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ABSTRACT

A basic multiprocessor version of the makespan scheduling problem requires
that n tasks be scheduled on m identical processors so as to minimize the
latest task finishing time. In the standard probability model considered here,
the task durations are i.i.d. random variables with a general distribution F
having finite mean. Our main objective is to estimate the distribution of
the makespan as a function of m, n, and F, under the on-line greedy policy,
i.e., where the tasks are put in sequence and assigned in order to processors
whenever they become idle. Because of the difficulty of exact analysis, we
concentrate on the asymptotic behavior as n — oo or as both m — oo and
n — oo with m < n. The focal point is the Markov chain giving the remaining
processing times of the m — 1 tasks still running at task completion epochs.
The theory of stationary marked point processes is used to show that the
stationary distribution of this Markov chain coincides with the order statistics
of m — 1 independent random variables having the equilibrium residual-life
distribution associated with F'. Convergence theory for general-state Markov
chains is then applied to establish convergence results for the Markov chain of
interest. Finally, central limit theorems are applied to show that what we can
gain from a good list scheduling policy is asymptotically negligible compared
to our degree of uncertainty about the makespan (i.e., its standard deviation).
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1. Introduction

An integer m > 2 together with positive task running times Ti,..., T, de-

fines an instance of the multiprocessor scheduling problem: Schedule Ty,...,T,
on m identical processors Py, ..., P, so as to minimize the latest task finishing
time or makespan; i.e., partition the set {Ty,...,T,} into subsets P;,..., P,

so as to minimize the maximum subset sum

To avoid trivialities, we assume that n > m unless stated otherwise. This
NP-complete problem finds application in operations research as a model of
scheduling parallel machines in industrial job shops (see Lawler, et al. [19] and
Blazewicz, et al. [4]). It has also had a prominent role in computer science,
where the term multiprocessor originates. Along with a number of other fun-
damental NP-complete problems, it has served as a theoretical testbed for the
development of new ideas in the design and analysis of algorithms (see Garey
and Johnson [16]).

For the purposes of defining heuristic policies, it is convenient to assume
that the tasks are presented in the form of a list (Ty,...,7T,). The on-line
greedy policy is arguably the simplest (and fastest) heuristic for finding ap-
proximate solutions to the multiprocessor scheduling problem. This policy
uses no advance information on the number or durations of tasks. The policy
begins by assigning the first m tasks Ty, ..., T,, to the m processors Py, ..., P,;
the processors start running these tasks at time 0, while the remaining tasks
wait. Thereafter, whenever a processor finishes its current task, the next wait-

ing task, if any, is assigned to the idle processor. In queueing terminology



the system operates as an m-server queue with a first-come first-served service
discipline; n customers arrive to an empty system at time 0, and the latest of
their departure times is the makespan. For our purposes the rule for resolving
ties among processors is immaterial, so we leave it unspecified.

Understandably, the greedy policy was among the first policies studied
when the probabilistic analysis of scheduling algorithms began some 15 years
ago. In the standard probability model considered here, the task durations T;
are independent and identically distributed (i.i.d.) with a distribution F/(¢) =
P(T; < t) having a finite first moment F[T], where T denotes a generic task
duration. The problem is to find the distribution of the makespan L,, , as
a function of the number m of processors, the number n of tasks and the
distribution F'. The general aim is to bring out typical behavior rather than
the highly unlikely worst-case behavior brought out by deterministic analysis.
With explicit formulas in mind, probabilistic analysis is usually quite difficult,
so research has often turned to large-n asymptotics.

In the past decade, several papers have been devoted to an asymptotic
analysis of the greedy policy for general m; see Boxma [6], Bruno and Downey
[7], Coffman and Gilbert [9], Han, Hong, and Leung [18] and Loulou [21] (the
monograph by Coffman and Lueker [10] gives a general coverage). None of
this work has led to limiting behavior as precise as that found for m = 2
in an early result of Feller [13], p. 208; instead, for m > 3, the analysis has
resorted to various bounding techniques. However, Feller’s result can in fact
be generalized, as shown in Section 2.

The contributions of Sections 2-5 are outlined as follows. Fix m > 2,
and extend the greedy process to the infinite time horizon; i.e., construct a

greedy schedule from the infinite sequence Ty,T5,... . For n > 1, let C,



denote the n'™ completion time; let B?, 1 <1 < m — 1, denote the residual
times of those tasks still running at time C,, ordered by increasing processor
index; and let X7 < X7 < ... < X | denote the order statistics of the
R?. Cy is defined to be 0, and X° = (X7?,..., X?

Y _,) gives the order statistics

9

of Ty,...,T—1. Figure 1 illustrates the definitions. Sections 2-4 study the
Markov chain {X"},50, X" = (X7, ..., X _,), for a given initial state X°. By

P . R =X
Py | R = X}
Py R = XD
P, .
Cs Co

X = (X7, X3, X9)
Figure 1: Tllustration of definitions; m = 4.

an application of the theory of marked point processes, Section 2 identifies the
invariant measure of { X"}, thus extending Feller’s result for m = 2 to general
m. This result is then applied to asymptotics of the expected “error” Elay, ],
where oy, = Ly — %E(T), and illustrated for specific distributions. Note
that =F[T] is an obvious lower bound to E[L,,,]. Section 2 concludes with
asymptotics in m that are derived as iterated limits n — oo, then m — oo.
The results in Section 2 were reported informally in a recent survey by Coffman
and Whitt [11].

