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ABSTRACT

We study call admission rates in a linear communication network with each
call identified by an arrival time, duration, bandwidth requirement, and
origin-destination pair. Network links all have the same bandwidth capacity,
and a call can be admitted only if there is sufficient bandwidth available on
every link along the call’s path. Calls not admitted are held in a queue, in
contrast to the protocol of loss networks. We determine maximum admission
rates (capacities) under greedy call allocation rules such as First Fit and Best
Fit for several baseline models, and prove that the natural necessary condi-
tion for stability is sufficient. We establish the close connections between
our new problems and the classical problems of bin packing and interval
packing. In view of these connections, it is surprising to find that Best Fit
allocation policies are inferior to First Fit policies in the models studied.

1 Introduction

An effective, easily implemented call admission policy is a key element in the construc-
tion of many communication networks. However, the design and analysis of such policies
typically poses difficult problems, particularly within multimedia networking technolo-
gies such as ATM (Asychronous Transfer Mode). To study these problems in a linear
network with given link bandwidths, we adopt a model in which a call request is iden-
tified by its source and destination, its arrival time, its bandwidth requirement, and its
duration. Calls can be scheduled across a given link at the same time if and only if
their cumulative bandwidth requirement does not exceed the link bandwidth. The term
‘bandwidth’ need not be taken literally; the model can be applied to other interpretations
such as an ‘effective bandwidth’ concept (see e.g., [EM93]).

Most modern research on call admission policies has concentrated on loss systems
where the decision to accept or reject a call is made once and for all at the time of
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the call’s arrival. Considerable effort has been put into the competitive analysis of
policies in this setting (see e.g., [BFL96] for a recent paper with many references).
For the more relevant stochastic analysis, see [Kel91] for an extensive survey of the
research on loss networks, including one-dimensional networks corresponding to those
introduced here. In contrast, our model assumes that calls can be delayed (placed into
a queue) and admitted later under more favorable traffic conditions. In the recent work
of Feldmann et al [FMS195, Fel95], such systems are studied at length. To justify the
added mechanism of call admission with delay, Feldmann et al argue that, by eliminating
the call retrial /resubmission traffic, especially that generated by ‘patient’ computers,
admission policies exert greater control over a smaller offered load. (A more thorough
discussion can be found in the papers just cited.)

Combinatorial analysis [FMS*95, Fel95] and simulations [Fel95] indicate that call
admission with delay has many advantages. However, very little is known about the
performance of such systems within stochastic models, which is our point of departure
here. We impose probability laws on call characteristics and then compute call admission
capacities for certain one dimensional (linear) networks; in particular, we determine in
each case the maximum call arrival rate such that the number of delayed calls at any time
remains finite in expected value. Our results contribute to mathematical foundations by
establishing the tractability of baseline models of communication systems. In addition,
together with simulations, our results give practical insights into the behavior, sometimes
unexpected, of greedy call admission policies.

The general call-admission problem is defined on a linear network, where there are
n+1 nodes and n links, each with bandwidth capacity 1. Call requests arrive in a Poisson
stream at total rate Ag, with the m-th call having bandwidth requirement b,,, 0 <b,, <
1, and duration d,, > 0. Bandwidth requirements and durations are independent, and
both {b,,} and {d,, } arei.i.d.sequences. Time is scaled so that E[d,,] = 1. A call’s source
and destination are given by a pair (7, j ), where ¢, the source, is a uniform random sample
from the set {1,... ,n+1} of nodes, and j, the destination, is a uniform random sample
from {1,... ,n+1} —{i}. Note that, in an equivalent set-up, we could have calls arrive
at the n 4+ 1 nodes in independent Poisson streams, each at rate Ag/(n + 1); as before, a
call would have a destination chosen independently at random from {1,... ,n+1}—{:},
where ¢ 1s the call’s source. Queues of delayed calls might be allowed to form at individual
nodes, but our interest would still be restricted to the total length of all queues.

We assume that the network has a duplex structure in that two calls can use any
link at the same time so long as their sources are on opposite sides of the link. Thus, the
left-to-right traffic (calls with sources to the left of their destinations) does not impede
the right-to-left traffic, and both types of calls have total arrival rate A = Ag/2.

In the next three sections, we examine special cases of the general model, as fol-
lows.  We begin in Section 2 by analyzing a greedy algorithm for the case where
b = dm =1, m=1,2,..., and thus where bandwidth partitioning (packing) problems



are avoided. The problem reduces to scheduling calls under the constraint that none of
those scheduled for the same time unit overlap; we call this interval scheduling, since
calls are completely defined by discrete intervals {z,7 + 1,...,5}. Lagarias, Odlyzko,
and Zagier [LOZ85] aptly refer to this set-up as a ‘disjointly shared network’; they study
the loss version and extend the analysis to the case where any number up to some fixed
K > 1 of calls can overlap.

Section 3 replaces the unit durations with independent exponential durations (with
parameter 1 by our convention E[d,] = 1), but to compensate for the greater difficulty,
it restricts the network to n = 3 nodes (2 links). Section 4 introduces bandwidth packing
problems by taking the b,, as independent random samples from the uniform distribution
on {1/k,...,(k=1)/k}. The concession to greater difficulty in this case is the restriction
to a single link (n = 1) and unit duration calls. Stability theorems along with discussions
of applications, simulation results, and conjectures for more general models also appear
in Sections 2-4. Proofs of the stability theorems appear in Sections 5-7.

