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ABSTRACT

This paper studies the classical polling model under the exhaustive-service assumption;
such models continue to be very useful in performance studies of computer/communication
systems. The analysis here extends earlier work of the authors to the general case of nonzero
switchover times. It shows that, under the standard heavy-traffic scaling, the total unfinished
work in the system tends to a Bessel-type diffusion in the heavy-traffic limit. It verifies in
addition that, with this change in the limiting unfinished-work process, the averaging principle

established earlier by the authors carries over to the general model.
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1 Introduction

In classical polling models, M > 2 queues are visited by a single server in cyclic order. Such
models have many applications in the performance analysis of communication systems, in-
cluding token rings and packet switches, where a single-server resource (e.g., a communication
link) is shared among many demands on the resource (e.g., traffic streams). An analysis of the
5ESS® switching system is a modern example [8] and a sequel to work on earlier switching
systems [7]. Introductions to a massive literature addressing many different applications can
be found in [9] and [13].

This paper focuses on polling with exhaustive service: the visit of the server to any given
queue terminates only when no work remains to be done at that queue. We number the queues
from 1 to M and assume they are served in that order. The time for the server to switch over
(or move) from queue i to queue i+ 1 is nonzero in general, and is allowed to be random and
to depend on 1.

An exact analysis of exhaustive polling systems is quite difficult; hopes for explicit solu-
tions are soon abandoned in favor of numerical methods and approximations. A recent study
of asymptotic behavior derived from heavy-traffic (diffusion) limits has been a promising ap-
proach, one that leads to relatively simple formulas which in turn yield useful insights. The
cornerstone of the theory is an averaging principle proved in [3] by the present authors. In a
recent application of this principle, Reiman and Wein [12] studied set-up scheduling problems
in two-class single-server queues.

A limitation of the results in [3] is the often untenable assumption of zero switchover times.
The main contribution of this paper is a proof that the total unfinished work in the general
two-queue system tends, in the heavy traffic limit, to a Bessel type diffusion rather than the
reflected Brownian motion in the case of zero switchover times. We verify that, as a corollary,
the averaging principle in [3] carries over to the general model. The remainder of this section

describes the averaging principle and gives a heuristic argument leading to the new diffusion



limit for exhaustive polling systems. Section 2 introduces notation and formulates our main
results. A threshold queue very similar to the one in [3] is analyzed in Section 3. Results for
this queueing system supply bounds for the polling system, as shown in Section 4. Further
preliminaries are taken up in Section 5, where the tightness of a number of basic processes is
proved. The development of sections 3-5 culminates in the proofs in Section 6 of our main
results. A critical element in the proofs is a semimartingale representation of the unfinished
work process which allows us to use general convergence results for semimartingales [6, 10].
Concluding remarks are given in Section 7.

Briefly, the mathematical model is as follows. Customers arrive at the ¢th queue in a
renewal process with rate \; and interarrival-time variance o2,. The service rate parameter at
the ith queue is p; and the service-time variance is 02. Let d; be the mean switchover time
from queue i to queue ¢ + 1. Define p = py + -+ -+ par, where p; = A\;/p; is the traffic intensity
at queue 2.

We first review the case of M = 2 queues and zero switchover times d; = 0,1 < ¢ < M, as
presented in [3]. Let Uy, t > 0, denote the total unfinished work (service time) in queues 1 and
2 at time t. Then since the process (U;,t > 0) is the same as the unfinished work process in
the corresponding XGI/G/1 system, we can extend the heavy-traffic limit theorem of Iglehart
and Whitt [4] as follows (see also [11]). Consider a sequence of systems indexed by n, and let
p" denote the traffic intensity of the nth system. The heavy-traffic limit stipulates that p™ — 1
as n — oo with

Vn(ph—1)=c" —casn — 00, —00 < ¢ < 00.

(As in the standard set-up, we also assume that A" — \; > 0, (¢7%)? — ¢% asn — oo, i = 1,2.

There is one more technical assumption that we defer until later; it implies that the Lindeberg
condition holds.) For the scaled process V" = n_l/QU;}t, n>1,0<t <1, under the above
conditions, V" LA V, as n — oo, where V is reflected Brownian motion with drift ¢ and

infinitesimal variance
M

ot =Y N(ogi +pioz) > 0.

=1
The averaging principle proved in [3] deals with queue lengths; converted to unfinished work,

the principle states that, for any continuous function f: Ry — R and any T > 0, we have

/OT Fvhde L /OT (/01 f(th)du) dt, i=1,2, (1.1)



where V™"

is the time scaled and normalized unfinished work at queue ¢ and the symbol 4
denotes convergence in distribution . FExtended to general M., the corresponding averaging
principle for sojourn times Wy(7) at queue i is given by

T . d T r1 1 — pi
/ FOVidt _>/ / f( mu) dudt, 1<i< M, (1.2)
0 0 Jo 4

where ¥, = Wr(i)/y/n, n>1,0<t<1,and o = i< j<h<M PiPk-

We now return to nonzero switchover times with the expected values d;, 1 < ¢ < M. While
a similar averaging principle can be expected, the unfinished-work process is no longer the
same as in the XGI/G/1 system, so the limit diffusion V' may be different. To see what this
limit process should be, we give the following heuristic argument.

Consider the same sequence of systems as before, assuming in addition to the previous
conditions that d* — d;, 0 < d; < oo. As before, V/* = n=1/2U7%,. The drift ¢(x) of the limit

process V' at point z is the limit A — 0, n — oo of
cAlz) = ATIE[V A = VIV = 2 > 0]

Work enters the system at rate p” per unit time. We assume that A is small enough that V,;*
does not reach zero during [t,1 + A]. With nonzero switchover times, work leaves the system
at a rate less than 1, which we calculate as follows. Let 7"(2) denote the fraction of time the
server spends doing useful work (not switching) when V;” = z. Then r"(x) is the rate at which

work leaves the system. Since there are O(y/n) cycles per unit of ‘diffusion’ time, we can write

" FE[useful work done over a cycle]
r(z) =

E[duration of a cycle]

For simplicity, let M = 2 and start the cycle at the moment the server switches to queue 1.

On average, it takes time @f to empty queue 1, di to switch to queue 2, {/_Epz to empty
queue 2, and dy to switch back to queue 1. The useful work is w(z) = {/_Fbpf + @Z, so we have

wlx

() = mﬁ. But in heavy traffic, p; + po = 1, so a little algebra yields

"g) = —
S d/\/n’
where d = pyp2(dy + dz). Extending the calculation to general M gives the same result
with d generalized to d = p(dy + --- 4+ dpr). Now i (z) = /nlp™ — r"(z)], so the limit

A — 0, n — oo yields

A(z)—=c(z)=c+d/x.



