A Central Limit Theorem for Interval Packing

E. G. Coffman Jr. Leopold Flatto Predrag Jelenkovic

Bell Labs
Lucent Technologies
600 Mountain Avenue
Murray Hill, NJ 07974
{egc, leopold, predrag}@bell-labs.com

Jan. 19, 1998

Abstract

Starting at time 0, unit-length intervals arrive and are placed on the positive real line by a unit-
intensity Poisson process in two dimensions; the probability of an interval arriving in [¢,t 4 dt] with
its left endpoint in [y, y + dy] is dtdy + o(dtdy). An arrival is accepted if and only if, for some given z,
the interval is contained in [0, 2] and overlaps no interval already accepted.

We study the number N (¢, z) of intervals accepted during [0,?]. Using known asymptotic estimates
for the first two moments of N (¢, 2 ), we show that N(t,z) satisfies a central limit theorem (CLT), i.e.,
for any fixed ¢

N(t,z)— EN(t,z)
a(N(t,2))

i/\/’(O,l) as T — 00,

where A/(0,1) is a standard normal random variable, and < denotes convergence in distribution.
This stochastic, on-line interval packing problem generalizes the classical parking problem, the latter
corresponding only to the absorbing states of the interval packing process, where successive packed
intervals are separated by gaps less than 1 in length. Coffman et al [1] sketched a proof of the above
CLT, pointing out that the proof followed closely the argument used by Dvoretzky and Robbins [2] to
prove the corresponding CLT for the parking problem. Here, we give all the details, and show exactly
where and how the steps in the Dvoretzky-Robbins proof have to be modified in a proof of the CLT
for the more general stochastic interval packing problem.



1 Introduction

Unit intervals arrive at random times and at random locations in Ry. The arrival times and
left endpoints comprise a unit-intensity Poisson process in two dimensions; the probability
of an arrival in the time interval [t,¢ + dt] with left endpoint in [y, y + dy] is dtdy + o(dtdy).
The number packed during [0,7] in [0, 2] is denoted by N(¢,z) In [1], it is shown that, for
any given T' > 0,

sup [EN(t,2) — (a(t)z + a(t) + A(t) — 1)| = O (e7t1o8r) (1)

0<t<T

for all ¢ € (0,1), where

a(t) =D, B(t) = _z/ot Lzer du. (2)

U

And for the variance, it is shown in [1] that, for any given T > 0,

sup_[o*(N(1,2)) = (u(t)z + pu (1))] = O(e™*7 87, (3)
0<t<T
for all £ € (0,1), where pu(t) and p4(t) are explicitly computable (see [1, eqs. (75) and (76)]),
and where p(t) > 0 for all ¢t > 0.

The classical parking problem of Renyi [4] has an intimate relationship with on-line
interval packing. In the former problem, unit-length cars are parked sequentially along a
curb (interval) [0, 2], # > 1. Each car chooses a parking place independently and uniformly
at random from those available, i.e., from those where it will not overlap cars already parked
or the curb boundaries. This uniform parking of cars continues until every unoccupied gap
is less than 1 in length, i.e., no further cars can be parked. It is verified in [1] that, as might
be expected, N(t,z) tends to N(z) in distribution as t — oo, where N(z) is the number
parked at the conclusion of the parking process. Extending results of Renyi [4], Dvoretzky
and Robbins [2] showed that the mean of N, has the estimate in (1), once the limit ¢ — oo
is taken, where a(o0o) = 0.748 . ... Similarly, the combined results of Dvoretzky and Robbins
2] and Mackenzie [3] showed that the variance of N, has the estimate in (3), once the limit
t — oo is taken; in this limit

ploo) = o) = 4 [ |t o2 ST g, o, (1

= 0.0381..., (5)

where a(y) := a(o0) — a(y). For additional literature on the parking problem, see [1]
Although one expects some strong form of convergence of N (£, z) to N(z), it is surprising
at first to find that, for all > 2, the expected time to absorption of the interval packing
process is infinite. It is shown in [1] that, if T, denotes the time-to-absorption of the interval
packing process, then for any fixed x, P(T, > ) tends to 0 like 1/¢, and hence, T} is finite
almost surely, but ET, = oc.
Dvoretzky and Robbins [2] gave a central limit theorem for the parking problem, basing

the second of their two proofs on various properties also shared by N(¢,2). This being the
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case, one might hope to adapt the technique to our problem so as to obtain a central limit
theorem for any fixed ¢. This is indeed possible, and it is the purpose of this note to work
out the details of this adaptation in a rigorous proof.