The convergence issues related to the invariant measure of {X"} are ex-
amined in depth in Sections 3 and 4 under a broad class C of distributions F'.

The generality of C requires a comprehensive convergence theory of Markov



chains; this theory is briefly reviewed in Section 3, using the recent text of
Meyn and Tweedie [22] as the principal reference. The foundations presented
in Section 3 are then used in Section 4 to prove several limit laws for the chain
{X"}.

Section 5 shifts to limit laws provided by central limit theorems, tools
that apply naturally to the asymptotic analysis of schedule makespans. These
tools are used in a policy-free formulation, i.e., limit theorems are proved which
apply simultaneously to all scheduling policies. The paper concludes with final

remarks in Section 6.

2. Asymptotics of the Greedy Policy

We begin by expressing L, ,, in terms of the T; and the residual running
times X'. Returning to Fig. 1, we see that, at time C,_,,11, tasks Ty,..., T,
have all started, n — m + 1 of them have finished, and m — 1 are still running

with the ordered residual times Xf_m"'l, 1 <7 < m—1. Then the tasks

Ty,..., T, have a latest finishing time

Ly = n—m+1 + XTZ__T{H—I , (21)

)

and a sum of running times that can be expressed as

n m—1
Z Tz - an—m—I—l + Z X;l_m-l—l . (22)
=1 =1
Combining (2.1) and (2.2) gives
1 n m—1
Ly =—|> T +mXp 7t — S xp=mth (2.3)
moi5 =1

To proceed, we need information on the random variables X7. A direct

approach analyzes the Markov chain { X"} using standard methods. To this



end, assume for simplicity that /' is absolutely continuous with a density f; we
will return to more general F' later. Under this condition, it is easy to verify
that, for each n, the distribution of X™ will have a continuous density; we
denote this density by 7,(x), X = (21,...,Tm-1), and let x(x) = nh_}rgo Tn(X)
be the stationary density, assuming that it exists.

Figure 2 illustrates the possible one-step transitions from a state x’ to a

state x resulting from the assignment of a new task of duration t.  These
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Figure 2: m = 6,



Thus, it is convenient to define

xo(y) = (t14+y,...,Tma +Yy)

x(y) = (W, +y,. vty rmty, e ty), 1<i<m—1,

The state x can be obtained in one step from any state x;(y), 0 <i <m —1,

provided the new task has duration z; +y, where ¢ is defined to be 0. Hence,

mea(x) = [ i) o+ o)y (2.0

Sections 3 and 4 will prove convergence of 7, to a proper limit = independent
of the starting state under conditions that properly include the stated density

condition. In terms of random variables, we can write

(X7, ... Xo_ )= (X7,..., X, 1) as n— oo, (2.5)

where = denotes convergence in distribution. Indeed, we prove in Section 4 a
convergence of the probability measures in total variation as n — oo.

To obtain an explicit formula for the limiting distribution 7, i.e., the distri-
bution of (X7,..., X% _;)in (2.5), the Markov chain analysis now requires that
we solve the stationary version of the rather awkward recurrence in (2.4). A
key observation allows us to side-step this difficulty by applying the theory of
stationary marked point processes, in an argument that makes no direct use of
properties already established by the Markov chain approach. The observation
is that the sequence {C,} generated by the greedy rule is equal stochastically
to the superposition of m i.i.d. ordinary renewal processes; i.e., each is defined
independently by F' and each starts with a point at 0. The time-stationary

version of each renewal process is the familiar equilibrium renewal process, in



which the distance to the first point has the equilibrium residual-life distribu-
tion GG with density ¢(t) = [I — F'(t)]/E[T]. Each original renewal process is
the Palm (or synchronous) version of its time-stationary version.

Now consider the superposition of m i.i.d. copies of this time-stationary
renewal process. This is a time-stationary point process with the distance to
the first point from each component stream having distribution G. Since we
want to look at the superposition process at completion times, we are interested
in the Palm (synchronous) version of this stationary point process. Section 5.1
of Baccelli and Brémaud [2] characterizes this Palm version in terms of the
Palm and stationary versions of the component processes. However, from this
superposition process alone we cannot extract the stationary distribution of
(X7,..., X2 _y) directly. To do this, we mark the points of each component
stream with the index of the processor on which it occurs, and then apply the
corresponding superposition result for stationary marked point processes in
Section 1.3.5 of Franken et al. [14]. This result shows that each of the m — 1
streams is equally likely to produce the current point (i.e., the m possible marks
of the current point are equally likely), and that the residual time to the next
point in each of the remaining m — 1 streams has the distribution GG. Tt follows

X?’L

that a stationary version of (X7,..., X" _,

) at completion times coincides with
the order statistics of m —1 1.i.d. random variables with distribution . Thus,

we have proved the following result (without any density assumption).