Note that the seemingly innocuous addition of a O(1) switchover time to a cycle which takes
O(y/n) time (before normalization) produces a dramatic change in the form of the drift.

A heuristic calculation along the above lines shows that the infinitesimal variance is unaf-
fected by the addition of switchover times. We are thus led to expect that V™ — V. where the
limit process V' is a one-dimensional diffusion with state dependent drift ¢(z), and constant

variance o2

. This fact is proved rigorously for M = 2. The limit process is a Bessel process
with negative drift. When 2p/0% < 1, the process can hit the origin, in which case it instan-
taneously reflects. When ¢ < 0, V' is positive recurrent and has a stationary distribution with

density
a(az)’e=”

TCE

where @ = 2|¢|/a?, 3 = 2d/o?. This is the gamma density of order 3 and scale a.

T(z) = >0, (1.3)

We further verify that the averaging principles (1.1) and (1.2) hold for M = 2, with V the

above Bessel process. Extended to general M, we have

1 T R dl T 1 1—,0'
— Y dt = = ! dudt
T/o Ut _>T/0/of< 0 Vtu)"

so if we let Vj have the stationary distribution (1.3), then

E%/()T/Olf<1_gpivtu) dudt:/ooo% [/Olf<1_gpiuw) du] dx.

For example, if f(z) = 2, we find that the limiting sojourn times have the means

B4+11—p;
a 20

2 Results

We begin with notational matters. In the standard set-up for heavy traffic limits, we

consider a sequence of two-queue polling systems. For the n*? system, denote by

TZM = ?z + 5?’£,i > 1,0 =1,2, the time of the i*" arrival to the (" queue in terms of
interarrival times ff’g,
77?’{ i>1,0=1,2, the i"" service time in the (" queue,

5?’{ i>1,0=1,2, the i'" switchover time from the (*" queue.



We assume that ff’f,i > 1, nf’g,i > 1, s?l,i > 1, £ =1,2,areindependent i.i.d. sequences.
As in the previous section, we introduce, forn = 1,2,...and £ = 1,2,
= (BT = (BT dy = B
n

Pi = o P =pi+py

n

Instead of dealing with the variances (¢7)% and (¢7)?, it is more convenient here to introduce

(07)* = B = pp&' ) 0= 1,2,
As in Section 1, we assume the limits, as n — oo for £ = 1,2,
A= Moy, pp = e >0, of — o, (2.1)
dy — dy (2.2)
and assume the heavy traffic condition

lim /n(p" —1)=c. (2.3)

n—oo

The Lindeberg conditions mentioned earlier are, for £ = 1,2, ¢ > 0,

Tim E(E)? - 1(E > ev/n) =0, (24)
Tim E(ni™)” - 1(n]"" > ev/n) = 0, (2.5)
Tim E(s7)? - 1(s7 > ey/n) = 0. (2.6)

Also let
0?2 = Mot + X032 >0, po=NJpe, L=1,2.

Recall that U} is the total unfinished work in the n** system at time ¢, with UJ independent
of {ff’g,i > 1}, {nf’f,i > 1}, and {5?’£,i > 1}, £ =1,2, and that

n 1 n
‘/t = %Untv t> 0 ’
vre o= (VMt>0).

Recalling that d = p1pa(dy 4 dz), let the process X = (X, > 0) solve the equation

dXy = [2(d+ ¢(X, V 0)"/?) 4 62|dt + 20(X; v 0)/2dW,, Xo >0, (2.7)



where W = (W, t > 0) is a standard Brownian motion, and Xg and W are independent. Next,
define V' = (V;,t > 0) as the diffusion process on [0, 00) with the generator

rg)= (o4 2) oy 2200

where the domain of I is
D(L) = {g € C}([0,0)) : g(x) = g(«?) for some § € C7([0,00))},

C%-([0,00)) being the space of twice continuously differentiable functions on [0, 00) with com-
pact support.
A proof of the following technical result is similar to the proof of the existence of the Bessel

diffusion [5, Chapter 4, Examples 8.2 and 8.3].

Lemma 2.1 For given Xg and Vy, the processes X and V' exist and are unique in law. If Vg

is distributed as \/Xg, then the distributions of V and /X coincide.

In the main result below, and throughout the remainder of the paper, all processes are consid-
ered as random elements of the Skorohod space D[0, ) (see, e.g., [6, 10]), and convergence in
distribution for the processes is understood as weak convergence of the induced measures on

D[0,). By 2 we denote convergence in distribution in an appropriate metric space.

Theorem 2.1 Assume that V! LY Vo, as n — oo, where Vy is a nonnegative random variable.
If conditions (2.1) - (2.6) hold, then
v Ly

As a consequence of Theorem 2.1, we get the averaging principle for unfinished work. Let
Utn’f,t > 0, denote the unfinished work at time ¢ at queue £ = 1,2, and define th’g = U:f/\/ﬁ,
Vn,f — (‘/tnl,t > 0)

Theorem 2.2 Let f(z),x > 0, be a real-valued continuous function. Then, under the condi-

tions of Theorem 2.1, for t > 0,

/Ot f(Vrhyds 4 /Ot </01 fuVy) du) ds, (=1,2.

To conclude this section, it is instructive to compare the result of Theorem 2.1 to a related
Bessel process limit obtained by Yamada [14, Theorem 1]. Note that the process of total

unfinished work satisfies the equation

1
Ur = Up + 57 —/ L(U" > 0)a” ds, (2.8)
0



where

n, 4
Ay

f = Sf’l + Sf’z, Sf’g = Z 77?’[, {=1,2, (29)

=1
At = (A?’f,t >0), { =1,2, are the input processes, i.e.,
£ ! £
Al = max ]Zf?’ <t],
=1

and a? is the indicator of the event that the server is not switching over (i.e., is serving) at
time s.

According to (2.8), if U > 0, then the instantaneous rate at which work leaves the system
is @7. The heuristic argument of Section 1 shows that it is reasonable to replace af by " (U7),

i.e., consider the process Ur = (ﬁt”,t > 0) defined as the solution to
~ t ) )
Ur = Up + 57 - / L™ > 0)r™(U77) ds (2.10)
0

as an approximation for U". Equation (2.10)is of the type studied by Yamada. The conditions
of our Theorem 2.1 allow us, with some reservations, to apply his Theorem 1; the limit process
that this gives us turns out to be the same as the one in Theorem 2.1.

