :
(2.3) 0< Fle)<d,

we observe that the first term in (2.3) converges
(a.s.) to F~l(e) as n — oo, and that it can be
made arbitrarily small by an appropriate choice of
€. Also, since E[X] < 00, X(;,)/n — 0 (a.s.). More-

over, Zgﬁ X(ky/n converges (a.s.) to a positive

constant as n — oo for every € > 0. Thus, the sec-
ond term within the maximization in (2.3) tends to
—00 (a.s.). We conclude that (2.2) holds.

In some cases, the requirement that a bound hold
deterministically for all L, is too stringent to yield
good results. In addition to a bound H(L,) <
g(L,) that always holds, there may exist a sharper
bound ¢'(L,) such that H(L,) < ¢'(L.) except
on a set having a small probability ¢,. If ¢, — 0
sufficiently rapidly that ¢, E[g(L,)] = o( El¢'(L.)])

as n — oo, then we have

(1= ¢2)Elg"(Ln)] + 4. Elg( L))
~ Elg'(L,)] .

E[H(L,)] <

Dominating Algorithms. A common way to
upper-bound H(L,)is to introduce a simpler, more
easily analyzed algorithm H’ for which it can be
proved that H'(L,) > H(L,) for all L,. In this
case, H' is said to dominate H. A similar ap-
proach applies to lower bounds. For example, the
MATCH heuristic described below is dominated by
both FFD and BFD.

The MATCH packing heuristic iterates the fol-
lowing procedure until all items are packed. Let §
denote the set of items that remain to be packed.
MATCH first finds a largest item in 5, say X. If
|S] = 1 or if no remaining item fits with X, i.e.,
Y+X >1forallY € §—{X}, then MATCH puts
X into a bin alone. Otherwise, MATCH puts items
X and X' into a bin alone, where X'’ is a largest
remaining item other than X such that X + X' < 1.

It can be proved without much difficulty that
FFD(L,) > MATCHL,) and BFD(L,) >
MATCH(L,) for all L, [L5]. Moreover, MATCH
has the following simple analysis when X ~
U(0,1). First, we have that MATCH(L,) < (n +
b)/2, where b is the number of singleton bins in
the MATCH packing. The number of singletons
with an item no larger than 1/2 is at most one, so

MATCH(L,) < (n+ b+ 1)/2 where b’ is the num-



ber of singletons with an item larger than 1/2. But
an inspection of MATCH shows that b is equal in
distribution to max & where & is a symmetric, n-
step random walk starting at the origin. Standard
results then yield E[MATCH(L,)] = n/2+ ©(y/n)
and hence E[H(L,)] = n/2 4+ Q(y/n), where H
stands for either FFD or BFD.

2.3 Stochastic Planar Matching

Matching problems in one or more dimensions
have arisen in the analysis of several packing heuris-
tics. An example in one dimension was given in
Section 2.2. Here, we first define a generalization
of this matching problem to two dimensions and
then illustrate how it occurs in the analysis of al-
gorithms.

Let n plus points and n minus points be cho-
sen independently and uniformly at random in the
unit square. Let M, denote a maximum up-right
matching of plus points to minus points such that
if a plus at (z,y) is matched to a minus at (2',y’),
then z < 2’ and y < y'. Let U, denote the num-
ber of points left unmatched by M,. The problem
of determining the distribution of U, is called the
up-right matching problem. Asymptotic bounds on
the expected value are given by [L2],[R2],[S1],[CT]

(2.4) E[U,] = 0(v/n log®* n) .

To illustrate the applications of (2.4), we con-
sider the upper bound analysis in [S1] of the BF
heuristic, assuming that X ~ U(0,1). Define the
Modified Best Fit (MBF) heuristic to be the same
as BF except that MBF closes a bin to any fur-
ther items whenever the bin receives an item no
larger than 1/2. Clearly, bins in an MBF packing
have at most two items. It is not difficult to prove
that MBF dominates BF, so that E[BF(L,)] <
E[MBFK(L,)].