Theorem 1. If F' is any distribution with finite mean, then a stationary (in-
variant) distribution of { X"} is given by
m—1

m(x) = (m—1! ] g(z:) . (2.6)

=1



For an alternative proof of Theorem 1, we can start by assuming that F
has a density f and verify directly that (2.6) satisfies the stationary version
of (2.4), with 7,41 and =w, replaced by w. If we remove constants, this is the

same as verifying that 7 solves (2.4), where

m—1
(X1, ey X)) = H [1— F(x;)] .
=1
To show this, define J(y) = ml_[_l[l — F(x; +y)], where 29 = 0. Then
i=0
m—1
Jy) == 7x)f(zi+y),
=0
and hence
m—1 o oo m—1
[ Ay = [TY #xilo) fai+ p)dy
i=0 /0 0 =0

/OOO 7% (y) flai +y)dy = 7wy, ... Tmy)

as desired.

Finally, we treat a general F' with finite mean by representing it as a limit of
distributions F),, each having a density f, and finite mean F[T,]. In particular,
we construct F,, so that, as n — oo, F,,(t) — F(t) at each continuity point of F’
and E[T,] — E[T]; such constructions are always possible. Then as n — oo,
the associated invariant densities 7" converge pointwise almost everywhere
with respect to Lebesgue measure on R™~! to the candidate invariant den-

sity m. By Scheffé’s theorem, p. 224 of Billingsley [3], the associated invariant



distributions on R™~! also converge in total variation and thus weakly. To con-
clude the argument we need a continuity property of the sequence of Markov
chains initialized by their invariant distribution. For each n, the Markov chain
is stationary, so it suffices to show that the distributions converge after one
transition, and for this, it suffices to show that P("(z,,-) = P(z,-) when-
ever x, — 1z, where = denotes weak convergence of probability measures
and P (z, B) is the transition kernel of chain n. But this desired continuity
property is easily proved, as shown in Lemma 1 of Section 4.

It is important to note that, in general, the invariant distribution in (2.4)
need not be unique. For example, this is the case with deterministic running
times. We establish uniqueness and convergence in Section 4 under an extra
condition. If uniqueness and convergence do hold, then by (2.3), (2.5), and

Theorem 1, we have the limit

1 2 1 m—1
Lypn——>Ti=a, =X ——> X/ as n—oo, (2.7)

m i=1 m =1
where X[,..., X" | are the order statistics of the i.i.d. random variables

Ry, ..., R _, with distribution GG. Hence, in (2.7) we may replace mill X! by
R

- We now consider expected values. We assume from now on that E[T?] <
0o. Then the residual-life distribution G can be shown to have the mean
(a*(T)+ (E[T))*)/2E[T] = E[T](v¥(T) + 1)/2 where o(T) is the standard
deviation of F' and o(T) = o(T)/FE[T] is the coefficient of variation of F.
From (2.3) and (2.7) we obtain

Blom) = B0 = = 3 BX7=+) (2)

3



and from (2.7),

Blog) = B(Xi) -~ BXD) = E(Xi) -~ 5 B(R)
=1 , =t (2.9)
= [Tt - (20 ( ”;“) B(T) .

These observations yield the following corollary to Theorem 1.

Corollary 1. If lim E(X!)= E(X}) for1 <i<m—1, then

o0

[1—Gm_1(:1;)]d:1;—<m - 1) (UZ(T) + 1) E(T)4o(1) as n — oo .

E(ozmm) - / m 2
(2.10)

0

In Section 4, we prove that F(X?) approaches F(X*) exponentially fast,
provided I has an exponential tail. Hence, for these cases, the term o(1) in
(2.10) can be improved to O(p") for some 0 < p < 1.

The integral appearing on the right side of (2.9) can seldom be evaluated
in closed form. We mention two cases where it can.

(i) Consider the uniform distribution F'(#) = ¢, 0 < ¢ < 1. Then ¢g(t) =
2(1 —1),0 <t <1. From (2.9) we obtain

Elan) = /01[1 T Ty (2.11)

3m

After the change of variables u = 2t —#?, the integral in (2.11) can be evaluated
in closed form. We find that

_ 2m 41 22m? (zm — 2)

Blan) = = — —— (2.12)

m—1
(i1) Suppose we have the exponential distribution F'(t) =1 — e ", ¢ > 0,
for a given rate parameter k£ > 0. In this case the C,,, n > m, are the epochs

of a Poisson process at rate mx, so that for all 2 and n > m, the X" are the



order statistics of m — 1 i.i.d. random variables with the distribution G = F'.

Then (2.3) and (2.7) give
Elam,] = l[Hm — 1] for all m and n > m , (2.13)
K

where H,, = 37, 1/j (see also Coffman and Gilbert [9]).

Because of the increased use of massively parallel computers, it is natural
to consider asymptotics as m — oo. From expressions like (2.12) and (2.13),
large-m asymptotics for the mean of the time-stationary random variable «,,

can be obtained directly. For example, (2.12) and Stirling’s formula give

FElay] = %— 2\/\/;—%0(”;/2) as m — oo (2.14)

when F'is the uniform distribution on [0, 1]; similarly, when F'is the exponen-

tial distribution, (2.13) and asymptotics for H,, give
1 1
E[am]:—(lnm—l—l—’y)—|—0<—) as m — oo, (2.15)
K m

where ~ is Euler’s constant (0.5772...).
More generally, we can obtain asymptotic properties of F[a,,] from (2.10).