This comparison justifies our guess that »"(U]) can be substituted for a7 in (2.8). More-
over, it is plausible to conjecture that one can weaken the much more restrictive conditions of
Yamada’s result. Indeed, the techniques used in the proof of Theorem 2.1 can be applied to
a proof of the following generalization of Yamada’s result. In this generalization, we assume
that U™ = (U7,1 > 0) is a nonnegative process satisfying (2.10), where r"(z),2 > 0, is a
nonnegative bounded function. We further let V;* = U /\/n,t > 0, V" = (V/*,t > 0) and

" = sup,~q 7" (2). The previous notation is preserved.
Theorem 2.3 Assume that r"(z) satisfies the following conditions

(r1) lim (7 —r"(z))=d,

Z,n—00

(r2) sup (7" — r"(2)) < oc.

z,n

Assume that, as n — oo, \/n(T" — p") — ¢ and conditions (2.1), (2.4) and (2.5) hold. If
vy 4 Vo, then V" Ly,

The main improvements over Yamada’s result are that we do not need the input processes to
be Poisson (Yamada conjectured that this extension holds, but did not give a proof); we can

do without the condition p™ < 7"; and we do not require the existence of the fourth moments

of service times.



3 A Threshold Queue

This section studies a threshold queue similar to the one considered in Section 3 of [3]. The
distinction is that the busy periods start when the unfinished work exceeds a level h, i.e., the
threshold is for the unfinished work and not the queue length as in [3].

We use the notation of [3]. Consider a sequence of threshold queues indexed by n. The
generic interarrival and service times are denoted by £ and n™ respectively. The threshold
for the unfinished work in the nth queue is h™ = y/na”, where a” is a given constant. We are
assuming that

sup E(£")? < oo, sup E(n")? < o0 , (3.1)

and, letting A" = (E£")™ and p" = (En™)~!, assume that

lim A" =A>0, lim p"=p>0, lima"=a>0, A<p. (3.2)

n—oo

As in [3], within each busy period, at most one of the interarrival periods is allowed to be
exceptional, i.e., have a distribution other than that of £". Specifically, for each ¢ > 1, we
introduce a nonnegative random variable £# and an integer-valued random variable y% which
correspond to the i*" cycle. If there are at least y? arrivals in the " busy period, then the
(X?)th arrival has an exceptional interarrival period whose duration is taken to be 7. If the
busy period has less than y! arrivals, no exceptional arrivals occur. We assume that there
exists a family of sequences {("(r),7 > 1}, 7 > 0, of identically distributed nonnegative random
variables such that
1 [tv/n]

ﬁc;%(r) =0 as m—o0, r>0, lim Tim ; P& > (M(r)=0,t>0,  (3.3)

and that the joint distribution of (/*(r), the normal interarrival times, and the service times
in the it" cycle does not depend on i. We allow for two interarrival times to be dependent if
one is taken from a busy period of the ith cycle and the other is taken either from another
cycle or from an accumulation period of the ith cycle. However, interarrival (except for the
exceptional), as well as service, times within each accumulation or busy period are assumed to
be mutually independent. We also assume that the time of the first arrival, which we denote

by Ff, may have a distribution different from that of the generic interarrival time, and that

\Z/—% 0. (3.4)



Introduce X™(t) = Y"(nt)/\/n, t > 0, where Y"(t) is the unfinished work at ¢, and assume
that X"(0) = 0. In what follows, L denotes convergence in probability.
The following result is well-known and will be used several times in the remainder of the

paper (see [4] for a proof).

Lemma 3.1 Let {¢/',i > 1},n > 1, be a triangular array of nonnegative i.i.d. random vari-

ables such that, for any ¢ > 0,
Jim PG 1G> /) =0,
Let N™, n > 1, be nonnegative integer-valued random variables such that, for some g > 0,

N7
lim P<—>q) =0.
n— 00 n

Then as n — oo,
1

— max (" 2.

/m1<i<Ne !
Theorem 3.1 Let f(z), * € Ry, denote a bounded continuous function. If conditions (3.1)-
(3.4) hold, then for any T > 0

/OTf(X”(t))dt 1A T/O1 flau)du as n — oo .

Proof. We proceed as in the proof of Theorem 3.1 in [3]. Define the times

% = 0,
af = inf(t>~": X"(t)>0),i>1, (3.5)
gr = inf(t>~",: X"(t)>ad"),i>1, '
vo= inf(t> B X"(t)=0), i>1.
Note that the 37 start and the 4/ terminate busy periods. We prove that
P 1 1
" — 4+ —— ) ut 3.6
7LﬁtJ—>a</\—|—u_/\),u as n — 0o, (3.6)
and
T P 1 1 .
f(X"(s))ds — pt | -+ —— flu)du as n — oo, (3.7)
0 A=A/ Jo

which immediately give the assertion of the theorem.
For i > 2, denote by EZL the time between 4 ; and the first arrival after v ,, i.e., EZL =al—

n,1

v ¢; and denote by {£, .k > 1} and {ff}f,k > 1} the i.i.d. sequences, with generic random

9



variable £, from which normal interarrival times on [af, 37] and [B7, ] ], respectively, are
taken. Similarly, let {nZ}j,k > 1}, 4> 1,1 = 1,2, be sequences from which service times of
requests arriving in [a?, 7] and [37, 7], respectively, are drawn. Note that, by the conditions
of the theorem, the distribution of {Cf(r),fﬁ}j, nZ}j, l = 1,2, k > 1} does not depend on
i=1,2,....

In a sense, the E?, 1 > 2, also represent exceptional interarrival times. By Lemma 3.1 in

[3], we know that they satisfy conditions similar to those imposed on ff, i.e.,

N LV
lim Tim Y P(& > (r)=0, t>0, (3.8)
1=2
where
. = O, 1> 2,r>0.

0= g e 122

Moreover, as n — o0,
Gi(r) p

0 iz2r>0. (3.9)

Define for ¢ > 1

0 k
A =1E <+ Y1 (Z? +Y & < t) , (3.10)
k=1 j=1

xg—1 k xg—1 B
AP = | E s A X G st
: =
00 k
+ > 1(

(3.11)
£ﬁ+ﬁéq,

7=1

27] ?

k
SRy =Y "mi k=12, 1=1,2. (3.12)
7=1

For homogeneity of notation, we further set (y(r) = &;. As in [3], by (3.3) and (3.8), it is

enough to prove (3.6) and (3.7) on the events

lvml o
()= (A& < ). & <G}

Define the interval lengths
ul =B =il el =l =i

2)
ST AT (nt) > )

so that by (3.5) and (3.10)—(3.