2 Greedy Interval Scheduling; Constant Durations

We assume here that b,, = d,, = 1 for all calls. Call admissions and hence call departures
occur only at integer times and follow a simple left-to-right greedy policy. At the end
of each time unit, the greedy policy searches the left-to-right calls in order of increasing
source index admitting each call encountered, if any, that does not overlap calls already
admitted. (Two calls overlap if and only if they have a link in common and have sources
on the same side of the link.) The policy then finishes with a similar scan of the right-
to-left calls in order of decreasing source index.

To determine conditions for finite expected queue lengths, we focus on just the left-
to-right traffic; the independent right-to-left traffic must satisfy the same conditions b
symmetry. Calls arrive at rate A and each is equally likely to be any one of the (”"2'1
source-destination pairs (¢,7), 1 <7 < j <n+1. Consider the traffic on the middle link
if n is odd or on either of the two middle links if n is even. A routine count shows that

a fraction (|n/2] +1)/(2|n/2] +1) of the calls needs this most heavily used link. Thus,

2n/2| +1
/2] +1 @

is an obvious necessary condition for stability of the left-to-right subsystem and hence

A<

the entire system. But is (1) sufficient? By mapping this problem into one of Kahale
and Leighton’s [KL95] seemingly quite different packet routing problems, we prove the
following affirmative answer in Section 5.

Theorem 1. Let b, =d,, =1, m > 1. Then under the greedy policy the expected queue
length at time t is uniformly bounded for all t if and only if (1) holds.



The structure of the interval scheduling problem is a discretization of interval parking
problems [JSW90, CMP94] in which some subset of a given collection C of n subintervals
[a;,b;] € [0,1], 1 < ¢ < n,is to be parked in [0,1]. (An item will be parked in [0,1]
when it specifies a subinterval [a,b] in which it must be placed; it will be packed in
[0, 1] if it specifies only a length and can be placed into any available subinterval of the
same length.) Algorithms have been studied for parking a maximum disjoint subset
of C into [0,1] and for parking a disjoint subset that minimizes wasted space, i.e., the
Lebesgue measure of the points in [0, 1] not covered by any parked subinterval. The given
subintervals are independent and determined by two independent uniform random draws
from [0, 1]. The objectives of the algorithm analyses are large-n estimates of the expected
number parked and the expected wasted space. Here, our more general stochastic setting,
in which calls (intervals) arrive and depart at random, leads to stability issues that have
no counterpart in the earlier models.

3 Greedy Interval Scheduling; Exponential Dura-
tions.

Let the constant (unit) durations of Section 2 be replaced by i.i.d. exponentially dis-
tributed durations with mean 1. The following greedy policy, which we call First Fit, is
adopted for scheduling calls. When a call arrives, it is admitted immediately if it does
not overlap a call already in progress; otherwise, it joins the end of a queue of waiting
calls. When a call departs, the policy scans the queue in arrival order admitting calls
whenever one is encountered that does not overlap any call already admitted.

The new problem is open for general n, but for n = 2 we prove in Section 3 that (1),
which becomes A < 3/2, again yields the desired behavior.

Theorem 2. Letb,, =1, m > 1, let n = 2, and let the d,,, be independent, exponentially
distributed (mean-1) durations. Then under the First Fit scheduling rule, the expected
queue length at time t is uniformly bounded for all t if and only if A < 3/2.

Our proof technique is based on drift analysis; it reduces chiefly to finding a suitable
potential (test or Lyapunov) function with negative drift (see e.g., [Haj82, MT93], which
covers the theory needed here and has many references to applications). Results of
extensive simulations suggest that (1) is also sufficient for every n > 3. The continuous
limit, n — oo, normalized on [0, 1] was simulated directly, i.e., we simulated the limit
n — oo of the linear network put on the real line at points 0,1/n,... ,(n — 1)/n, 1.
Random calls were the intervals bounded by two independent uniform random draws
from (0,1). The results are illustrated in column 1 of Table 1 and suggest strongly that
First Fit was stable for any A < 2.



Another algorithm of obvious interest for call admission is Best Fit. Best Fit always
admits the largest waiting call (i.e., a call needing the largest number of links) that can
fit in an available sequence of links; at each decision point Best Fit iterates this rule
until no further calls can be admitted. For general n, Best Fit needs a tie breaking
rule to decide between intervals of the same length. Tie breaking rules that minimize
congestion favor intervals closer to the middle of [1,n 4 1], i.e., intervals that overlap
(interfere with) a greater number of other intervals.

For the continuous relaxation under Best Fit, which is as above for First Fit, the
tie breaking rule is unimportant. In a surprising comparison with the First Fit rule,
simulations of the continuous relaxation gave convincing evidence that A < 2 is not
sufficient for stability under Best Fit; the results are illustrated in the second column of
Table 1. On the other hand, simulations also suggested that (1) was indeed sufficient
under Best Fit when n = 2 or 3, irrespective of the tie breaking rules in effect; we intend
to prove these properties in a future paper. The question is then: what is the smallest
n for which (1) is no longer sufficient for stability under Best Fit?

According to simulations, the answer is: (1) is not sufficient for stability for any
n > 4 (under any tie breaking rule). Table 1 illustrates the experimental results that
support the claim for n = 4 (see the middle two columns). We remark that in the Best
Fit simulations for n = 4, every sample of the queue had at most a few dozen waiting
calls specifying intervals other than the middle length-2 interval (2,4); it was only the
number of waiting (2,4) calls that grew without bound.

