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ABSTRACT

We study an abstract moving-server system that models several computer applications,
including software debugging and accessing compressed data. In this model, the server moves
on the unit interval [0, 1], serving requests where they are encountered. The locations of
successive requests are not known in advance, but they are known to be independent samples
from a given distribution F on [0, 1]. Before serving a request, the server must be moved to a
reset point to the left of the request. There is a choice of two reset points, one fixed at 0 and
one, called the checkpoint, that can be moved in the course of serving requests. The cost of
serving a request is proportional to the distance moved to the request from the chosen reset
point. We formulate a stochastic optimization problem whose solution, for a wide class of
distributions F', yields a policy for deciding the successive locations of the checkpoint so as to
minimize the expected total cost of serving a sequence of requests. Results for both finite and
infinite-horizon variations of the problem are presented, along with the properties required of

the distribution F.
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the checkpoint, minimizes the expected total cost Zn: E(¢;) of serving a sequence of n requests.

Let z;, s; denote the respective locations of thé:cileckpoint and the server after serving the
ith request at y;, 1 < i < n; g, 50 denote the initial checkpoint and server positions. Figure 1
illustrates the various decisions of policies in C. The first and second stages of the motion
undergone by the server at s;, in order to satisfy the next request at y;11, are indicated by
single and double lines, respectively. In Fig. 1(b) the server at s;41 moves during the first stage
to 2441, which is the nearest reset point to the left of y;1o. During the second stage the server
moves the checkpoint to 2,49, where 2,41 < 2,49 < ¢;42, and then moves on to y; 42, which
becomes s;13. We call such a decision conservative, since it incurs a (locally) minimum cost
in serving a request. In Fig. 1(a) the first stage of the server motion is nonconservative, since
the server resets at 0, even though z; is the nearer reset point to the left of y;41. In Fig. 1(c)
the second stage of the server motion is nonconservative, since the checkpoint is relocated to
the right of y;45. The two arrowheads in Fig. 1(c) indicate that the server first satisfies the
request at y; 13, and then places the checkpoint at 2,43, which becomes s;43.

The rate r has no effect on our optimization problem, so hereafter we assume r = 1 and
identify cost with distance. Since the y; are i.i.d. and the reset motion is cost free, the only
state variable of interest is the position x; of the checkpoint. Hereafter, this position is called
the state. To simplify terminology we will often say “serve g;” to mean “serve the request
located at y;.”

A little reflection leads one to expect that, among the optimal policies in C, there is one that
is conservative, i.e., one that makes only conservative decisions. This is proved in Section 2.
The proof requires some effort but the arguments are quite elementary. Section 3 begins by
formulating a recurrence that defines the expected total cost F,(z) incurred by an optimal
conservative policy in serving n requests starting in state z. For a broad class of distributions
F, the properties of F,(z) are given in detail. Section 4 uses these properties to define an
optimal policy having a simple structure. Under this policy, the sequence of states z4,...,2,
forms a simple Markov chain with initial state zq; the transient and stationary regimes of this
chain are also described in Section 4. Section 5 studies the class of distributions F' to which
the optimal policy applies. The remainder of this section briefly discusses background and

applications.
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Figure 1 — An Example of decisions under policies in C.

This paper was motivated by recent work of Bern et al. [1], who describe several applications
of the moving-server checkpointing model. Here, we give only the flavor of these applications;
detailed discussions can be found in [1]. Briefly, in the data base application the interval [0, 1] is
taken as a normalized, continuous approximation to a large string of text, say an encyclopedia,
in compressed form. To access an item at a known location, say ¥, in this compressed text, the
compression statistics at the time the item was stored must be known to the request server [6].

Without checkpoints this requires the statistics to be recomputed from scratch, from 0 to the
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point y. Checkpoints storing the statistics generated at various points in the compressed text
allow for faster access; the recomputation of statistics needs to be started only at the most
recent checkpoint created before the item at y was stored.

In software testing and development, the interval approximates a long sequence of state-
ments or lines of code. Checkpoints are placed at various points in the code in order to save
the state of the software system during trial runs. After trial runs, the programmer may wish
to track certain state variables beyond some point y in the code. To do so efficiently, the pro-
grammer steps through the code starting in the state saved by the last checkpoint encountered
before reaching point y.