—_

u? = inf(t>0:

vE = inf(t> 00 —=(nt - SPHATR (1)) > —= ST (AT (mal)

45

10



and
S HIRIE R T S (3.14)

In analogy with (3.10) and (3.11), define (since r is fixed, it is omitted in the new notation
below)

00 k
= 1(??(r)§t)+21(??(r)+2€2?;1§t) :
k=1

J=1
00 k
n,1 _ n,1
A (1) = 1+;1(me St) )
=1 7=1

=1 b= (3.15)
EHROREIREDDEN DI I
k=1 7=1
00 k
APH) = U Yo < ]
k=1 7=1
and define as in (3.13) and (3.14)
T o= inf(t> 0 ——SPYT () > a”)
2 \/ﬁ 7 (3 9
a o= (>0 —=SM (AN (nt)) > a")
\/f , . (3.16)
vy = inf(1>0: %(nt — SPAAT (n))) > %S?’I(A?’l(nu?))) ;
b= (> 02 (ot = S 00) > ST AT (i)
and ' '
T= AT, = X0 ), P21, T =05 =0, (317)
7=1 7=1

Since £ < (i (r), £ < (P(r), 1 < i < ty/n, on T"(r), we have by (3.10), (3.11) and (3.15) that

AV < AP < AT,

k3

, (3.18)
AP < AP <A
on I'™(r), and hence by (3.13) and (3.16), for 1 < i < ty/n,
W<l <A, W <o <7 (3.19)
on T™(r), and then by (3.14) and (3.17), for 1 <17 < ty/n,
e TS Pl T S Tl TP (3.20)

on I'"(r).
Now we prove (3.6) for Tl and lﬁﬁtj; this will imply (3.6) for V[ O0 I'"(r). Consider
only the upper bound process. The proof for lﬁ/ﬁt] is similar.

11



First, note that by (3.15),

AP t) = inf (k : Zfﬁ}l > t) )

J=1
; k+1 )
A1) = inf (keGP + D6 >
j=1

Since {£ k,k > 1}, {nfkl,k >1},1=1,2,are i.i.d., we have by (3.1) and (3.2) that

7 kZ::l gfgix, yo ; 77;713%, 1=1,2,
and hence, by (3.3), (3.12), and Lemma 2.1 in [3],
L oariemny 2o, Lsriariomyy BN 1=1,0 (3.21)
vn Vvn Il
Similarly, using (3.9),
L amlemny 2o, Lsriariomyy B N =10 (3.22)
v v p
By Lemma 2.1 in [3] and (3.16), (3.2)
\FUH—\F”P“A“ (3.23)

Hence by (3.19), /nu? B 2B and by (3.18), Anl(\/_t)/\/_ — At, so that, if we define

1
wl = —=8M (AP (nul)) — a”, (3.24)

3

then by the inequality

0<w n,1 3.25
N \/_ 1<]<IS41iI; (nu? )7727] ( )

together with (3.1) and Lemma 3.1, we have w 0. This gives us by Lemma 2.1 in [3] and

(3.16), (3.22), (3.2),

N ua—MA’ i> 1. (3.26)
Then, by (3.17) and (3.23),
. P 1 1 .
V(T = Tim1) — ap (A + u—A) i>1. (3.27)
Since
1 Ll

Tt = 7 kz—:l V(T = Ti-1)

12



and since (F7 —F7_,, ¢ > 1) are identically distributed by construction, we would have, in view

of Lemma 2.4 in [3],

provided

—n P 1 1
Tivm) =@ <A+—A)t

hm lim /nP (Vr(¥7 —74) > k) =

ke— 00 N—00

By (3.17), this would follow from

lim Iim v/nP(v/nuy > k) = 0,

k—o00 n—00

hm lim /nP(v/noy > k) = 0.

ke— 00 N—00

Consider the first limit. By (3.16)

P(v/nuy >

k) P(S?J(Z?l(fk)) < V/na")

IN

PCAY! (k) < A”me( s A”fk)<fa ) -

(3.28)

(3.29)

(3.30)

(3.31)

By (3.12) we have, applying Chebyshev’s inequality and (3.1) and (3.2), that, for any ¢ > 0,

lim  Tm /nP(|S7 (kyvn) — —f| > ky/ne) =0, I

k—oo n—oo

By an analogue of (3.32) for interarrival times, and by (3.15),

lim Tim +/nP(|A] (\/_k) N'ky/n| > kyvne) =0, 1 =

k—oo n—oo

Relations (3.31)—(3.33) prove the first convergence in (3.30).

For the second convergence, we first prove that

lim lim \/_P<w1>§<1—A—)k):0.

k—oo n—oo :un

By (3.25), (3.18) and (3.19),

P (uﬂf > % (1 - %) k) < P(Vrul > k) + P(A (Vak) > p"/nk)

1 A"
+P ( sup 77?}«1 > - (1 - —n) k\/ﬁ) < P(v/nut > k)
<<k 3 p

' 3

P (Vitk) > k) + ik (a7 > 5 (1= 20 kv

13

(3.32)

(3.33)

(3.34)



We have proved that limj_., lim /nP(y/nuy > k) = 0; by an analogue of (3.33) for A{L’l,
(3.2), and since A < g, limg_oo Tim /nP(AP'(Vak) > pu"/nk) = 0. Finally, by Cheby-

shev’s inequality,

vake (> 5 (1= 55 WE) < ey ERD

and applying (3.1) and (3.2), we arrive at (3.34).

Going back to the proof of the second inequality in (3.30), write, by (3.16) and (3.24), in
analogy with (3.31),

P(V/w} > k) = P(sup(v/nt — S (A7 (V/nt))) < Vnwf + /na™)

t<k
< P(STP(AY (Vak)) > v/a(k — i) — v/na™)
P(AY? (k) > %(A” + 1" )/nk) + P (wf > % (1 - A—) k)

ILLn

o o) 2 (3128

3"

Putting together (3.32), (3.33) and (3.34) yields the second convergence in (3.30).
To prove (3.7) on I'*(r), we apply Lemma 2.4 in [3], i.e., we prove that
[V/nt]

nh_}rgo— Z P({‘\/_/w V)ds — (i—l—%) /af(u)du >€}

ﬂF”(r)) =0,e>0, (3.35)

and

n

[ s

1—1

L
kh_}rgo Jim. ; P ({\/ﬁ > k} N F”(r)) =0. (3.36)

Note that (3.36) is easy. For, by the right inequality in (3.20) and the boundedness of f, we

have, letting || - || denote the sup norm,

L] e Lt

i Y P({ﬁ [ e snas >k}mr”<r)) <Tm S PG - T > b)
i=1 Vi1 i=1

which tends to 0 as k — oo by (3.29) and by the fact that the (F7 —77_,), ¢ > 1, are identically
distributed.
By (3.14), (3.35) would follow if

L\/_tJ
hm— \/_/ FX"(s+ 9] ds——/ w)du

14

> 6} ﬂF”(r)) =0,



and

> 6} ﬂF”(r)) =0.