Next, we describe MBF as a matching proce-

dure. Plot the items of I, as points in the left

half of the unit square so that X; has a y coordi-
nate 1 — i¢/n and an 2 coordinate X; if X; < 1/2
and 1 — X; if 1/2 < X; < 1. X, is plotted as
a plus point if X; < 1/2 and as a minus point if
1/2 < X; < 1. Now match a plus point with a mi-
nus point if the corresponding items are placed in
the same bin by MBF. By definition of MBF, the
minus point must be above the plus point, since
the item corresponding to the minus point had to
be scanned first. Also, the minus point must be to
the right of the plus point, since the two items fit
into a single bin. An MBF matching is a maximum
up-right matching, as is easily verified. However,
the model differs from the original one in two re-
spects. First, points are samples in the left half of
the unit square, and second, the = coordinate has
been discretized so that z € {0,1/n,...,(n—1)/n}.
But it is easy to prove that (2.4) still holds; the ef-
fects of both differences are limited to changes in
the hidden multiplicative constant.

Finally, we observe that MBF(L,) is the sum
of the occupied space o(L,) and the unoccupied
space, the latter quantity being bounded by U,.
Thus, E[MBF(L,)] = n/2 + 0(y/nlog** n) and

hence

E[BF(L,)] = g +O(Vnlog¥ n) .

2.4 Linear Programming

If the item sizes in L, comprise a discrete set,
then BP is easily formulated as an integer program.
Let sq1,..
let m;, 1 < j < N, be the number of items with

., 8N be the different item sizes in L,, and

size s;. Define the ith possible configuration as a
sequence of integers C;; > 0,1 < 7 < N, such that

é\f:l Ci;s; < 1, i.e., aset of items with C;; of size
55, 1 <7 < N, can be packed into a single bin. If
M denotes the number of possible configurations,
then OPT(L,) = Y M, t*, where {t{} solves the

integer program: minimize Zf\ilti subject to t; >



0,1 <i<M,and Y M t:Cii >m;, 1<j<N.
Relaxations of such integer programs lead to use-
ful bounds for the analysis of optimum solutions.
For example, suppose we relax the integer program
for L, so that the ¢; can be arbitrary nonnegative

reals. Then it is readily shown that
(2.5) LIN(L,) <OPT(L,) < LIN(L,)+ N

where LIN(L,) denotes a solution to the relaxed
problem.

To illustrate the bound, consider the packing
constant ¢ = lim,_., F[OPT(L,)]/n. We will
show that for general F(z), F[OPT(L,)] — nc =
O(y/n) [R4]. This will also give us one of the many
applications of Kolmogorov-Smirnov statistics to
the analysis of BP and MS.

To begin, for some integer N > 1 to be chosen
later, transform the given distribution F' to a dis-
tribution G consisting of N atoms, each of weight
1/N,at s; = F7'(j/N),1 < j < N. If ¢y denotes
the packing constant under G, then it is not hard
to see that ey — 1/N < ¢ < ¢y. Note that generat-
ing n items X; according to G can be achieved by
taking n uniform samples U; from [0, 1] and setting
X, = F7Y([NU;]/N),1 <i<n.

To investigate c¢p, consider the one-sided

Kolmogorov-Smirnov statistic D, where

- TR
nDy = max fne = 1i: Uiz )
= 0?3§1{|{2:U¢>2}|—(1—2)n} .

If we remove from L, the items generated by the
largest nD; of the U; and pack them one per bin,
we are left with a list L/ of items X! with sizes in

{sj}1<j<n such that
i J

We have OPT(L!)) < OPT(L!), where L con-
tains exactly [n/N] items of each size s;. Finally,
let LIN(L!) denote the solution value of the LP

relaxation for L! in which we pack exactly n/N
(rather than [n/N]) of each item size. By (2.5) we
have OPT(L?) < LIN(L!)+ N, and by the law of
large numbers, we have LIN(L!) = Ney. Hence

we obtain the bound
OPT(L,) <nD_ +N+ney <nD,+N+n(c+1/N).

The standard bound, F[nD;] = O(y/n), along
with the choice N = /n then yields E[OPT(L,)]—
nc = O(y/n), where the hidden constant is inde-
pendent of the distribution.

Duality theory has played a role in studies of the
perfect packing problem: For which distributions F
do we have the packing constant ¢(F) = F[X], so
that E[OPT(L,)]/Elo(L,)] — 1 as n — oo? The
dual of the integer program for BP is: Find a set
of nonnegative weights u; such that Zé\le mjiu; is
maximized subject to Zé\le u;Ciy; < 1,1 <4 < M.
Note that the constraint simply requires that for
any set of items fitting into a bin, the corresponding

sum of weights must be at most 1.