In general, the model applies to any irreversible process or computation whose states at
various times need to be recaptured in order to modify the behavior or structure of the process.
Physical simulations are another application of this type brought out by Bern et al. [1]. Note
that the models here and in [1] apply to those situations where requests at points earlier than
(to the left of) a checkpoint cause the checkpoint to be moved. This applies in those cases
where a checkpoint to the right of a request becomes invalid. For example, the program is
being modified in the program debugging application, or the compressed text is being modified
in the data base application.

Bern et al. consider a more general model in which there are £ > 1 checkpoints. Their
primary goal is a combinatorial analysis of competitiveness, i.e., the best relative performance
of on-line algorithms, such as those studied here, versus off-line algorithms that can see all
requests in advance. The objective here is a more realistic stochastic analysis of optimal
on-line algorithms. As a concession to the greater difficulty of a stochastic model, we limit
ourselves to an important special case treated by Bern et al., viz., the case & = 1 of only one
checkpoint.

A great deal of work has also been published on the use of checkpoints in the design of
fault-tolerant systems. The references in [2, 5] provide an excellent gateway to this literature.
Most of this research focuses on queueing models defined by given interarrival and running
time distributions. System failures occur according to a given probability law. Recovery
from failures includes rolling the system back to the most recent checkpoint (error-free state).
There are also several papers on checkpointing within the setting of the results presented here,
i.e., optimal stochastic scheduling of checkpoints for fault-tolerant computations [2, 3, 4, 7].

However, all of these models concern the placement of checkpoints at fixed locations; the
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moving checkpoint of the model studied here leads to fundamental changes in the analysis.

2. A Reduction

The following result simplifies the policies that need to be considered.

Theorem 2.1 There is a conservative policy among the optimal policies in C.

Proof. We prove that, for any initial state zg and sample yq,...,y,, there is a sequence
of conservative decisions whose total cost is minimum over all possible decision sequences of
policies in C. Tt follows that any policy P may be replaced by a conservative policy P’ whose
expected total cost is less than or equal to that of P. In Section 3, we conclude from the
Bellman equation that there exists an optimal policy among the conservative ones. By the
previous remark this policy is then optimal among all policies.

There are two types of nonconservative decisions that must be considered, one in the first

stage of motion and one in the second (see Fig. 1).

Type 1. In serving y;, 1 <7 < n, the server is reset to 0 even though the checkpoint is at x;_

with 0 < z;1 < ;.

Type 2. After serving y;, the server motion is continued to the right so as to shift the check-

point to a position z; > y;.

Suppose policy P makes a type-2 decision in serving y;, so that z; > ;. Let P’ be a policy
that makes the same decisions as P up through the first stage of the i*h service, but then
proceeds as follows. In the second stage of the ith service P’ makes the shorter move to y;,
where a new checkpoint is established. P’ thus gains an advantage of (2; — ;) over P upon
completion of the i*" service. If, on the (7 + 1) request, P resets to 0, then so does P’; P’
mimics P thereafter and retains the advantage (z; — y;). On the other hand, if P resets to z;
on the (7 4 1)% request, then P’ resets to y;. P’ then begins the second stage of the (i 4+ 1)
service by moving to z;, thus giving up the advantage (z; — y;); P’ mimics P thereafter. In
either case the cost incurred by P’ is at most that incurred by P, and P’ has made one fewer
type-2 decision than P. Repetitions of the above argument show that for given zg, y1,...,¥n
and policy P, there exists a policy P’ that makes no type-2 decision and incurs a cost at most

that incurred under P.
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Next, let P be a policy that makes no decisions of type 2 but makes a type-1 decision
in serving y;, i.e., the server resets at 0 even though 0 < z;_1 < y;. We may assume that
in the second stage of serving y;, P establishes a new checkpoint at z; < x;_1; otherwise,
the cost under P can obviously be reduced by an amount x;_1 by resetting at z;_y instead
of at 0. Let P’ be a policy that is identical to P up through the (i — 1)** service, but then
proceeds as follows. P’ resets to x;_q during the i*" service, keeping the checkpoint location
at z;_1. The costs of serving y; under P and P’ are given respectively by y; and (y; — zi—1),
so P! gains an advantage of z;,_; over P upon completion of ith service. If, on the (i + 1)
request, P resets to 0, then so does P/, mimicking P thereafter and retaining the advantage

x;—1. Otherwise, P resets to x;, in which case 2; < y;11. As P makes no type-2 decision, we

also have x; < 2,41 < y;41. We now distinguish three possibilities.