(3.97)

AR i a
nh—{%oTZP({ (X" (s + 3 ))8_,&—/\/0 flu)du




50,

n (e g1
{amale Grom) o

n,2 7?,2
c o] [FRAE ) A
n
+ P(w] >

> 77} N F”(r))
> g} ﬂF”(r))
g)—|—1<|a”—a|> g) .

Since the distributions of (A™2(1),¢ > 0), (A:*(1),¢ > 0) and (S™*(t),1 > 0) do not depend on

i, we conclude from the above, (3.2) and (3.18) that the left-hand side of (3.40) is not greater

n
> —_
3)
n
> —_
3)
Now on the event

1 n,2 n,2 A
— S5 (AY - =
7T () -
sup <n¢ o
ug\/ﬁvln/\%
we have that X" (\/Lﬁ + ﬁf) < a+n,u € [0,4/nv"A ff&], and therefore, for u € [0,/nv!"A Ma_“A],

Fxn (2o 50)) = fla— (1= 2y
Vvn 1

where ws(6,T) is the modulus of continuity of f on [0,7] for partitions of diameter §. This

than

—= 51 (A (Vi) -

tEP(sup

n—oo
ug

+¢ lim P sup

n—00
<l L
Dy

which is zero by (3.21) and (3.22); (3.40) is proved.

X (G ) == (1= 2

<ws(n,a+n),

implies by the continuity of f that, for all n small enough and for all 2,
sup X" (——I—ﬁ”) (a—(1=—)u)|<n
{ug\/ﬁvln/\ ;_“A \/_

A
I
c{/oﬁ““ﬁ*f( (o)) - fam -2

o } ’
so for 1 small enough

P ({/Oﬁv?/\ffA f (X” (% + ﬂ?)) — fla—(1- %)u) du > %} n rn(r))

< P({ugﬁsqlflﬁ;_g X" (%Jrﬁ?) —(a—(l—%)u) >77}ﬂfn(7‘)) ;

and so (3.39) follows from (3.40). Thus (3.37), (3.35) and (3.7) are proved. This completes

du <

[NSH

the proof of the theorem. [ |
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4 Upper and Lower Bounds for Unfinished Work

In this section, having in view the averaging principle, we derive a limit theorem for the
integral fOT FV/"'Ydt, where f(z) is a real-valued continuous function on the positive half-
line, assuming that V" 2 ¥ with some continuous process V. This is carried out by providing
suitable upper and lower bounds for the unfinished work at an individual queue in analogy

with the contents of Section 4 in [3]. The main result is the following.

Theorem 4.1 Assume that, in addition to the conditions of Theorem 2.1, V" 4 V, where
V = (Vi,t > 0) is a nonnegative continuous process such that, for any T > 0, fOT (Vi =0)dt =

0 P-a.s. Then, for any continuous function f(z) on R4,

/OT Fvyar & /OT (/01 f(uf/t)du) dt .

Proof. We first assume that f(z) is bounded and nonnegative. We note that it is enough to

prove that
T 1 4 (7 1 ~ .
/ JOV) 16 <V < K)dt = / (/ f(um)du) A(E <V < K)dt, (41)
0 0 0
for any 6 and K, 0 < 6 < K, such that
T ~ ~
/ [1(V;=8)+ 1(V; = K)]dt =0 P-a.s. (4.2)
0

The argument is given in the proof of Theorem 2.1 in [3]. So, we prove (4.1) assuming (4.2).
As in [3], choose € € (0, %) such that N = (K — ¢)/e is an integer and, given r(€) < €/2, let,
for 0 <¢ < N,

= 6 +ic,

= (ai(€) = r(€), ai(e) + r(e))

= (0,ai(e) — e+ r(e))U(ai(e) + € —r(e),00) ,

= 0,

= inf(t > 77 (e,4) : Vi" € Crg(e,i)), B>1,

=0,

)
)
)
)
i) = inf(t>(p_y(e,i): V) € Byyle,d)), k>1,
)
)
) = inf(t> (eo1(e,i): Vi € Byg(ei), k>1,
)

= inf(t > m(e,i): Vi € Crp(e,4)), k> 1.

17



The argument of the proof of Lemma 4.1 in [3] applied to V™ and V shows that
Th(€,1) < (p(e, 1) P-ass. on {7i(e, i) < 00} ,

. . N < _ '
lim P <ogl'l<nN Cr(e, i) < T) 0, (4.3)

k—o0

and that r(e) can be chosen so that, as n — oo,

(V" (T (e i) ATy GRei) AT rsogicn) = (V,(7k(ei) AT, Guleyi) AT )iz10cicn )
(4.4)
where convergence is in R*. In analogy with [3], denote by nm?’l(i,k),j > 0, the successive
times after n7]'(¢€,1), when the unfinished work at the first queue becomes equal to 0. These are
times when switchovers from queue 1 to queue 2 start. We denote the switchover times starting
after n1'(¢,1) by sg’l(i, k), 57;’1(i, k),.... Obviously, they are independent and distributed as
5T We also let

gl min(j : k755 (1, k) > CPe, i) AT), i kg (i,k) < (Ple, i) AT,
k] o, if kg (i k) > (e, i) AT

~—

Analogously, we denote by nm?’z(i, k), j > 0, the successive times after n7'(¢,4), when the

unfinished work at queue 2 becomes equal to 0, and we denote by sg’z(i, k), 5?’2(2', k),...the
switchover times from queue 2 to queue 1 which start at nkj*(i, k), nk}*(i,k),.... We note
again that sp”°(i, k), s7°(i, k), ... are independent and distributed as s}*. Also let

. . 2 . . . 2. .
g min(j : I{?_’H(l,k) > (e, ) ANT), if kg“(i, k) < (P, i) AT,
ik 0, if k(i k) > (e, i) AT
For given 7,k and ¢, let ns7,j > 0, be successive times after n(r'(e,7) A T') when the first
queue empties, and let nf7,j > 1, be successive times after nxg when the server comes back

to the first queue; obviously, k7_; < 67 < k7,7 > 1. Next, define the first passage times

O = inf(t > RI_ V > aie) - AT, j > 1,

¢r = inf(t> 07V < v@l)), j>1.

Note that ns’ is a service completion time for the first queue, and if £7 < (P(€,1) < 0o, then
niil is an arrival time for the first queue.
Let the arrivals on [nkg, c0) be numbered successively starting from 1. Let £} denote the

time period between nk{ and the first arrival. Denote by ff,l > 2, the times between the

18



(I — 1)t and [t of these arrivals. Obviously, {ff,l > 2} is a set of i.i.d. random variables with
the distribution of the generic interarrival time for the first queue.