When F' has support [0,b], (2.7) and the strong law of large numbers implies

that
v} (T) + 1

ay —a=b— E[T| 5

w.p.l as m — oco. (2.16)

From (2.16) we can see how F' influences the asymptotic error a. For a given
bound b, o decreases in E[T] and v*(T). For given b and F[T], the lowest
value of «a is b/2, which is approached by the two-point distribution with mass
E[T]/bon b and mass (b— E[T])/bon 0; e.g., see p. 120 of Whitt [26].

It is interesting that for this extremal two-point distribution the greedy

policy is optimal for all m and n; i.e., there is a distribution with finite positive



variance for which greedy gives the minimum expected error. The optimality
of the greedy policy in this case is trivial to see because the makespan is the
same as for a random number of tasks, each with a constant running time b.
In this case, all work-conserving policies (in which no processor is idle when
there is a task that has not started) are obviously optimal. This two-point
distribution is not in the class of absolutely continuous distributions, but it is
approached by such distributions.

The term X _; in formula (2.7) for a,,, obviously becomes more important
when F' does not have finite support. The asymptotic behavior of X* ;| as
m — oo 1s described by classical extreme-value theory; see Leadbetter, Lind-
gren and Rootzén [20] and Reiss [23]. This extreme value theory applies to the
iterated limit as first n — oo and then m — oo provided (2.5) is still valid.

Since the superposition of m i1.i.d. renewal processes, appropriately scaled,
converges to a Poisson process as m — oo, see e.g., Cinlar [8], one might expect
that the general formula for Fla,,] in (2.9) and (2.10) would in some sense
approach the formulas for the exponential distribution in (2.13) and (2.15), but
this is not the case. For the question here, the superposition limit theorem
does not apply. The superposition limit theorem implies that the distribution
of X7 is asymptotically exponential as m gets large, but in (2.9) we focus on
X _4 and mil Xr.

An inte;’gslting open problem is the joint limiting behavior as m — oo and
n — oo. Above, we considered only the iterated limit in which first n — oo
and then m — oo. If m = n, then the extreme-value theory for i.i.d. random
variables with distribution F' describes the makespan. It would be interesting

to develop different asymptotics in intermediate cases.



3. Convergence of {X"}: Preliminaries

In this and the next section, we study the conditions under which the
distributions 7,, n > 1, defined in (2.4) converge to an invariant measure for
all initial measures, and the stronger conditions under which this convergence
is geometrically fast. (The limit necessarily must be 7 in (2.6).) For this
purpose, we cite various theorems in Meyn and Tweedie [22], hereafter referred
to simply as MT, and then find conditions on F' guaranteeing that the Markov
chain {X"} satisfies these conditions. Roughly speaking, the conditions are
of two kinds: A condition of the first kind specifies a property of the chain
directly, e.g., irreducibility, aperiodicity, etc. A condition of the second kind
invokes the existence of a nonnegative function on the state space with certain
desired properties related to the chain. These conditions translate into two
kinds of conditions on F. The first kind involves smoothness properties of F,
while the second involves the behavior of F' at infinity. The remainder of this
section briefly reviews the basic theory. The next section applies the theory to
establish convergence properties of { X"} under an appropriate condition on
F.

Let X be a general state space and let B = B(X) be a o-field of subsets of
X. For the chain {X"},50 analyzed in the next section, X will be the set of
vectors X = (21, .., ¥p,—1) with 0 < 2y < -+ < wa,,_4, and B will be the Borel
o-field of sets in X. Let {®"},5¢ be a generic Markov chain on X governed by
an initial probability measure yg and a one-step transition probability P(x, B),
x € X, B € B. The n-step transition probabilities are denoted by P"(x, B), so
that P(x, B) = P'(x, B). We use PZ(-) for the probability of events in n-step

transitions from an initial state x, i.e., uo(®° = x) = 1. A hitting probability



is denoted by H(x, B), the probability that ®" € B for some n > 0, starting
in x.

In the sequel, all measures are assumed to be nontrivial, i.e., not identically
zero. The standard notation || - || will be used for the total variation norm.
We continue to use 7 to denote an invariant measure, i.e., a measure 7 for
which 7(A) = [ P(y, A)x(dy) for all A € B. In what follows, we avoid the
concept of “petite” sets emphasized by MT as it is not necessary for our work.
Instead, we use the more restricted notion of “small” sets as described below;
see p. 106 of MT.

Let v be a measure on B and let k be a positive integer. Set A is called
(v, k)-small (or simply small with the existence of v, k understood) if P*(x, B) >
v(B) for all x € A, and for all B € B. If v(B) > 0, then the above condition
implies that B can be reached in k steps from anywhere in A with a positive
probability that is independent of the starting point. Intuitively, this means
that all points x € A are not “too far” from B, and in this sense, A is small.
For the chain {X"}, we will impose a condition on F' guaranteeing that all
compact sets are small.

The following result applies only to the case when the entire state space X
is small, and is the basis (in Theorem 6) for proving the desired convergence
of {X"} under the class of distributions supported on a finite interval, which

includes the uniform distributions illustrated in Section 2.

Theorem 2. (Theorem 16.2.4 of MT). Suppose X is (v, k)-small under a mea-
sure v and a positive integer k. Then there exvists a unique invariant measure
7 such that

1P (x,-) — = < 0"



for alln >0, x € X, where = [1 — v(X)]V/*.