(i) 2; < yip1 < xi—1. In the (¢ +1)% service P/ must reset to 0, thus reducing the advantage

to x;_1 — x;. P’ then establishes a checkpoint at z;;1, mimics P thereafter, and retains

the advantage z;_1 — x;.

(ii) @iy < yiy1 and @iy > z,1. In the (7 + 1) service P’ resets to z,_1, establishes a

checkpoint at z;11, and mimics P thereafter. At the end of the (i + 1) service, the

advantage is increased to x;—1 + (¥;—1 — ¥;) = 22;_1 — x;, which is retained thereafter.

(iii) 2; < yiy1 and 2; < @49 < 24-1. In the (74 1)% service P’ resets to z;_1 and keeps the

checkpoint there, the advantage under P’ being increased to 2z;_; — z; at the end of the

(7 + 1)% service. The above procedure is then repeated, replacing ¢ by 7 + 1.

The resulting policy P’ makes no type-2 decision and one fewer type-1 decision than P.
Repetitions of the above argument show that for given zq, 1, ..., y, and policy P, there exists

a conservative policy P’ that incurs a cost at most that incurred by P. [ |
3. The Bellman Equation

For convenience we assume initially that F(0) = 0, F'(1) = 1, and that F(z) is continuous
and strictly increasing on [0, 1]. This section solves a Bellman equation defining the expected
total cost F,(z) incurred by an optimal conservative policy serving n requests and starting in

state . By Theorem 2.1 the expression for F,(z) will apply to any optimal policy in C.



Lemma 3.1 Forn>0and 0 <z <1
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where Fo(z)=0,0<axz <1.

Proof. If the first of the n + 1 requests is at y = y; < z, then the conservative server resets
to 0 before moving to y. If the checkpoint is repositioned at z, 0 < z < y, then the optimal
total expected cost of serving the n 4+ 1 requests can be expressed as y + F,(z). On the other
hand, if y > 2, then the conservative server resets to x, so the optimal total expected cost can
be expressed as y — x + F,(z), where z, x < z < y, is again the point at which the checkpoint
has been repositioned. Minimizing over z and averaging over y yields (3.1). |

Let u = [y udF(u) denote the mean of F and define G(u) = u[l — F(u)]. Then by
integrating the first terms of the integrands in (3.1), we can write

@ 1

(3.2) Eppi(2)=p—G(z)+ inf F,(2)dF(y) + inf F,.(z)dF(y) .

0 0<z< » <2<y

To obtain a simple optimal policy, the form of (3.2) suggests that it might be useful to
ensure that F,(z) is unimodal with a unique minimum. To this end, consider the following

two conditions on F:
Cy. G(z)is unimodal on [0, 1] with a unique maximum at 7, 0 < 7 < 1.
Cy. H(z)=[G(1)— G(2)]/F(z) is increasing in |7, 1].

(1 does not imply C5 as shown in Section 5.

Theorem 3.1 Cy and Cy hold jointly if and only if, for n > 1, E,(z) is unimodal on [0, 1]
with a unique minimum at 7. FE,(z) is given by

(3.3) E.(z) = p—G@2)+(n—-1)a

(3.4) E,(z)

I
S
=
2
_'_

where

(3.5) o= [T = GUIAF() + [ - G- A7)
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Proof. Suppose that for n > 1, F,(x) is unimodal in [0,1] with a unique minimum at 7,
0 < 7 < 1. We refer to this as the unimodality condition. We first prove, by induction on
n > 1, that this condition implies that the F,’s are given by formulas (3.3), (3.4), and then
complete the proof by showing that the unimodality condition is equivalent to Cy, Cs.

Since Ey(z) = 0, we obtain from (3.2) that Fy(2) = p — G(2), which coincides with (3.3),
(3.4) for n = 1. Suppose we are given that F,(z) satisfies (3.3), (3.4) in addition to the
unimodality condition. We show that F, i(2) is given by (3.3), (3.4), with n replaced by
n 4+ 1.