Let )Z?’l be the index of the arrival occurring at or just before n¢)?,j > 1, and let )Z?’z be
the index of the arrival occurring just after ng?,j > 1. For j > 1, let v be the time period
between n¢? and the )Z?’ch arrival. Denote by {ﬁZlvl > 1},7 = 1,2,..., independent copies
of the sequence of service times at the first queue, which are also independent of {éf,l > 1}.
Again by the i.i.d. assumptions, we may assume that, for each 1 < 5 < 192}3, the service times
for completions in (¢7, k7] are 774,77, . . ..

Now consider the threshold queue with the threshold A" = /n(a;(¢) — €) which has the
sequence

T S NS TREN S
of interarrival times; service times in the ;'™ busy period of this queue are il =1,2,...
Denote by th,l the normalized and time-scaled unfinished work at this queue. Also let ﬁf and
4P be defined for this queue as 37 and 4! respectively in (3.5).

Then the construction above yields

n,1 ~n an . n,1
- ‘/t—;)'/"]n‘_l—l—ﬁ‘;l_l 9 te [7]—17ﬁ]] 9 1 S 7] S 192'7k 9
s vl te[Fr,qr 1<j<om o
t_ﬁ”]n_l_(b;lv 6[]77]]7 >7> i,k
d 1
37 = Z[(¢f‘“?—1)‘|‘(“?_ Dl 1< <95, 99=0,
=1 (46)
B o= AT (k) 1<i<ON L B =0.
The exceptional interarrival times for this queue are vf, v7,..., i.e., these are the interarrival
times of the first arrivals in busy periods.
Equalities (4.5), (4.6), the definition of 19?}3, and the assumption f > 0 show that
9 - P (ed)AT -
[osarhas [0, (47)
0 T (e i) AT

where 97 = Ay
LAy
Now we construct an upper bound process V™. Whereas we truncated the original process
V™l at the level a;(€) — € to obtain the lower bound process, here we will extend V™! to level

a;(¢) + € to obtain an upper bound process. Introduce independent replicas {f;’f,ﬁ > 1},
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j > 1,k = 1,2, of the interarrival time sequence at the first queue and independent replicas
{ﬁh,ﬁ > 1}, j > 1, of the service time sequence at the first queue.
Let

@ =inf(t > K}, VS ai(e) 4 e) A 07, 7> 1,

n . n n,1 n,1 .
7 = inf(t > 07 2V} SV@? ), j> 1.

Note that if Vo' < a;j(¢) 4+ ¢, then @7 = 97 = 67. Let X", > 1, index the arrival in the
J
original queue occurring at or just after ne? (recall that the numbering starts from the arrival

h

after nk( ), and let ©7 07,7 > 1, denote the time between ne’ and the X”t arrival. By definition,
U}lgfzy Also v} = 0if ¢ < 67.

Construct as follows a threshold queue with the threshold A" = y/n(a;(¢) + ¢). In the
first cycle the interarrival times in the accumulation period are taken from the sequence

{5?,@,,5 511, 12,...} (note that ifngzl > a;(€) + €, then 511, 12,...are not used).

Denoting the threshold queue normalized and time-scaled unfinished work at ¢ by th’l, define
B7 =inf(t > 0: V" > a;(e) + ¢).

Then nﬁ? ends the first accumulation period. If ngl < ai(€) 4+ €, which happens if Vﬁ;l <
1
a;(€) + €, then after nﬁ? the service times are 77,77 5,..., and the initial interarrival times

are taken from {fl ual> 1} until time n37, where
By =inf(t> By VM < Vg,

We then take 51 o to be the last random variable in the sequence {51 1 751 2,...} that was
actually realized as an interarrival time in [nﬁ{b, nG7]. In the case that V 7{ > a;(€) + €, which
happens if Ve?{l > a;(€) + €, we define ﬁl = ﬁl and set Y| = f X = = 0. In both cases, the first
arrival after n(37 is made to occur at time nf3} + 7, so that its interarrival time o7 always
satisfies 0 < 51 " +77 < 51 | —|—£An The subsequent interarrival times are fgn_l_l, .. .,fgg,
and the service times after n3 are the same as for V™! after 9. The arrival terminating the
interarrival time f”n corresponds to the arrival in the original queue occurring at or after n¢p?.
After that arrival, the interarrival times are again taken to be &5/ 1 ;21, ... until the threshold
has been exceeded (these times are not used if VL;;{ > ai(€) + €). After this has happened at
nﬁg, where

By =inf(t > By : V' > ai(e) + ),
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and until nﬁg, where

By =inf(t> By V" <V,

. . An Aanm . . . Fn,2  fn,2
the service times are 731,73 5, ... and the interarrival times are {57,855, . .. (as above these

are not used if V;Z;l > a;(€) + € and hence 35 = (7)



where Y7 indexes the first arrival in the original queue after x7_,. The first interarrival time
is again £7. We conclude that Theorem 3.1 holds for V™' and vl
Next, by (4.7) and (4.8) we have the bounds

. - P (ed)AT -
|osweha < [ e

T (e ) AT

IN

/jn FOV Dt + [k AT =7 (e,0) AT S]] (4.9)
F (AT = Ky AT
Define
52}3 =min(j: 97, > Ge, ) AT — (e, i) A T),
52}3 =min(j: 37, > G, ) AT =1 (e,i) AT).
Let 152}3(15) = min(j > 0 : 77, > t) and 52}3(15) = min(j > 0 : 37, > t). In the course

of proving Theorem 3.1 we established (3.6). Since V™' and V! meet the conditions of

Theorem 3.1, we can write for these processes, in analogy with (3.6)

1
p1— A

. 1 1
) » V|/mt = t(ai(€) + ) (/\—1 + ) .

n P ooy 1
Ty = a0 = o (5-+ —

Then Lemma 2.1 in [3] yields

It b ¢ (1 1 )—1 D) p ¢ (1 1 )—1

— + - —
Vn pi(ai(e) —e) \ A1 1 — A Vn pi(ai(e) +€) \ A = Ay
(4.10)
Lemma 2.2 in [3] then yields
o poai(e)—e p ai(e)+e
J — b Ygn —— . 4.11
T 7wt e O 7wl —e (4.11)
Note also that
I = IR E AT = (e i) AT, (4.12)
I = NG AT = (e i) AT (4.13)
and
O <O <O (4.14)
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Let Uf'(¢, i) and V}*(¢, i) denote respectively the lower bound in (4.9) with 9" (= ’y”n 1) changed

to O" = ~§n17 and the upper bound in (4.9) with o (= A7.1) changed to &"

Ty, = Y5n1- By
i,k i,k zk
(4.14),
) CR(e)AT 1 )
UP(e, i) g/ FOVPYdE < V(e ). (4.15)
T (e ) AT