4 Bandwidth Packing

Consider next the problem with unit call durations, but with bandwidths b,, drawn
independently and uniformly at random from {1/k,... ,(k—1)/k} for some given k > 2.
Since calls sharing a link must have a cumulative bandwidth not exceeding the link
capacity 1, we have a stochastic bin-packing problem combined with the stochastic
parking problem of Sections 2 and 3. The packing problem remains nontrivial even if
we remove the parking problem by taking n = 1. Under this assumption, our goal is the
call admission capacity of the link when calls are packed (admitted) according to the
following Best Fit rule.

Packing decisions are made only at integer times. Best Fit begins by packing a
waiting call with the largest bandwidth. Best Fit then iteratively packs waiting calls
with the largest bandwidth no larger than the available link bandwidth left over by calls
already packed. This step is repeated until no waiting calls remain, or all such calls are
too big to fit in the remaining bandwidth. The average bandwidth is 1/2 so A < 2 is
an obvious necessary condition for finite expected queue lengths when n = 1. Section 7
proves, again using drift analysis, the corresponding sufficient condition.



interval bandwidth

Events First Fit | Best Fit | First Fit | Best Fit | First Fit | Best Fit

n = oo n = oo n =4 n=4 k= o0 k= o0
1000000 1674 6863 211 5603 2500 3131
2000000 1645 12842 227 11719 3378 9360
3000000 941 18906 249 17411 3347 14078
4000000 1015 25799 102 21776 2992 16396
5000000 1205 31526 166 26392 3091 20321
6000000 744 38440 405 32610 2766 22389
7000000 793 44111 88 38540 3554 25784
8000000 1317 49889 347 43221 2900 28338
9000000 1665 55953 179 49267 3178 31729
10000000 1097 62774 226 54385 2808 35222

Table 1: Queue lengths after every million events for two interval packing
algorithms (columns 1-4) and two bandwidth packing algorithms (columns 5
and 6). Call durations were mean-1 exponentials for all cases. The cases n =
oo refer to the continuous relaxation where intervals are random subintervals
of [0,1]; the arrival rate was 1.95 for each such case, just less than 2 as
required by (1). For the n = 4 cases, the arrival rate was 1.65, just less than
the 5/3 required by (1). Section 4 discusses the last two columns; the case
k = oo for the bandwidth parameter means that bandwidth requirements are
i.i.d. uniform random draws from the continuous interval [0,1]. An arrival
rate of 1.95 was also chosen for these simulations.

As a partial check of our results the simulations in the last four columns were
done independently by two different authors, each using a different approach
and coding in a different language with a different random number generator;
the results were indistinguishable statistically.




Theorem 3. Assume a single link (n = 1) and unit call durations. Let the bandwidths
b be i.i.d. samples from the uniform distribution on {1/k,...  (k—1)/k}. The expected
queue length under Best Fit is uniformly bounded for all t if and only if A < 2.

Interestingly, this n = 1 case gives a new result in an equivalent model of slotted
communication systems [CHJR93]. In the latter interpretation, calls are messages and
call bandwidths (fractions of a unit bandwidth capacity) are message durations (fractions
of a time unit); the link bandwidths in successive unit intervals become the unit-duration
slots in which subsets of messages are assigned (or packed) and transmitted. With
arriving messages modeled by a discretized Markov process, the analysis in [CHJR93]
focuses on the Next Fit algorithm: When a message arrives and finds no messages
waiting, it is assigned to (will be sent in) the next time slot. If a message arrives and
finds other waiting messages, it is assigned to the latest time slot already allocated at
least one message, if it fits in the remaining unallocated time of that slot; otherwise,
the message is assigned to the next, as yet unused, time slot (and hence eventually
transmitted one time unit later). Our analysis adds to the earlier work by proving a
capacity (stability) result for the much more efficient Best Fit packing algorithm, which
assigns messages to slots where they fit best; the message-rate capacity under Next Fit
is only 3/2, whereas it is 2 under Best Fit.

Research on the packing problem of this section originated in the work of Kipnis
and Robert [KR90], who studied a strict FIFO version of the problem: a call can not be
admitted before an earlier arriving call even if there is sufficient bandwidth for it. Strong
results are obtained in [KR90], including formulas for throughput and invariant mea-
sures; general call-duration distributions are considered and call durations are allowed
to depend on bandwidth requirements. (Their results were expressed in the terminology
of computer storage problems, which motivated their work; bandwidth was storage, calls
were jobs, ... .)

Note that, in a Markov chain underlying the FIFO process, the queue can be specified
by giving only the queue length and the size of the call at the head of the queue. However,
the sizes of all waiting calls, and their arrival order, must be specified in a Markovian
state of the First Fit version of the model. This version was recently studied in [CS98];
our stability condition for Best Fit was also proved to be the stability condition for First
Fit. The approach in [CS98] is based on the fluid-limit techniques originated by Rybko
and Stolyar [RS92] and developed over the past few years by Dai [Dai95] and others (see
[DM95, Stol95] for key references).

The case of exponential call durations yields intriguing and important open problems.
Simulations illustrated in the last two columns of Table 1 suggest that A < 2 remains
a necessary and sufficient condition for stability under First Fit, although congestion is
increased by the greater variability of call durations. Interestingly, we again find that
Best Fit is inferior to First Fit; the arrival rate A = 1.95 puts Best Fit “over the edge”



into the instability region. We remark that the size distribution of waiting calls is very
different under First Fit and Best Fit. Under First Fit, the probability mass function
is increasing, with the large majority of waiting calls being larger than 0.5. Under
Best Fit, the sizes of waiting calls typically concentrated in the middle range, but the
degree of concentration varied widely, and the distribution seemed not to tend to a limit
at all; Best Fit would empty the queue of calls of some size while calls of other sizes
accumulated, but later it would work on calls of some other size while calls of the first
size accumulated, so that the size distribution would be constantly changing over a long
period of time.