The norm || - || appearing in Theorem 2 is the total variation norm. Note
that, since 0 < v(X) < P*x,X) = 1, we have 0 < 1 — ¢»(X) < 1. Thus,
Theorem 2 ensures geometric convergence.

To obtain a similar result in greater generality, we introduce extensions of
the familiar notions of irreducibility, aperiodicity, and recurrence for Markov
chains on countable state spaces to more general state spaces. First, suppose
there exists a measure ¢ on B such that for any set B € B, )(B) > 0 implies
and is implied by H(x, B) > 0. Then {®"} is said to be 1 -irreducible. Thus,
the sets of positive 1» measure are precisely those sets that are hit with positive
probability from all starting points x. Typically, to prove ¥-irreducibility, one
first finds a measure ¥" such that ¢/'(B) > 0 implies H(x, B) > 0 for all x € X.
Then one computes a maximal irreducibility measure v from v’ for which the
reverse implication also holds (see Section 4.2 of MT). This approach can be
used in the proof of the i-irreducibility result of Corollary 2 in Section 4.

If in addition to the 1-irreducibility of {®"}, we have that »(B) > 0 implies

Px(®" € B for infinitely many n) =1 for all x € X,

then {®"} is called Harris recurrent; Section 9.1 of MT. Finally, if {®"} is
y-irreducible and there exists a set A € B such that A is (v, k)-small for some
k>1, v(A) >0, and such that

g.c.d{r>1: Ais (6,v,r)-small for some 6, >0} =1,

then {®"} is aperiodic (MT, Section 5.4).
In what follows V(x) denotes a nonnegative function on X, to be called a

potential function. The function AV denotes the drift operator on V and is



defined by (MT, p. 174)
AV = [ Pl dy)V(y) = Vix).

The function V is said to be unbounded off small sets if {x : V(x) > r} is
small for all » > 0. For the chain { X"}, we will verify the above condition by
demanding that V(x) be continuous for all x € X and that |X1|iinoo V(x) = oo,
where |x| = max(|z1],...,|¥m-1]). These conditions imply that {x : V(x) <
r} is compact, and our condition on F implies that compact sets are small.
We conclude this section with two theorems that also apply when X is

not small; the first gives conditions for convergence, and the second gives

conditions for geometric convergence.

Theorem 3. (Theorems 9.18 and 13.33 in MT). Let {®"} be -irreducible
and suppose there exists a potential function V(x) such that AV <0, except
possibly on some small set, and such that V is unbounded off small sets. Then
{®"} is Harris recurrent. If in addition, {®"} is aperiodic and has an invariant

measure 7, then

—0 as n— o

|/ kol P,y = =

for all initial probability measures pg on X.

Theorem 4. (Theorem 15.01 in MT). Let {®"} be o -irreducible and aperi-
odic, and suppose there exist a potential function V > 1, constants ¢, > 0
and a small set A with AV < —V +¢-14 for all x € X. Then for some
n>0andp, 0 < p <1, we have that

sup
o] <V

[ Prxdyiety) ~ [ w(dy)et)| < gV



In particular, for ¢ the indicator function of some set B, |P"(x, B) —#(B)| <
nV(z)p", so that [|[P"(x,-) — x| < 2nV(x)p".

We remark that, as a trivial consequence of Theorems 2, 3 and 4, the

invariant measures in these theorems are unique.

4. Convergence Theorems for Greedy Schedules

We first define a class of distribution F' and then apply the results of
Section 3 to the chain {X"}, X" = (X7,..., X _,).

Definition of Class C. Let C denote the class of distributions F' for which
there exists a “positive-density” interval [a,b], 0 < a < b, on which F(x) has

a continuous, strictly positive derivative F'(x). For F' € C and a,b given, let

E=E(F) > 0 be such that F'(z) > &, a <z <b.

Remark. The class C seems natural and general. It is slightly smaller than
the class of spread-out distributions, which in turn is slightly smaller than the
class of nonlattice distributions; see p. 140 of Asmussen [1]. The results here
can easily be extended to spread-out distributions, because F' is spread-out if
and only if the m-fold convolution F'* belongs to C for some m. [

We first show that, if F' € C, then {X"} has the desired properties, viz.,
those of the first kind mentioned at the beginning of Section 3. To do this we
need a little more notation.

Let @ = {x = (21, y2m-1) : 0 <2y < - <2y <t} = {x € X:
|x| < t}, so that ) = @ is the entire state space X. For any ¢, a < ¢ < b,

we define A, = {x :a < 2y < -+ < 2,1 < ¢}. Finally, in what follows,



A denotes (m — 1)-dimensional Lebesgue measure, and k always denotes a

positive integer.

Theorem 5. Let ' € C with positive-density interval [a,b]. For any fized ¢,
a < ¢ < b, there exists a function Ny > 0 defined for t > 0, and a function
D(n,t) > 0 defined for n > Ny, t > 0, such that

P*(x,B)> D(n,t)A(B) for t>0, n>N;, x€ @, BCA..

The following is a direct consequence of Theorem 5; we omit the proof as it

amounts to a straightforward checking of definitions.

Corollary 2. If I € C, then { X"} is-irreducible and aperiodic. In addition,

compact sets are small.