We now show that

U (e,i) S Up(e,i), Vile,i) S Vile,i), k>1,0<i< N, (4.16)
where
) = ai(€) ' (€) — €))du
U(e, i) = W(Ck(g JONT — (e, i) A T)/O flu(ai(e) — €))du,
) (4.17)
Vie,i) = &(ck(e AT — (e, i) A T)/ Flu(ai(e) + €))du
a;(€) 0
By Theorem 3.1 and (4.11),
/ok’nkl © (i) B %8 <1 [ et = n
N (4.18)

[ s 2SO T i) + ey

a;(€) — €

In view of (4.12), Lemma 2.2 in [3] shows that (4.4) and (4.18) imply
: 1
& WG AT = @) AT) [ (o) = O

/Ow FOUYde 2 %(@(e AT = 1u(e,i) A T) /01 Flulag(€) + ¢))du

Since |kg AT — 7] (€,4) N T LA 0, and |(F(e,t) AT — Hgfzj AT L) obviously hold, (4.16) is

proved. Moreover, the same argument shows that

(V' (U (6, 1) is10cien)  — (Vo (Uk(€,0)is1,0<i<n):

n nr o d - . (4.19)
(V™ (Vi (e, )rz10<ish) = (VL (Vi(€,1)Je>1,0<i<n) -
Next, defining
oo N oo N
:ZZU €,1), V™(e :ZZVk”GZ (4.20)
k=11:=0 k=11:=0
we need to prove that
(V7 U() S (V. U(0), (VI V() = (V. V(€), (4.21)
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where

oo N oo N
=3 D Uk(e,i), V(€)=Y > Vile,i). (4.22)

k=11:=0 k=11:=0

We prove the first convergence result in (4.21); the proof of the second uses the same reasoning.

Since Ul'(e,i) = 0 if 7['(€,7) > T, we have by (4.3) and (4.4), for n > 0,

M N
S Up (e ) - UM > 77)

k=11i=0
< limas_oolim, oo P <O$i<nN e, AN (T +1) < T)

EaMﬁmE@ﬁmP(

< T . . < — . .
<limpr—oo P (021311]\7 Cr(e, )N (T+1) < T) 0 (4.23)
Analogously,

M N p

ZZ Uk(e, i) — U(e) (M — ) . (4.24)

k=11:=0

Next, by (4.19) and the continuous mapping theorem, we have
M N q ~ M N
(V”, SN U (e, i)) S (v, SN Urle, i)) : (4.25)
k=11i=0 k=11:=0
The convergence (V™,U"(¢)) it (V,U(€)) then follows from (4.22)—(4.25) and Theorem 4.2 in

[1].
Now by the definition of 7'(¢,7) and (J (e, ),

/OTf(V )16 < VP < K)dt — ZZ/ 1(t € [T](e, 1), CR(e,)))dt

k=11:=0

SWW[MW+§W5®+MK§W§K+%ﬁ
so by (4.15), we obtain from (4.20)
U IS0 < V<) 4 1K < V< K e
< [T < v < K (4.26)
SV [ D6 =€ <V <) 410K <V < K4

Therefore, if we prove that as € — 0

/((quVt ) 6<Vt<lx)d e

/ (01qut ) 6<Vt<lx)d
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then by applying Lemma 2.3 in [3] to (4.27) and taking into account (4.21), (4.2), we will then
obtain (4.1). As before, we prove only the first of the results in (4.27); the proof of the second
is similar.

In fact, we prove convergence with probability 1. The argument is almost identical to that

in [3], but we give it here since it is used once again below. Since a;(¢) > ¢, we have from

(4.17) and (4.22)

‘ EZZ;/ )~ Nl i) AT — e, i) AT]| < 2| 7|1

k=11:=0

This tends to 0 as ¢ — 0, so we prove that

lim Z Z (e, ) AT — (e, i) A T]/ flu(ai(e) —€))du

“—0=1i=0 (4.28)
T 1
= / (/ f(uf/t)du) 1(6 <V, < K)dt .
We can write
oo N 1
SO [Ckle i) AT = 7yleni) A T]/O Flulag(€) — ¢))du
k=1 1=0
o N T/ f1 (4.29)
= u(a;(€) —e))du | - 1(mp(e,2) <t €,1))dt
S5 [ () S0t = n) 10w < 1 < i)
=C,.

Note that if z,y > §/2, |x — y| < 2¢, then

[ syt [ty

1 1

r oy

. ﬂ>m—3/ﬁwwu

T Jo

/0 Fu)du + — ‘/ u)du

Since Vi € [ai(¢) — ¢, a;(¢) + €], t € [ta(e, 1), (r(e, i), we then have

< < —HfH

/01 Flu(ai(e) — du - 1(t € [ra(e, ), Cule,i))) — /01 FuVi)du - 1(t € [r4(e, 1), Ck(e,i)))‘

< S 10 [l D), Gl D)

so by (4.29)

.- ZZ/ (/ F(uih) du)- 1t € [ru(e, 1), Cule, )t

8¢
<%y,
k=1:=0
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whence

‘CE - /OT (/01 f(uf/t)du) (6 <V < K)dt

T - - 8
<IN [ MO < Ve é =+ 10K < Vi< K+ ldt+ AT

Since the right-hand side of this inequality tends to 0 as € — 0, we have proved (4.28). This
completes the proof of the first assertion of Theorem 4.1 for bounded nonnegative f(z). The

general case is handled via a localization argument as in the proof of Theorem 2.1 in [3].

5 Tightness Results

The main purpose of this section is to prove several results on the tightness of some processes

closely related to V™. We start, however, with a number of technical results.
Introduce

S8~ prnt Sro—nt

Byl = Mo (=12, B =

and let B™ = (B, t>0), {=1,2, B" = (B}, 1 > 0).

Lemma 5.1 As n — oo,

At e NGy e
! Zs” L ayt, Zs” Bat, 0=1,2,

) L A}/Qagwf, (=1,2, B"L (oW, +ect,t>0),

where W', £ =1,2, and W = (W;,t > 0) are standard Brownian motions.

Proof. We sketch proofs of the second and third convergence results in the first line. The

other statements follow from the assumptions in a standard manner. We have, for ¢ > 0,

| L | L
NG S dpt| < NG > (5?7%(5?7@ <eyn) — EsM1(sM < gﬁ))
n =1 n =1

[V/nt]
1 n n, n n l n
—I_ﬁ E [ ( £>€\/_)—|-tE817£1(817£>€\/ﬁ)+‘L\\//_%JEsll_dﬁt .
=1

The last term tends to 0 by (2.2). The second and third terms on the right tend to 0 by (2.6).