2 The central limit theorem

We prove a central limit theorem for a suitably normalized version of N(¢,x), which gives
us an approximation of N(¢, ) for any fixed ¢, when x is large.

Theorem 1 For any fived t, we have Z(t,x) 4, N(0,1), as = — oo, where

N(t,x) — EN(t,z)
oN(t,x) ’

Z(t,x) =

N(0,1) is a standard normal random variable, and 2 denotes convergence in distribution.

Remarks: The main ideas, which closely track the approach of [2], are overviewed as
follows. We consider the state of the packing process after a suitably small number n, — 1 =
o(x) of intervals have been packed, leaving a vector of n, successive gaps y = (y1,. ., Yn, )-
As in [2], the choice

ng = |x In? ]

will serve our needs, so long as we assume x > 4, so that n, > 2. The key observation is that
the continuation of the packing process consists of n, independent packing subprocesses, one
taking place in each gap y;. If 7, is the earliest time by which the initial n, intervals are
packed, then at any time ¢ > 7,., the n, subprocesses define a triangular array of independent
random variables N, (t — 7,.) indexed by ¢, 1 < ¢ < ng, and ¢ = n, — 1 4+ >y > 1.
After a suitable normalization, we apply a version of Liapounov’s theorem for triangular
arrays and obtain a conditional central limit theorem for Z(¢,x), the normalized version of
N(t,x)=n, — 1+ Nt — 72, v:), given (7,,y). Finally, we extend the Dvoretzky-Robbins
argument and show that the central limit theorem holds uniformly over a set of (7,,y) whose
probability tends to 1 as @ — oco. This extension is straightforward once it is verified that

Ty L0 as z — oo, and that the estimate of the variance of N,(#) is uniform in ¢. It follows
that the central limit theorem also holds for the unconditional packing process Z(t, z).

The main result below is Theorem 6, which together with Lemma 4 gives the CLT quite
readily. Leading up to Theorem 2, there are several preliminary lemmas; Lemmas 1 and 4
can be found in [2]; Lemma 2 is the desired “uniform-in-¢” version of Lemma 1 in [2]; Lemma
3 is new and deals with the limiting behavior of 7, for large z. |

The remaining program is as follows. After introducing some random variables, we will
prove a sequence of four lemmas leading up to Theorem 2. We will then be in position to
prove Theorem 1.

Observe that the conditional distribution of N(¢,z), given (y,7), is identical to the
distribution of (n,—1)+>", N(t—7,y;), where N(t—7,y1),..., N(t—7,y,,) are independent
random variables. Hence, as noted above, the conditional distribution of the normalized



random variables Z(t, ), given (y, 7),is identical to the distribution of 72, Y;, where the
Y,;’s are independent and given by

n, —1—EN(t z) N(t —7,y:) .
Yy = Y, = ) I << ng. 6
ST W) T (e TR R
Lemma 2 (Liapounov) For any given € > 0, there exists a 6 = 6. such that if Yo, ..., Y, are
random variables satisfying

2. Xy of(Y) — 11 <6,
3. 1Y; — EY;| <6, for 0 <i <n,

then the distribution function of " Y. approxrimates uniformly to within € the normal
distribution with zero mean and unit variance.

Recall that )
u(t) = lim o (N(t,z))

Tr—00 x

Lemma 3 Letyy,...,y, >0 andyl—l—---—l—yn =x—(n—1). For given T > 0, we have that

lim — ZO‘ (t,y:)) = p(t)

r—00

uniformly in'y = (y1,...,yn) and 0 <t < T.