The analytical difficulties encountered under exponential call durations are brought
out in a very recent article of Dantzer, Haddani, and Robert [DHR99]. They use a fluid-
limit approach in an analysis of stability where bandwidth requirements are assumed to
be generated by a two-point distribution. Besides stability conditions, a characterization
of transient behavior in the unstable case is given.

5 Proof of Theorem 1.

Recall that we have unit durations and unit bandwidth requirements for each call. We
map the interval scheduling problem on a linear network of n+1 nodes into the following
packet routing problem on the same network. Packets arrive at the n 4+ 1 nodes, joining
FIFO queues , according to independent Poisson processes, each at rate A\g/(n+1). Each
packet arriving at node i specifies a destination uniformly at random from {1,... ,n +
1} — {i}, independently of all other arrivals. Packets are admitted to the network at
integer times only. For each ¢, the packet, if any, at the head of queue ¢ and destined for
a node j > ¢ (respectively j < ¢) is admitted as soon as the link (z,7 4 1) (respectively
(1 — 1,7)) is not needed by a packet already on the network and going in the same
direction. (Recall that in all our duplex models, left-to-right traffic is independent of
right-to-left traffic.) Once admitted, a packet moves from its origin ¢ to its destination
J, taking exactly |7 — ¢| time units, one time unit for each link traversed. The motion
is nonpreemptive (also called “hot potato”) in contrast to other models where packets
can be removed from the network and put back on later.

We analyze only the left-to-right traffic in the packet routing problem, just as in
the interval scheduling problem; the total arrival rate of packets that move right is
A = Ag/2. For convenience, assume that arrivals in the interval scheduling problem are
sorted into queues 1,... ,n according to the left end of the interval, i.e., an interval with
leftmost node ¢ is added to queue 2. Thus, in each time unit the left-to-right greedy
algorithm scans the queues in increasing order of index. A trajectory of the interval
scheduling process is defined by a sequence of triples (a;, s;,d;), i = 1,2,..., where q;
is the time of arrival of the i-th interval and s;,d; are its source and destination, with






2 at time ¢ in the interval scheduling process is equal to the length of queue 7 at time
t+12—1in the modified packet routing process, where the n+41 Poisson processes are not
initially "turned on* until time ¢ — 1 for queue z. It follows that expected queue-lengths
are bounded in the interval scheduling problem if and only if they are bounded in the
modified packet routing problem.

But the time shifts (of at most n) of the Poisson arrival processes for the packet rout-
ing problem have only a transient effect. After time n, we have n + 1 Poisson processes
each at rate Ag/(n + 1); limiting queue-length distributions, if they exist, will be the
same as in the version of the packet routing problem defined in [KL95], where arrival
processes all begin at time 0. Moreover, it follows from results of Kahale and Leighton
[KL95] that A < 2m/2] 41 i necessary and sufficient for bounded expected queue lengths

n/2|+1
in the packet routhg problem, so Theorem 1 is proved. |

6 Proof of Theorem 2.

Recall that unit bandwidths, exponential durations, and 3 nodes (n = 2 links) are
assumed. The 3 possible call requests become the intervals (1,2), (2,3), and (1,3). We
say that these calls are type L (left), R (right), and B (big) calls, respectively.

We consider the greedy algorithm that always immediately schedules available links
in the 2-link network, if possible, by taking the call closest to the head of the queue that
fits without overlapping calls currently scheduled. The problem is to show that when
A < 3/2, the queue has bounded expected length.

Roughly speaking, our approach will be to determine a potential function ¢ mapping
states into the reals such that ¢ stays within a constant factor of the queue length and
has negative drift outside some finite set. After proving that the magnitude of a jump in
¢ has an exponential tail probability, we will invoke a result of Hajek [Haj82] to complete
the proof that expected queue lengths remain finite in expected value.

The following lemma will help us construct the desired potential function.

Lemma 1. For any 6 > 0 there exists a positive integer r and a continuous function
g(x) such that

L. g(x) = |z|/2 for |z| > r
2. g(x) is increasing for x > 0 and decreasing for x <0

3.0<g(z+1)—2¢9(x)+ gz —1) <6 for all .

Proof. Clearly there exists an even C'* bump function h(z) satisfying

10



1. 0 < h(x) <6 forall x
2. h(z) =0 for |x| > r, for some positive integer r
3. [ h(z) = 1/2.

)
Let j(x) = [y h(t)dt and let g(x) = [j(x)dz with the constant of integration chosen
to make g(x) = |z|/2 for |x| > r. Then by repeated application of the Fundamental
Theorem of Calculus,

oot 1) =20 oo -1 = [ [ bty oy,

y:O =—1

which is between 0 and 6, as desired. [

Let @ = 3/2— A, which we assume to be positive. Choose a function g and a positive

integer r as in Lemma 1 for § = «/10. Choose ¢ < 001 and for convenience adjust €
so that ¢! is an integer.