Tet0<z <. Thenoénf Eo(2)=FE,(y),0<y <z, and forz <y <1,
<z<y

inf F,(z)=
wégsy (2)

We conclude from (3.2) that

(36)  Een(e)=p- G+ [ FupdF(y) + B - F(r) L 0<s <7

Substituting (3.3) into (3.6) both for F,(y) and F, (1), and taking into account (3.5), we obtain
(3.3) with n replaced by n + 1.
Let 7 <2 <1. Wehavefor 0 <y <z

L, ) =

and for <y <1, énf; E,(z) = E,(z). We conclude from (3.2) that
rSzsyY

Fua(e) = p= G0t [ Bay)dF )+ Bu()F() - O Bl - F@)), 7 <2 <1,
(3.7)
In (3.7) let z = 7. Subtract the resulting equation from (3.7) to obtain

(88)  Bupr(2) = Brar(r) = G(r) = G(a) + [1 = F@)[Eu(a) - Bu(r)] . 7<a <1

Substituting for F,(z)— E,(7)in (3.8) from (3.4), we obtain (3.4) with n replaced by n + 1.

Next, we show that C';, 3 imply the unimodality condition. We proceed by induction. For
n =1, Fy(2) = p—G(x), so Cy implies that Fy(x) satisfies the unimodality condition. Suppose
that Fq(z),..., E,_1(2) satisfy the unimodality condition. Our earlier argument shows that
E,(z) satisfies (3.3), (3.4). From (3.3) and ', we obtain that F, () is decreasing on [0, 7]
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with a unique minimum at 7. The function 1 — [1 — F(2)]" is strictly increasing on [0, 1].
Hence from (3.4) and Cy, F,(2) is increasing on [r,1] with a unique minimum at 7. Thus
E,(z) satisfies the unimodality condition.

Finally, we show that the unimodality condition implies C'y, C. Since Fy(z) = p—G(x), we
obtain . Suppose Cj fails, i.e., H(z1) > H(xz) for some 7 < 21 < x5 < 1. The unimodality
condition implies that F,(z), n > 1, satisfies (3.4). Since 7}1—{%0{1 —[1—=F(2)]"} = 0 uniformly
on [r, 1], we obtain from (3.4) that, for n suffi
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If the initial state satisfies 0 < zg < 7, then by (4.1) all subsequent states also satisfy 0 < z; <
7,1 > 1. Otherwise, if 7 < 29 < 1, subsequent states remain at xg until the first request y;,
j > 1, such that 0 < y; < 2¢. From that point onward, 0 < z; < 7,7 > j.

Thus, the transient states of {x;} are those in (7,1] and the recurrent states are those in
[0, 7]. The equilibrium measure of {2;} is on [0, 7] and defined by

dP(y) = dF(y), 0<y<r,
(4.3)
P(ry = 1-F(r).

It can be seen that €'y and (5 were introduced to control the transient behavior of P, when
started in an initial state zg € (7, 1]. The result below shows that, if initial states are suitably
restricted, then an optimal policy can be defined for a broader class of distributions F. First,

consider the following relaxation of (1.

Co. Forsome 7,0 < 7 < 1, G(z) has a unique maximum at 7 on [0, 1], and G(z) is increasing

on [0, 7].

Corollary 4.2 If Cy holds, then for n > 1, (3.3) holds and F,(z) has a unique minimum at

T on [T, 1].

Proof. The proof parallels that of Theorem 3.1, proceeding by induction on n > 1. As
Ey(z) = p — G(2), the result holds for n = 1. Suppose it holds for n > 1. Formula (3.3)

remains valid for 0 <z < 7. For 7 <z < 1, we obtain from (3.2)
T 1
(14) Boa(@) = 5= G+ [ B + EF) - FEF [ B
which readily implies F,4q(2) > E,41(7), 7 < 2 < 1. Then (3.6) and (4.4) imply the corollary
for n + 1. [ ]
If 29 € [0, 7], with 7 defined by Cy, then by Corollary 4.2 P, is completely defined by (4.1).