We break up the proof of Theorem 5 into two parts. After stating a routine
continuity result, the first part computes a lower bound on the probability of
transitions from a state x to a neighborhood of the origin. Then the second
part lower bounds the probability of transitions from a neighborhood of the
origin to subsets of A., these transitions being effected by running m — 1
additional tasks.

The first result follows from the observations made in deriving (2.4) along

with a trivial induction argument. Proof details are omitted.

Lemma 1. For each n, X" is a continuous (deterministic) function of the
variables
Tlyeoos Tty by noybn, where (21, .., Tpm_1) is a given initial state and tq, ... 1,

is a given sequence of the task running times.



Lemma 2. With ¢ fized as in Theorem 5, let Ky = (m + l)max{ am -1 }

c—a’ c—a

Then there exists a 0.4 > 0 such that Pk(x, Qe) > berp for et >0, k> K,

X € Qt'

Proof. It is convenient to consider P*(x,Q.) as a function of Ty,..., T}, i.e.,
PHx,Q.) = P(X*(x;Th,...,Ty) € Q.). We first produce for given ¢ > 0,
k> K;, x € (); a deterministic list of running times ¢4,...,%;, depending on
x, which are contained in [a,c] and lead to X*(x;t1,...,%;) = 0. Then we
perturb the ¢;’s to obtain the lemma.

Let & = mq + r, where ¢,r are integers with 0 < r < m — 1. Consider

qc
q+r’

¢ — Im=1 the value 2= assumed
g 7 q+r

k tasks with running times c— %1, ceey

¢ + r times, and each of the other m — 1 values assumed ¢ times. These

values are contained in [a,c] for all x € @), provided q‘% > a and ¢ — 3 > a,

ar 13
c—a’ c—a

which is equivalent to ¢ > max [ ] Since ¢ > mL_H and r < m, this is

guaranteed by the condition

t
k>[&’t:(m—|—1)max[am ] ,

c—a c—a
as stated in the lemma.

The t;’s are a certain permutation of the values listed above. First, let
the processors Py, ..., P, be indexed so that P,y carries a task with residual
running time z;, where 0 = xg < -+ < x,,_1. The k tasks are run as follows.

At time 0, P; starts running in succession the ¢ + r tasks with running times

gc
a+r?

and for 1 <12 <m — 1, P4y starts running in succession at time x; the ¢
tasks with running times ¢ — o For the above set of tasks, let C; be the 7'
completion time, with Cy = 0. The task running times ¢, ..., ?; are defined to
be the respective running times of the tasks started at times Cy, Cy, ..., Cr_1.

Figure 3 illustrates the definitions for £ =7, m = 3, and hence ¢ = 2, r = 1.



P T2 t4 tr t4:t7:c—%2

Py T ty 23 ty =15 =c— %
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Figure 3: Tllustration for Lemma 2, m = 3.

The m processors finish their tasks at time C = ge. Thus, for ¢t > 0,
k> Ky, x € );, we have task durations t; such that a < ¢y,...,#, < ¢ and
XE(x;t1,. .., t8) = 0. Theset {(x;Ty,...,Tx) :x € Qs,a < Ty,..., T, < b}is
a compact subset of R**"~1 and by Lemma 1, X*(x; T}, ..., T}) is uniformly

continuous on such sets. We may therefore choose ¢’ = 6/, ; < b — ¢ so that

Xk(x;Tl,...,Tk)EQE whenever x € Q; and 0 < Ty —ty,..., T, —t, <& .
(4.1)

Since [t;,t; + 6’ Cla,b], 1 <1 <k, and since F'(z) > &, a < x < b, we obtain
PO<T,—t;<&)>¢&8 1<i<k.

These observations along with the independence of the T;’s shows that, for

et>0, k> K, x€Qy,

P(XFx,Ty,....TY) €Q) > PO < Ty —ty,.... T — 1 < &)
(4.2)
= Pti<Ti<ti +6&) - Pltp <Tp <t +8) > (£8)F .

The lemma then follows by letting 8. = (£8")*. [ |

Proof of Theorem 5. Let 7% = (ZF, ... ZF )= (X"

m—1?

k k k
X, X7, X

XT’Z_Q) and suppose that Tyy; = Zf—l—Uf, 1 <e<m—1, where( < Ulk <<
Uk .. As illustrated in Fig. 4, we have X**™=1 = U~} = (UF,...,U* ). Let

1
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Xk zk Uk
A J
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Figure 4: Tllustration for Theorem 5, m = 4.

7% + B, B € B(Q), denote the set B translated by Z*, i.e., Z*¥ + B contains
just those vectors (ZF + x1,..., 2% | + 2, 1) with (z1,...,2,,_1) € B. Then

{(Tttse s Tiimr) € 254 BY C (XM € BY, BeB(Q).  (43)

Let t1,...,15, &', and K, be as defined in the proof of Lemma 2, and let P(1),
P® be the respective probability distributions of (T, ..., Ty) and (Try1, ..., Th),
n =k + m — 1. By the independence of the T;’s, we obtain from (4.3)

P(X" € B) > P((Twyi,-..,T,) € ZF + B)
> PO<Ty—ty,..., Ty —t <& (Thpyr,...,To) € ZF + BW)

PO(Tyys,...,T,) € 725 + B)aPW .