Proof: By (1), we have that, for any € > 0, there exists an A = A(¢) such that
c?(N(t,x
V)

X

when ¢ > A and 0 < ¢ < T. With this in mind, we write

—za (t,91)) — u(t) =

< €

! > [M—M(ﬂ]yﬁrl Y. (N(t,yi)) [Z yi+n—1

T > A} Yi T i< A} (i <A}
= 21 + 22 + 23. (7)

Now || < € by our choice of A, and for y; < A, we have N(¢,y;) < y;, so a*(N(t,y;)) < A%,
and hence, |¥,| < nA*/z. Finally, [Ys] < B(A 4 1)n/z, where B := supge,c7 p(t). From
these estimates and (7), we conclude that

Z SN (L ye)) — u(t) (A* 4+ AB + B)n

x
whereupon the limit & — oo yields the lemma. [

<e+

, forally and 0 <t <T,

Lemma 4 The time by which n, — 1 intervals have been packed in [0, x| satisfies

d
T, — 0, as v — oo.



Proof: By (1), we know that, for any € > 0 we have n, < EN(¢,x)/2 with high probability
for x large. Then

P(r. >¢) =P(N(¢,x) <n, — 1) <P(N(e,2) < EN(e,2)/2)

for large =, and by Chebysheff’s inequality

EN(e, x) 40*(N(e, z))
P(N <
( o)== ) < TENGe, o)
so the lemma follows from the estimates in (1) and (3). ]

The distribution of y is identical to its distribution under the packing process of the car
parking problem. Hence, as proved in [2], we have

Lemma 5

d
—max y; — 0, as z — oo.
T 1<i<n

We now prove a convergence of moments that leaves us within a short step of the desired

CLT.
Theorem 6 As x — oo, we have
(7t )y, 7) S 1, (8)
EZ(t,2)ly,r 5 0. (9)

Proof of (8): We remarked earlier that, for all y and 7 < ¢, the random variable
Z(t,z)|y, 7 is equal in distribution to 35, Yi. Since Yg is constant, we thus have

( t T |y7 ZH:O'Q _ Z?:l UQ(N(t -7, yl)) . (10)

o (N(t,z))

Dividing both numerator and denominator of the last term by x, we obtain from (10), Lemma

3, and (3)

t—7)
lim o*(Z(t,2)|y,7) = L
tim 2ty r) = 2
Now let € > 0. It is easily verified that u(¢) is continuous for all ¢ (see e.g. [1]), so we may
choose 6., 0 < 6. <t such that

plt—r1)
p(t)

From this inequality together with (11), we conclude that there exists an x. > 0 such that

uniformly in y and 0 <7 < ¢. (11)

Efor()<7'<5

]

lo*(Z(t,2)|y,7)— 1| < ¢, for z >z, and 0 < 7 < 4.
Hence, for x > z., the event |¢*(Z(t,z)|y,7) — 1] < € implies the event 7 > §, and
P(|c*(Z(t,2)ly,7) — 1] <€) < P(1 > 6,).

The limit # — oo and Lemma 4 then proves (8).
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Proof of (9): We have
1 =0*Z(t,z)) = Ea*(Z(t,x)|y,7) + EE*(Z(t,2)|y, 7). (12)

By (8), we have
liminf Bo?(Z(t,z)|y,7) > 1

and by (12) we have
limsup Ea?(Z(t, )|y, 7) < 1,

Tr—00

and so

lim Ea*(Z(t,z)|y,7) =1

Tr—00

Together with (12), this implies

lim EE*(Z(t,z)|y,7) =0
which in turn implies (9). |
We are now ready for the proof of the CLT.

Proof of Theorem 1: For given € > 0, choose 6 = 4. as in Lemma 2. Define 5, as the
intersection of the four events

o} (Z(t, 2)ly, ) —1] <6, [BZ(La)ly, 7| <6
Yi
1<i<n, o(Z(t,x) = E

and let S, denote the complement of S,. Letting ®(u), —oo < u < co denote the standard
normal distribution, write

P(Z(t,x) <u)—®(u) = P([Z(t,z) <u]lNS,)+P([Z(t,z) <u]NS,) (13)
- [/S P(Z(t,x)ly,7) — ®(u)| — ®(u)P(S, + P([Z(t,z) < u] N 5.).

T

On S,, we have Z(t,2)|ly,7 = Yi<icn, Yi, with the Y;’s independent and satisfying the
conditions of Lemma 2. We conclude from (13) and Lemma 2 that

S%p P(Z(t,z) <u)—®(u)| < e+ 2P(S,). (14)

By Lemmas 2 and 5 and by (1) and (3), we have lim,_., P(5,) = 0. Theorem 1 thus follows
from (14) by first letting  — oo and then letting ¢ — 0. |
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