For the purpose of the bookkeeping, imagine that each call in progress remains in
position in the queue until it has been completed, at which time it is removed (and those
calls behind it move forward one notch). A state X (#) consists of the list of calls in the
queue, together with the specification of which calls are currently in progress. We now
associate various quantities with a state. Let ng, ny, and ng denote the number of calls
of each type in the queue (including those currently in progress), and let { = ng+ng+ng
denote the queue length. For 1 < ¢ < ny + np, a; denotes the position of the i-th call
of type L or R in the queue, where position 1 denotes the head of the queue. For
1 > ny, + npg, we define a; = (. Let s equal the length of the run of type B calls at the
head of the queue, if a type B call is currently in progress, and let s = 0 otherwise. The

potential of a state is defined by the formula

nr +np

¢ =np+ 5

+ g(np —ngr) —min(e™", s)e — > min(2e~", a;)e.
i=1

A glance at the function g(x) shows that the part 22428 4 g(n; —ng) can be thought of

as a smoothing of the function max(ny,ng) = ”L;”R + |nL;nR|. The e-terms subtracted
at the end are intended to give bonus reductions in potential to certain favorable states,
such as those with a long run of type B calls that can be scheduled one after the other
with no waste in the network, or those which are close to having such a run of type B

calls in the sense that there are few calls of type L or R close to the head of the queue.
Proposition 1. There is a constant T such that
()2—7<¢<l+T

for every state.

11



Proof. The continuous function g(x) — |z|/2 has compact support, so it is bounded in
absolute value by some constant 75. The e-terms are bounded in absolute value by 3.

Thus ¢ is within 7 := 79 + 3 of
¢ :=np + max(nr,ng).
To complete the proof, simply note that

nr +np

(/2 <np+ < ¢ <np+nyL+nr=>~L

The instantaneous drift of the potential ¢, i.e., the expected rate of change of ¢ at a
given time, is denoted by FE(d¢/dt).

Proposition 2. Let S be the (finite) set of states for which { < 2¢7'. Whenever the
current state is not in S, E(d¢/dt) < —3a/10.

Proof. First let us calculate an upper bound on the increase in potential that arises
from arrivals at the tail of the queue. Note that s and the a; can only increase from
arrivals, so we may disregard their contributions to the change in potential. If a type B
call arrives, ng increases by 1, so the potential increases by at most 1. If a type L call
arrives, the potential increases by at most 1/2 4+ g(x + 1) — g(x), where @ = ny, — np.
If a type R call arrives, the potential increases by at most 1/2 4+ g(x — 1) — g(x). The
expected number of arrivals of each type is A/3, so the total expected rate of increase in
potential due to arrivals is at most

§P+<%+ﬂx+0—9@0+<%+ﬂ$_m—9@0]

_ g[g +(g(x +1) = 2g(x) + gz — 1))]

<3@+3)
= 3 10

(3/2 — ) <2+ a)

3 10
c 1 2442
= 39T 50
< 1-3a/5.

To calculate the rate of change in potential due to call completions, we subdivide
into cases according to the type of calls currently in progress.

Case 1. A type B call is currently in progress.

12



If the type B call finishes, ng drops by 1, s drops by at most 1, and the a; each drop
by at most 1, so the potential drops by at least 1 — (1 + r)e, which is at least 1 — «//10.

Case 2. Calls of type I and R are currently in progress.

If the type L call finishes, then ny drops by 1, s remains 0, and the a; drop by at
most 1 (they may increase, but this will only help us), so the potential drops by at least
1/2 4+ g(x) — g(x — 1) — re. (Here again @ = ny, — ng.) Similarly, if the type R call
finishes, the potential drops by at least 1/2 + g(x) — g(x + 1) — re. Thus, the expected
rate of decrease of potential is at least

[1/24+g(x) —g(z —1) —re] + [1/2 + g(x) — g(x + 1) — re]
= 1—[g(xz+1)=2g(x) +g(x —1)] — 2re
> 1—a/10 — 2a/10
= 1-—3a/10.

Case 3. Only a call C of type L is currently in progress.

This case is possible only if ng = 0. If C finishes, then ny drops by 1, s possibly
jumps from 0 to something positive, and each a; drops by at most 1 (they may jump in
the positive direction as well). Let p denote the position of C' in the queue. A call ahead
of C in the queue cannot be of type L since otherwise it would have been completed
before (', and also cannot be of type R, since ng = 0. Thus the first p — 1 calls in the
queue must all be of type B.

Case 3a. nyp, > r.
Then if ¢ finishes, the potential drops by at least

124+ gnn)—gn, —1)—re=1/2+|ng|/2 = |np, — 1]/2 —re > 1 — a/10.

Case 3b.  nr <randp > el
Then if C' finishes, s jumps from 0 to at least p — 1 > ¢! and min(e™', s)e jumps
from 0 to 1, so the potential drops by at least

12+ [g(nr) —gn, —1)]+1—re>3/24+0—re>3/2—a/10 > 1.

Case 3c.  nr <randp<e!and{>21.
Let ¢ be the largest integer with 1 < ¢ < r such that a, < 2¢7'. For convenience
let b; = min(2¢', a;). (These are the coefficients of some of the e-terms.) If C' finishes,

the new values of b;, which we denote b are as follows: b = b;;1 — 1 for s < g — 1, and

13



b, =2¢' = by for i > ¢. Then

(50)-(58) - [Few-nege]- [Eoe £

=1 i=q+1
= 2t —b—(¢g—1)-1

= 2 —p—(¢—1)
Z e_l_rv

so the potential drops by at least

12+ [g(nr) —gng, = D]+ (€' =r)e>1/240+1—re>3/2—a/10 > 1.

Case 3d. np <rand p<eland (<20,

Then the state is in S.
To summarize, we have found that in Case 3, the expected rate of decrease in potential
due to call completions is at least 1 — /10 in all subcases where the state is not in S.