As in Lemma 2, consider t > 0, k > K;, x € ();, B C A., and put e = b — c.
Suppose that 0 < Ty —ty,..., T, — t; < ¢ and hence by (4.1), X* € Q.. This
is equivalent to Z* € Q., so Z*¥ + B C Ay. Thus, since F'(z) > &, a <z < b,

PO((Thyy,....T,) € ZF+ B) > ¢ '\ 2" + B) =" '\(B) , (4.5)

the inequality following from the translation invariance of Lebesgue measure.

We conclude from (4.2), (4.4), and (4.5) that P(X"™ € B) > ™ 6., xA(B).



Theorem 5 follows by choosing N; = Ky +m —1 and D(n,t) = ™ "8csnmi1-
|

With Theorem 1, Section 2, and Theorem 5 as the foundation, we proceed
to prove three limit laws for the chain {X"}. These results correspond to
Theorems 2-4. We assume in each theorem that F' € C. By the remark at the
end of Section 3, the invariant measure in each of the following theorems is

unique, and hence is the one given by formula (2.6).

Theorem 6. Let ' € C and let F' have compact support, say F(x) =1 for
x > xg. Then, for any s > xg, there exists a 0(s), 0 < 0(s) < 1, such that
|P(x,-) — x| < 0"(s) for allx € Q5 and n > 0.

Proof. From the assumptions, it follows that, with probability 1, the residual
running times at any time are at most s. Thus, ()5 may be taken as the state
space of {X™}. This state space is compact, so by Corollary 2 it is small. The

theorem thus follows from Theorems 1 and 2. [ ]
Theorem 7. If I' € C and E[T] < oo, then for any initial distribution po,

—0 as n— 0.

|/ kol P,y = =

Proof. By Corollary 2, {X"} is i-irreducible and aperiodic, so in view of
Theorems 1 and 3, we will obtain the desired result if we can exhibit a potential
function V with the two properties in Theorem 3. We choose V (x) = ma,—1—
(14 -+ + xm_1) as illustrated in Fig. 5(i).

Since 1 < -+ < Zyo1, we obtain V. > ma,_1 — (m — Dy = 2o,
so lim V(x) = co. Thus, V is unbounded off small sets, which verifies the

[x|—c0

second of the two properties in Theorem 3.



Figure 5: Tllustration for Theorem 7, m = 5.

Let the new task assigned in state x have duration ¢ and cause a transition

from state x to state y. As illustrated in Fig. 5(ii), (iii), we have

V(y) = mago—(m1+-+ana+1) = V(x)—t, if 1<z, (4.6)

Vy) = mt— (14 2pma+1t) = V(X)+(m— 1)t —map_q, if t>a6447)

AV = [[Viy) = Vel P(x.dy)

- /0 TR () + / j:_l[(m— 1)t — ma i |dF(t)

_/0"" tdF(t) + m(t — 2,_1)dF(1)

Tm—1

—/0°° tdF(t)—l—m/:)_ tAF(1) .

IN



Since E[T] = ?tdF(t) < o0, we have that lim jho tdF(t) = 0. We
0

Ly —1—00
m—1 e

conclude that AV < 0 for z,,_1 sufficiently large, say z,,_1 > s;. Then
AV < 0, except on the compact set (Js,, so the first and only remaining

condition in Theorem 3 is satisfied. [ |

Theorem 8. Let F°(z) =1 — F(x) = O(e™"") for some k£ > 0. Then there

exist positive constants n, ¢, and p, with p < 1, such that
P, ) ] < et
for all x = (z1,...,2m-1) € Q and n > 0.

Proof. By Corollary 2, { X"} is ¢-irreducible and aperiodic, and compact sets
are small. Hence, by Theorem 4, it suffices to produce a potential function V

satisfying V' > 1 and, for some 3, ¢ > 0 and some compact set A,
AV ==V +ec-14. (4.8)

We choose V' = eV where 0 < ¢ < %~ and W(X) = ma,_1— 21—+ —Tpm_1,

m—1

i.e., W is the function V appearing in the proof of Theorem 7. Since W > 0,
we have V' > 1, so it remains to verify (4.8). For this, we use (4.6) and (4.7),
replacing V by W.

Note first that integration by parts together with F°(z) = O(e™"") shows

that
/OO eC(m—l)xdF(x) — /OO eC(m—l)xch(x) <0
0 0
for 0 < ¢ < —£5. Then (4.6), (4.7) give
/v(y)p(x,dy) - /“”"‘1 gy 4 [ VOOt men g ()
0 Tm—1

— V(x) [ /0 T R (1) + / Oo_ eC(m_l)t_m’"—ldF(t)}ZLQ)



< V(x) l | ectarm+ [ ec(m‘l)tdF(t)] .
Now choose ¢ > 0 5o that F(e) < 1. Then
/0 TR = /0 e aR (1) + / R0
< /0 dF (1) + e—fﬁ/ﬁm dF(1) = 1 = (1 — =) (1 = F(e))(41D)
Integration by parts along with F°(z) = O(e™"") gives
[ ertar ) = - / (n=1tg e (1)

_ e<<m—1>xm—1FC(xm_1) +i(m—1) / 7 Pe(1) et
0
R R T

From (4.9)—(4.11) we get for x,,_; sufficiently large, say x,,—1 > s2,

[V&IPedy) < (1= BV, 5=1- ! _;_&(1 _ ). (112)

For x € Q,,, we have V(x) < e™*2. Hence, by (4.9)

529

AV

V(x) l / T et aR () + / T gy —
0 Tm—1

< e / T emDtg (| (4.13)
0

Finally, (4.8) follows from (4.12), (4.13) by choosing A = @,,, 3 as in (4.12),
and

c = e /OO ec(m_l)tdF(t) )
0

We conclude this section with a limit law for the expectation Eay, ).