Hence, if Cg holds and the initial state zq is a sample from the equilibrium measure (4.3), then

P, makes the decisions in (4.1), and F,(z¢) = na, n > 1, with « given by (3.5).
5. Examples

First, we verify that there is no redundancy in the conditions Cy and C5 of Theorem 3.1.

Theorem 5.1 There exist distributions for which Cy holds and Cq fails. Also, there exist
distributions for which Cy holds but Cy and Cy fail.
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Proof. We only prove the first assertion; the second can be proved by a similar approach.

The following definitions simplify the search for examples. Let p(x) be a continuous non-
negative function on [0,1) with [} p(z)dz = co. Define ¢(z) = e~ fomp(t)dt, 0 <2 <1, so that
F(z) =1— ¢(z) is a probability distribution on [0,1]. On [0, 1] we have G(z) = 2¢(2) and on
[0,1) G'(z) = ¢(2)(1 — xp(z)), so Cy holds if

ep(z) <1, O0<a<rT
(5.1)
ep(z)>1, 7<a<l.

Now differentiating the function H(z) defined by C; gives
F(a)H'(x) = —¢(x) — 2¢/(2) + ¢*(2) + 7é(7) ¢/ (x) ,

so Cq holds only if h(z) = =1+ ap(z) + ¢(z) — 1éd(T)p(x) > 0, T < z < 1.
Thus, let us choose a p(z) as defined above so that, for given 0 < 7 < 8 < 1, p(z) satisfies

(5.1), 6p(8) < 1+ 7¢(7)/4, and foe p(t)dt > —In(t¢(r)/4). Then Cy holds but C fails, since

(8 = 100(6) — 1] + 6(6) — ro(mp(8) < “ATL 4 TAT) ooy g

Figure 2 sketches a general example, where the condition foe p(z)dz > —In(T¢(7)/4) is guar-

anteed by defining p(z) so that it has a sufficiently large hump in (7,0). [ |

T

Figure 2 — An example where C holds but C; fails for F(z) =1 — e_fo p(t)dt, 0<z<1.
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Although Cy and C were needed to establish the unimodality of E,(2), they are otherwise
somewhat recondite properties of distribution functions. On the other hand, they embrace a
wide class of interesting distributions, as the examples below illustrate. Recall our assumptions

that F(0) =0, F'(1) = 1, and F(z) is continuous and strictly increasing in [0, 1].

(i) Consider the convex distributions.

Theorem 5.2 Suppose F' has a nonnegative second derivative, F''(x) > 0, 0 < 2 < 1. Then
Ch and Cy hold.

Proof. From G(z) = z[1 — F(z)] we have G(0) = G(1) = 0 and
(5.2) G'(z)=1-F(z)—aF'(z), G"(z)=-2F'(z)—xF"(z).

The assumptions on F(z) readily imply that F’(z) > 0 on (0, 1]. We conclude from (5.2) that
G"(z) < 0for 0 <2 <1,s0 G(z)is strictly concave in [0, 1]. Tt follows that G(z) is unimodal

in [0, 1] with a unique maximum at the solution of
(5.3) G'(r)=1-F(r)—7F'(1)=0.

To show that H(z) is increasing in 7 < 2 < 1, differentiate and get

(5.4) F2(x)H'(z) = K(z) ,
where
(5.5) Kz)=[z -1+ 7F(T)]F'(r) - F(2)[1 — F(=)] .

Differentiating K (z) gives
(5.6) K'(z)=[z -7+ 7F(7)|F"(2)+ 2F(2)F'(x) .

From (5.3) and (5.5) we get K(7) =0, and from (5.6) and F"(z) > 0 we get K'(z) > 0 for
7 < < 1. Then K(z)and H'(z) are strictly positive in 7 < 2 < 1. We conclude that H(x)

is increasing in 7 < o < 1. |

(ii) The convex property in Theorem 5.2 is not necessary for Cy and Cy. Indeed, Cy and C5

also hold for the following useful concave distributions.

Theorem 5.3 Let F(z) =2, 0<a <1, where 0 < a < 1. Then Cy and Cy hold.
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Proof. We have F"(z) = a(a —1)2°72 < 0,0 < 2 < 1, 50 G"(z) = —(a + a?)z*"! < 0,
0 <z < 1. Then G(x) is unimodal with a unique maximum in [0, 1], as in Theorem 5.2.

With K(z) as defined
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