Case 4. Only a type R call is currently in progress.
This is exactly like Case 3.

Case 5. No calls are in progress.
This is possible only if the queue is empty. Then the state is in S.

To summarize, the expected rate of decrease in potential due to call completions is at
least 1 — 3a/10 if the current state is not in §. Combining this with the expected rate
of increase created by arrivals, we have, whenever the current state is not in &,

E(dé/dt) < (1 —3a/5) — (1 — 3a/10) = —3a/10.

We need also to control the jumps in ¢, but this is easy: the change in potential A¢
when an event (arrival or completion) occurs is clearly uniformly bounded.

The proof of Theorem 2 will conclude by applying a well-known stability-type result
for processes with a discrete time parameter. To prepare, we now construct a Markov
chain which for our purposes is equivalent to the Markov process { X (¢)} = {X(¢),t > 0}
of Propositions 1 and 2. In particular, we uniformize {X(¢)} to obtain a Markov chain
{X;} = {Xi}i>0 on the same state space (see e.g. [Kei79]). The two processes evolve
under the same Poisson arrivals of types L, R, and B calls at total rate A, and they begin
in the same initial state. The state transitions X; — X,4; are the same as in {X(#)}
except that now transitions from a state to itself are allowed . The transitions occur as
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follows: if X; is empty, then with probability A/(A+42) state X, results from an arrival,
and with probability 2/(X 4 2) there is no change and X; 41 is also empty. If X; has two
calls in progress, then with probabilities A\/(A + 2), 1/(A + 2), and 1/(X + 2) the event
creating X,y is respectively an arrival, the departure of the L call, or the departure
of the R call. Finally, if only one call is in progress, then with probabilities A\/(\ + 2),
1/(A+2), and 1/(X + 2), state X,;41 results respectively from an arrival, completion of
the call, or no change at all.

It is easily verified that X(¢) £ Xn), where N(t) is a Poisson (counting) process
with rate A + 2 (see e.g. [Kei79, p. 20]). Thus, Theorem 2 will be proved if we can
show that the expected queue length in {X;} stays bounded. For this, we obtain a
key property of {X;} from Proposition 2 and the construction of {X;}: a bound on
the expected change E[A¢] in the potential function in one step of {X;} is given by the
bound in Proposition 2 on the expected rate of change times the expected time 1/(A+2)
between events in N(t), i.e., in states where the queue length is greater than 2¢™!,

mad < (1) 1

rt2) 10"
1 3
= —|— ] —«
72—a) 10
< —a/l2. (2)

This result together with Theorem 13.0.1 in [MT93] shows that the chain X; is ergodic
with a unique stationary distribution. The remainder of the proof shows that this
distribution has a finite mean, the approach being the drift analysis of Hajek [Haj82].

Lemma 2. Let {1);} be a sequence of real-valued random variables with Elig] < oo and
suppose there exist constants £, > 0 such that we have the drift condition

Eltpipr — bty = 2] < =, for all 2 > &,
and there exist constants 3,1 > 0 such that we have the jump condition?

E [eﬁ|¢i+1—¢i|

@/)Z'ZZ] < for all z.

2Tt is natural to ask whether the absolute value signs around ;41 — 1; in the jump condition could
be removed, since a priori one might expect that it is only large jumps in the positive direction that
could make the E[i¢;] unbounded. But in fact the absolute value is necessary, even for Markov chains
having the nonnegative integers as state space, as the following example shows.

Let 1o = 0, and let the transition probabilities be as follows. If ¢; = 0, then ;41 is 0 or 1, each with
probability 1/2 . Tf ¢; = z > 1, then ;41 equals 0 or z + 1, with probabilities 2/(z + 2) and z/(z + 2),
respectively. We have

Elipr — il = 2] = =2/(2 +2) < -1/4

for z > 1, and E[e¥#+17%] < e for all z > 0. One can then check that the t; converge in law to e,
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Then
lim sup E);] < oo.

1— 00

Proof.  Our drift and jump conditions correspond to conditions C1 and C2 of [Haj82],
which imply his conditions D1 and D2. Then (2.6) of [Haj82] implies

E[ead”'

=2 < Ae”+ B (3)
for some positive constants A, B, and a depending only on &, v, 3, and n. Hence

Elatpfibg < 0] < Ele®”

A+ B

«

Elile <0] <

Rewriting (3) as E[e®¥=%0)|ipy = 2] < A 4 Be™®* shows

Elo(y; —to)lo > 0] < E[e*™)hy > 0] < A+ B,

Bl >0 < A Bl > 0] g

but FE[iolthe > 0] is finite by assumption. Combining (4) and (5) completes the proof.
|

Clearly, by (2) and Proposition 1, the drift condition is satisfied by ¢ with ¢ = 2e™'+7
and v = «a/12. The jump condition follows trivially from the fact that A¢ is uniformly
bounded, so

lim sup K[ X;] < 0o
follows from Proposition 1 and Lemma 2. Finally, the uniform boundedness stated in
Theorem 2 then follows from the ergodicity of {X;}.

where
1 if 2=0

Prob(1/)oo:z):{2’1 1 ‘
m, if z > 0,

and hence E[¢;] — oo.
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7 Proof of Theorem 3.