Theorem 9. Let 1 — F(z) = O(e ™) for some k > 0. Then for some p,
0<p<1, we have Elay, ] = Elay] + O(p") as n — oo.



Proof. Let 5, (, and p be the constants appearing in Theorem 8. From (2.8)
and (2.9) we conclude that

Elamq] = Blan] = BQCZT] = EIXG ] = — 3 (BXT™"] = BIXT])

where
BIX; ) = BXT = [P ) — r(dy)), 1<i<m—1. (4.15)
Let V(x) be defined as in the proof of Theorem 8. Then
V = elmomi—mi—memal > olomot > (g 1 <i<m—1 . (4.16)
From (4.15), (4.16), and Theorem 4, we conclude that

|BIXP= ] — BX]

e([mavm_1—901—"'—96’m—1]pn_m‘l'l7 1 S 7 S m—1.

<

S

(4.17)
The theorem follows from (4.14) and (4.17). ]

5. Policy-Free Error Asymptotics

From (2.7) it is clear that the relative size of the error a,,, compared to
the makespan L,, , itself is asymptotically negligible as n — oco. For large
n, obviously the dominant part of L, ,, for any policy is the sum of all the
processing times divided by m. In this section we establish a stronger result.
We show that for any policy the limiting behavior of the error o, ,, asn — oo
is independent of the policy. In particular, the mean of the error ey, , = Ly, —
L [[T] for a given policy is asymptotically negligible compared to the standard
deviation of the makespan (which is the same as the standard deviation of the

error). In a probabilistic setting, what we can gain from a good policy is



asymptotically negligible as n — oo compared to our degree of uncertainty
about the makespan.

Central limit theorems (CLTs) and functional central limit theorems (FCLTs)
provide asymptotics that exhibit this property for general distributions and
a policy-free set-up, i.e., a model yielding results simultaneously valid for all
policies. The policies to be considered in the illustrations below are those in
the class of list scheduling (L.S) policies. Such a policy begins by computing a
permutation 7, = (7(1),...,7(n)) of the integers 1,...,n, and then schedules
the ordered list (T;(1),...,T-(»)) by the greedy rule. For any given sequence
Ty, Ty, ..., an LS policy defines a sequence of permutations {7,,n > 1}.

Let S, and M, be the sum and maximum of T4, ...,T,, and note that both
quantities are invariant under permutations of Ty,...,T,. Let the number m,,
of processors be a nondecreasing function of n, and denote the makespan and
error under permutation 7, by L7 and o/". From (2.3) we obtain the basic
inequality

|S, —m, L <m,M, forall 7,, (5.1)

from which we see that the limiting behavior of L7, aj» is determined by
the asymptotics of (S5,, M,). Typically, when a CLT holds for S,, M, is
asymptotically negligible compared to S,. (See §4.5 of Resnick [24] for further
discussion of the asymptotic behavior of (S,, M,).) In our case, we have the

CLT
n~%(S, —nE[T]) = N(0,06%T)) as n — oo, (5.2)

where = denotes convergence in distribution and N(a,b) denotes a normally

distributed random variable with mean ¢ and variance b. It then follows from



(5.1) and Theorem 4.1 of Billingsley [3] that, if

mnn_l/QMn:>0 as n — oo,

then for any sequence of permutations {7,,n > 1},

n~mualn = nmY2(S, —nB(T)) +n~ Y2 (m, L7 — S,)

= N(0,0%(T)) as n—oc. (5.3)

For example, suppose T' is exponentially distributed. Since M,,/Inn = E[T],
n — oo (e.g. see Leadbetter, Lindgren, and Rootzén [20]), then (5.3) holds if
m, = o(n'?/Inn), n — oco.

For a fixed number m,, = m, n > 1, of processors, no explicit assumption
about M, needs to be made. This can be seen in the general setting of the
following FCLT for S,. In terms of the usual diffusion-limit scalings, define

the normalized processes

St — El[Tnt
S, = S,(1) = 2 n1/2[ Ity
™ — (E[T)/m)nt

If B denotes standard (zero drift, unit diffusion) Brownian motion, then we
have

S,=o(T)B as n— oo, (5.4)

where = denotes weak convergence in the Skorohod space D = D([0,1],R)
(see Ethier and Kurtz [12]). By the continuous mapping theorem with the
maximum jump functional, we deduce from (5.4) that n='/2M,, = 0 as n — co.

Hence, for any sequence of permutations {7,,n > 1},

T
a%njﬂB in D as n—oo. (5.5)
' m



This gives the approximation

nE[T]

Tn
me 2
m

+n2N(0,0%(T)/m?) | (5.6)

in which 7, does not appear, since the effect of the permutation 7, is of order
M,,, which is asymptotically negligible compared to n'/2,

We remark that the setting for the above limit laws can be broadened
considerably, covering interesting cases where the independence assumption

or the identical-distribution assumption does not hold.
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