The perfect packing problem was first studied
within the class of uniform distributions U(a,b),
0 <a<b< 1. Motivated by the dual problem
above, a weighting-function approach was adopted
in [L6]. We say that u : [0, 1] — [0, 1] is a weighting
function if for all finite sequences x4, ..
tive reals, YK < 1= Y8 wu(a;) < 1. Ttis easy
to see that if u is a weighting function, then ¢(F) >

., x} of posi-

Elu(X)]. Using this relation and a computer pro-
gram to help in the search, Lueker found weight-
ing functions classifying the distributions U(a,b)
such that ¢(U(a,b)) = E[X] = 2. TFor the gen-
eral problem, Rhee and Talagrand [R3],[R4] proved
strong results drawing on ideas from functional
analysis and topology. Courcoubetis and Weber
[C9] studied the same problem within the class of

on-line algorithms.



3 Related Topics

This section describes some of the more impor-
tant questions that have grown out of the initial
probabilistic studies of BP and MS.

3.1 Variants

The following problem has the same instance L,
as BP.

Bin Covering. Partition L, into a maximum
number of subsets (bins) such that each sub-

set sums to at least 1.

The NF algorithm can be adapted to this prob-
lem in an obvious way. Applying standard results
in renewal theory to the case X ~ U(0,1), Csirik
et al. [C11] analyzed this variant of NF bin-packing
to obtain precise estimates of the expected number
of bins covered.

The next problem has the same instance (L,,, m)
as MS.

Dual Bin Packing. Find a subset L!, C L,, of maz-
imum cardinality C(L,,m) such that L] can
be partitioned into m subsets with each subset

summing to no more than 1.

Asymptotics for E[C(L,, m)] have been studied
in [B3].

3.2 Higher Dimensions

Extensions of BP to two and three dimensions
have strong practical motivations, especially in
stock-cutting applications. In the two-dimensional
strip packing problem, the rectangles of a list L,, =
(R1,...,R,) are to be packed into a unit-width,
semi-infinite strip; the heights and widths of all
rectangles are at most 1. The packing is to have
the properties: (i) the rectangles do not overlap
each other or the edges of the strip, (ii) rectangles
are placed with their sides parallel to the edges of

the strip (90° rotations are disallowed), and (iii)
the packing height is minimized, where the pack-
ing height is the maximum height reached by the
tops of the rectangles in a vertically oriented strip.

In the variant, two-dimensional bin packing, hor-
izontal boundaries are also placed at the integer
heights of the vertical strip. Each rectangle must
now be wholly contained within a unit square, or
“bin,” between some pair of consecutive integer
heights. The objective is now to minimize the num-
ber of bins used in the packing.

The probabilistic analysis of two-dimensional
packing has recently been surveyed in [C5]. In
the most common probability model, all rectan-
gle heights and widths are taken to be indepen-
dent samples from U(0,1). The heuristics studied
have, for the most part, been straightforward ex-
tensions of one-dimensional algorithms. For exam-
ple, any one-dimensional heuristic can be adapted
to level packings of the strip, in which rectangles
are placed along levels, or horizontal baselines. The
first level is the bottom of the strip. Fach higher
level passes through the top of a highest rectangle
in the preceding level. Thus, the space between ad-
jacent levels corresponds to a one-dimensional bin.
Shelf packings [B1] are similar except that levels are
preset at heights determined by the distribution of
rectangle heights, which is assumed to be given in
advance. In general, the probabilistic analysis of
level and shelf algorithms extends in natural ways
the analysis of one-dimensional bin-packing.

The two-dimensional bin packing algorithm in
[K4] is a less obvious generalization of one-
dimensional matching; its analysis reduces to that

of up-right matching.

3.3 General Bounds

Lower bounds for BP have been useful in esti-
mating the cost of certain restrictions to the design

of algorithms. For example, assume X ~ U(0,1).