Recall that communication is now across a single link (n = 1) of bandwidth 1, calls
have unit durations, and bandwidth requests are chosen independently and uniformly
at random from {1/k,... ,(k—1)/k}. Time is slotted with slots having length 1, and
calls being scheduled cannot straddle different time slots. Calls are scheduled according
to best fit: the waiting call requesting the largest bandwidth is scheduled first, then the
largest of those that can be accommodated by the remaining bandwidth, etc. Calls can
be scheduled simultaneously if and only if the sum of their requested bandwidths is less
than or equal to 1; i.e., we do not think of the call bandwidths as having a location
within the available bandwidth, as we would in a parking problem formulation. The
problem is to show that if A < 2, then the queue has bounded expected length. Drift
analysis will again be our approach.

Before getting into the body of the proof, we need a few elementary probability
estimates for the Poisson process and the M/D/1 queue (the single-server queue with
Poisson arrivals and constant service times). The estimates will all apply to events that
occur over intervals with durations proportional to T. We say that such an event occurs
with high probability if for some constant 3 > 0 it occurs with probability 1 — O(e=#T)
as T — oo. Correspondingly, a low probability event has probability O(e™#T) as T — oo
for some (> 0.

First, estimates of the Poisson distribution prove the following standard result.

Fact 1. Fiz A\je > 0. The number of Poisson arrivals at rate X\ that occur in a time

interval [t,t + T] is between (A — €)T and (X + €)T with high probability.

The remaining facts that we need all concern the M/D/1 queue. Later, we will take
A = 2—a as the arrival rate in the bandwidth packing problem. With this interpretation
of a, it is convenient to take the arrival rate A\/2 = 1 — /2 for the M/D/1 queue in
the facts below. The constant service times are assumed to have unit durations. As will
be seen, Fact 1 is at the heart of each of the facts below. The facts have two parts.
We prove the first part of each fact; similar arguments prove the second parts which we
leave to the reader.

Fact 2. Fiz 6,¢ > 0 such that 6 < /2.

(i) Suppose that the queue length at time t is M < §T. Then with high probability the
queue length at time t + T is less than €T,

(ii) Suppose that € < 6 and the queue length is M > 6T at time t. Then with high
probability the queue length at time t + T is less than M — €T'.

Proof of (i) By Fact 1 and the inequality 6 < «/2, the queue will empty with high
probability in the interval [t,7 4 $T]. Thus, (i) will follow if we can show that the net
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increase in the queue length over an interval [t/,¢' +~T] C [t, ¢t + T is less than €T with
high probability for any fixed v, 0 <~ < 1.

A net increase of €¢I during [t',t' + ~T] implies that, for some v, 0 < 4 < 4, the
queue length was strictly positive throughout a subinterval of length 4T during which
the number of arrivals exceeded the number of departures by at least €I'. The arrival
rate is less than 1 so by Fact 1, this event has low probability. But there are at most 72
different intervals of length 4'T in [¢',¢' + 4T]. Thus, for some 3 > 0 the net increase
in queue length during [#,#' +~T] is less than ¢T' with probability 1 — O(T?e¢="T) and
hence with high probability, since T?e=T = O(e=%'T) for any (' satisfying 0 < ' < 5.

Fact 3. Fix 6,¢ > 0.

(i) Suppose that ea/2 > & and the queue length at time t is M < §T. Then with high
probability the queue empties at some time before t + €T'.

(ii) Suppose that 6 < a2 and the queue length at time t is M < 6T. Then with high
probability the queue will be empty at least once in [t +T — €T, t + T1.

Proof of (i) The number of arrivals during [¢,¢+ €T is approximately (1 — a/2)(eT),
in the sense of Fact 1. The number of departures during [¢,t + €T is exactly €T, if the
queue does not become empty during this time interval. In this case, the net decrease in
queue length would be approximately (a/2)eT, which is impossible, because the original
queue length was less than this. |

Recall that & = 2 — A, which we assume is small but positive. In the course of
the proof, we will introduce various other constants xq, ko, T, s, and assume certain
inequalities between them. At the end, we will show that all of these hypotheses can be
satisfied.

Let n; denote the number of calls in the queue of bandwidth exactly i/k. A state,
which we again denote by X;, is given by a vector (n1,n9,... ,nr_1). Let £ = S5 n; be
the queue length. We say that a call is large if its requested bandwidth is greater than
1/2, and we let M = Zf:_(lkﬂ)/z n; be the number of large calls. (We assume k is odd
for simplicity, although the same method of proof works for even k.) Let k. = (k—1)/2
and for 1 < <k, define

Nk, + Ngy—1 + -+ 1
ke —i+1 '

m; =

Finally, let
¢ = max(0, k1 (M — k2))

¢y = max(mi,ma,...,Mg,)
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and

¢ = ¢1 + do, (6)

where £, and k, are positive constants to be specified later.

Proposition 3. There exist positive constants oy, oo, and T such that
ol — 1 < ¢ <oyl

for all states.

Proof: We have ¢ < k1M, and ¢ < nq+ng+ -+ 4 ng,, so ¢ < max(x1,1)l. On the
other hand,

ni+np+ -

. ks > min(k1, 1/ k)l — K12

&> k(M —ky) +

is a lower bound of the desired form.
Proposition 4. There exist choices for the parameters ki, k9, T, Lo,y > 0 such that

the following negative drift condition holds: for any state in which { > (4, the expected
change in ¢ from time t to time t + T s less than or equal to —~.

Proof: We consider A (and hence «) as fixed. Define

400
=T
and
2
(0%
= —T
27 500 (7)

where T is tending to infinity.

The increase of ¢ during [t,¢+ T] is in any case bounded by the constant max(xq, 1)
times the number of arrivals during that period. The contribution to the expected
number of arrivals from a situation occurring with low probability will tend to zero as
T — oo, since the arrivals are Poisson. Therefore, in our analysis of the expected change
of ¢, any situations occurring with low probability can be disregarded.