Shor [S1] proved, as a result in stochastic planar
matching, that E[WH(L,)] = Q(/n Tog n) for any
(More recently, Shor [S2] de-

vised an on-line algorithm that achieves this lower

on-line algorithm.

bound without knowing n in advance.) It is in-
teresting to note, however, that if we augment the
class of on-line algorithms by those that can make
use of the number n of items to be packed, then
this bound no longer applies; Shor [S1] devised an
algorithm of this type which wastes ©(y/n) space
on average.

In another example, again under U(0,1), algo-
rithms have been classified by the number of active
bins needed during the packing process. Here, an
active bin is simply a nonempty bin that has yet to
be closed to further items. It has been shown [C6]
that if an algorithm H never has more than r bins
active at any time, then E[WH(L,)] > L
Note that » = 1 for NF. This result also applies
to all other on-line, linear-time algorithms studied
in the literature [R1],[L1], i.e., all of these algo-
rithms limit the number of active bins and produce
a wasted space whose expected value grows linearly

n n.

3.4 Distributions

In studies of BP the emphasis has been on the
uniform distribution U(0,1), because it leads to
a tractable analysis. Models of MS have concen-
trated on U(0,1) and exponential distributions, for
the same reason. However, there have been many
useful results dealing with more general distribu-
tions, as illustrated in Sections 2.2 and 2.4. For
example, the lower bound on E[OPT(L,)] under
U(0,1) is easily shown to apply to any symmetric
distribution on [0, 1]. These results have also been
proved for distributions with decreasing densities,
by a technique of decomposing such distributions
into a series of symmetric distributions.

In addition to the perfect packing results al-
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luded to in Section 2.4, there have been several
cases where the uniform distributions U(0,b) have
been successfully handled. Among these are Kar-
markar’s [K1] analysis of NF and the analysis by
Bentley et al. [B2] of FFD. The analysis has often
led to anomalous and unexpected results. For ex-
ample, the analysis of FFD revealed discontinuities
at b = 1/2 and b = 1, as shown by the fact that
EWFED(L )] is O(1)if 0 < b < 1/2, O(n'/3) if
1/2 < b< 1, and as noted earlier, ©(y/n) if b = 1.

Quite recently, discrete uniform distributions
have been studied in depth [C1]. The results have
shown that many aspects of average-case behav-
ior are lost in the passage to continuous approxi-
mations U(a,b). To illustrate, let U{j, k} denote
the uniform distribution on the set {i/k}i<i<;,
1 < j < k. Results for the continuous case do
not suggest the following strong result: For any
U{j, k} with j < k — 2, there is an on-line algo-
rithm A such that E[A(L,) — o(L,)] = O(1). The
behavior of classical packing rules has also been
shown to be much more irregular in the discrete
cases. For example, expected wasted space O(1)
and ©(n) both occur under FFD for specific pairs
J,k with j/k < 1/2 and with j/k > 1/2. As an-
other example, there appear to be 7, k such that FF
produces O(1) expected wasted space while FFD

produces O(n) expected wasted space.

4 Directions for Further Study

There are obvious open problems concerned
with more general distributions F'(2) and more pre-
cise results, e.g., useful bounds on the multiplica-
tive constants hidden in the asymptotic notation.
Here, we note a few gaps in the asymptotic the-
ory that have yet to be resolved, even under the
usual simplifying assumptions. We begin with two

conjectures.



Conjecture 1 For X ~ U(0,b), 0 < b < 1, we
have E[WH(L,)] = ©(n) for H = FF or BF.

A similar conjecture applies to discrete distribu-
tions U{j, k} for j < k — 2.

The next conjecture refers to the expected
processor-idle-time defined in (1.2). We again as-
sume X ~ U(0,1).

Conjecture 2 There exists an o > 0 such that

E[AOPT(L,.2)] = O(e=™).

Strong results on the median of the distribution
of APPT(T,,,2) are proved in [K3]. The analysis
applies the second moment method [E1].

The conjectures for one-dimensional packing
have their counterparts in higher dimensions. An
interesting open problem in two dimensions is the
average-case behavior of the FF and BF rules ap-
plied to the level algorithms of strip packing.

Industrial applications of three-dimensional
packing abound, yet the design and probabilistic
analysis of algorithms remains at an early stage
[K4],[L.3]. For example, the existence of on-line
algorithms with sublinear expected wasted space

remains an open question.
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