If we look only at the large calls in the queue, they arrive with rate /2, and are
admitted one at a time as long as the queue contains any, as in the M/D/1 queue. Since
A2 =1—a/2 < 1, the system is stable if we forget about the small calls.
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Case 1. M > 2k, in the state at time .

Let M’ denote the new M at time ¢t + T. By Fact 2(ii) with § = a*/100 and
e = a?/200, M’ < M — k, with high probability, so the expected decrease in ¢; is at
least (approximately) k162 > 2T. On the other hand, the expected number of arrivals
of small calls between time ¢ and ¢ + T is less than T, so the expected increase in ¢, is
at most T'. Thus the net expected change in ¢ is at most —7', which is below —~, even
for v = 1, say, since T is going to be large.

Case 2. M < 2x, in the state at time .

By Fact 2(i) with § = o?/100 and € = a?/200, we will be in a state with M’ < &
at time ¢ + T, with high probability. Thus the expected change in ¢; will not make a
significant positive contribution to the expected change in ¢.

By Fact 3(i) with § = @?/100 and € = «/20, the time between ¢ and the first emptying
of the queue of large calls happens in time less than («/20)7 with high probability. By
Fact 3(ii) with § = @?/100 and € = «/20, the last time before ¢ + T" when the queue is
emptied of large calls occurs after time t+7 —(«/20)T', with high probability. Therefore,
the time between the first emptying of the queue of large calls and the last emptying in
the time interval [t,1 + T] is at least (1 — «/10)T with high probability.

Thus it remains to be shown that ¢, has a negative drift given that the time between
the first and last emptyings of the queue of large calls is at least (1 —a/10)T. Between
these emptyings, the distribution of the large calls processed is the same as the distribu-
tion of the large calls arriving. In particular, for each 7, 1 <17 < k., the number of slots
of bandwidth ¢/k available alongside these large calls while they are in progress is ap-
proximately 2-%(1 —a/10)T, and more precisely, is at least 2= 01“(1 a/10)T > 1= 06“T
with high probablhty, by Fact 1. In addition, there are approx1mately (1— a/lO)T fime
intervals when no large call is in progress, and more precisely, at least @(1 —a/10)T >
0.49aT with high probability, again because of Fact 1.

Let ji be such that ¢ = mj. Let mj,, m;,, ..., m; be the other m; which are

within 107 of ¢3. Then, by definition of the m;,

nj, = (ke —Ji+ my, — (ke — ji)mjip
> (ke = gi + D)my, — (ke — 5i)(my, +10T)
> mj, — k(107
> ¢y — (10ke +10)T
> kT

Y

the last inequality holding if {y is sufficiently large as a function of a and T'. (If the last
inequality did not hold, then ¢ < (k + 10k, + 10)T', so

¢ < k1M 4 (k4 10k +10)T < 2k1k2 + (k4 10k + 10)T
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which by Proposition 3 would give an upper bound on (.) Note that the string of
inequalities giving n;, > kT is valid when j; = k. even though m; 41 is undefined when
Ji = k., since the term involving it is then zero. Since n;, > kT', there is no chance of the
calls in the queue of bandwidth j;/k being depleted during the time interval [¢,¢ + T,
because at most k calls can be in progress during each unit of time.

The expected number of arrivals requesting bandwidth 7/k is (2—a) T, so with high

2k
probability the number of such arrivals is less than (2;:*/2) T, by Fact 1. Therefore the
increase in m;, due to arrivals is (with high probability) at most (2;2*/2) T. On the other

hand, each slot (including the bandwidth 1 slots) of bandwidth at least j;/k will be filled
in best-fit by one small call of bandwidth at least j;/k (since the calls of bandwidth j;/k
are not depleted). The number of such slots is at least

b1 —0.6 ke —gi+1
04907 + 3~ s BT IiE L

i > I (0.49aT + (1 — 0.6a)T)

h=j;
so the decrease in m;;, due to completions is at least

(1-0.11a)T
k. ‘

Thus the net change in each mj, is a decrease by at least

(1-011a)T (2 —a/2 0.140
— T = T.

The other m;, those that were not within 107" of the maximum, will not increase by more
than 2T (because of our high probability assumption on the distribution of arrivals), so
¢y will decrease by at least 0';:1“T, as desired.

Let us summarize the choices of parameters that should be made: first set k1 =
400/a? and Ky = %T. Next choose T' (and hence also k3) large enough (as a function
of ) so that the events we claim occur with high probability actually do occur with

sufficiently high probability so that in the cases in which the events fail to take place,

the contribution to the expected drift in potential is negligible. Finally choose ¢y large
(as a function of o and T') and choose v > 0 small. |

Recall that the increase of ¢ in [t,1 4+ T] is at most a constant times the number
of arrivals during [t,# 4+ T]. Since the arrivals are Poisson, it follows that increases in
¢ over [t,1 4+ T| have an exponential tail. Since kT bounds the number of completions
in [t,t + T], the magnitude of a decrease in ¢ is bounded. Together with Proposition
5, these observations mean that Lemma 2 applies to ¢ at a sequence of times that are
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multiples of T', and so the expected size of ¢ is uniformly bounded at times which are
multiples of T'. By Proposition 3, the same is true for the expected queue length. Also,
the expected increase in the queue length within time intervals of length T"is bounded, so
the expected queue length is uniformly bounded at all times, and Theorem 3 is proved. B
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