Since the s?l,i > 1, are independent and identically distributed, the second moment of the

first term on the right is no greater than

%E( D218 < ey/n) < teEs™
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and goes to 0 as n — oo and € — 0. Hence, in view of Chebyshev’s inequality, the first
term tends in probability to 0 as n — oo and € — 0. This concludes the proof of the second

convergence in the statement of the lemma. The third one is proved similarly. B

Let
By =1—ap,.

Then definitions (2.9), (5.1) and equation (2.8) imply that V" satisfies

1 1
Vi =Vt BD 4 ﬁ/ (V" = 0)ds + ﬁ/ LV > 0)37ds . (5.2)
0 0

We study properties of the processes on the right. For € > 0, we define the processes K™ =
(K;",t >0) by

t
K™ = Jn / LV > €)fds. (5.3)
0

Though the K™ have continuous paths, we still consider them as random elements of D[0, o0).
Recall that a sequence of processes {X™,n > 1} in D[0,00) is called C-tight if it is tight
and all weak limit points of the sequence of their laws are laws of continuous processes [6,

VL.3.25].
Lemma 5.2 The sequence { K™, n > 1}, where K™ = (K,"“,t > 0), is C-tight.

Proof. Denote by [u.” ?1] and [u?’z, vf’z], 7 > 1, the respective successive switchover periods
(i.e., times during which the server is switching) from the first queue to the second and from
the second queue back to the first. Let 19;M be the number of switchovers from queue £ started

n [0, nt]. By (5.3),

K = —ZZ/Z U S e/m)ds. (5.4)

So, if we define

1977,[
1 &
KM = ZZ/ LU > ey/n)ds (5.5)
nf 1:=1
then, obviously,
sup |[K™ — K™f| < —max max o™ . 5.6
KT~ KPS oy ma () (5.6)
Note that (e 1)
Pl4—>—]|<P <t )
(n>d£)_(;52_n , (5.7)
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and that the latter tends to 0 as n — oo by Lemma 5.1. Recalling also that
oyt = sn’g, (5.8)

we get by Lemma 3.1 and (2.6) that the left-hand side of (5.6) tends in probability to 0 as n —
0. Thus the C-tightness of { K™, n > 1} will follow from the C-tightness of { K™, n > 1}.

To prove the latter, we will use repeatedly the concept of strong majorization [6, V1.3.34]:

an increasing process X = (X, ¢ > 0) is said to strongly majohigR4Hie pi€ceds Fi o



1977,,1
1 : n n n
+ NG STt - Sufl > ey/n/4),
=1 '

v
k2

so by (5.8), for é > 0, since uz;il < nt,

t

L |
n d1

P(KP'>0) < P (— >
1 n,1
+ P NG sup 5,7 > 6)
|

+ P sup S0 — S8 > ey/n/4
031}11572:5\/;

+ P sup |97 — S™?| > ey/n/4 | . (5.12)

u<nt
OS'U—uSé\/ﬁ

The first term on the right of (5.12) goes to 0 as n — oo by (5.7) and Lemma 5.1. The second
term tends to 0 as n — oo by Lemma 3.1 and (2.6).

Next,

P sup S0 — S8 > e/n/4

u<nt
0<v—ugé/n
Sml— pipy  S™L— pliny €
=P sup o 1 _ L 4 pi/n(v —u)| > —
u n n 4
D<Ay <s v v
< s Spy = pinv _ Shy = pinu) € Ry
a u<t,Ju—v|<y Vvn Vv 4
n,1 n,1 € n
=P ( sup |By =B > 1 ,016) ) (5.13)
ust,Ju—v|<y

where v > 0 is arbitrary and n is large enough. Since by Lemma 5.1, B™! converges in

distribution to /\}/zalwl, and since the functional X — sup|X,|, X € D[0, o), is continuous
s<t

almost everywhere with respect to the Wiener measure [10], we conclude from (5.13) that

lim P sup S0 — S8 > e/n/4

n— 00 u<nt
0<v—ugé/n

sp( sup |W3—W5|2A;”%;1(§—p16)),

u<t,lu—v|<y
which goes to 0 as v — 0, if § < €/4py, by the continuity of Brownian motion. We have thus

proved that the third term on the right of (5.12) tends to 0 as n — oo if ¢ is small enough.
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A similar argument applies to the last term on the right-hand side of (5.12). Therefore, since
Kmel g increasing,

lim P(sup K™™' > 0)=0,

n—00 Sst

as required.

—-n,6,1

We now prove that {K "' ,n > 1} is C—tight. Call a switchover from queue 1 to queue

2 sound if at the time when it starts, the total unfinished work (which at that moment is
the unfinished work at queue 2) is greater than e\/n/2. Let W’l be the number of sound
switchovers started in [0, n?]. By (5.10),

K = Z ot (5.14)

where 5?’1 is the duration of the 7th sound switchover. Note that the soundness of a switchover
is determined at its beginning, so the E?’l, ¢ > 1, are i.i.d. and distributed as the 5?’1, 1> 1.

We have by (5.14), for ¢ > 0,6 > 0,7 > 0,y > 0 and A > 0,

——n,e,1 ——n,e,1

P sup  [R-F s )

u,w<t,lu—v|<8
<P > AV + P sup [0 =T > /)
v—6<u<v<t
1 [vv/n] 1
NS >, s
i=|uy/n|+1

+ P ( sup > 77) . (5.15)
v—y<u<v<A

Now, if 52’1 — 52’1 = m, then the amount of work executed by the second server in the interval
[nu, nv]is no less than (m —1)ey/n/2 which takes time (m —1)ey/n/2. Hence (m —1)ey/n/2 <
n(v — u) which leads to the estimate 52’1 — 52’1 < @(v — u) + 1, so that, for all n large
enough,

3\/_

sup [0 =0 < It <
v—6<u<v<t

Taking in (5.15) A = 2¢ and vy = 24, we get

t.

3/
£

=n,e,1 =n,e,1

lim P( sup |[K,)" — K, >n)
n—00 w,w<t, lu—v|<8
1 o] 1
< Tm P sup - it >
n—00 v—36/e<u<v<3t/e \/_Z I_’U%:_J‘Fl

where the latter limit, by Lemma 5.1, is zero if 3—6‘5(11 < 7. Therefore

lim Tim P(  sup |Kn61 !

6—=0 n—oo u,w<t,lu—v|<8

| >n)=0,
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n,e,1

which, since Fg = 0, proves the C-tightness of {K " ,n > 1}. The lemma is proved. ®
We next prove that the two rightmost processes in (5.2) are asymptotically bounded in

probability.

Lemma 5.3 We have

hm lim P <\/_/ 0)ds > A) = 0, (5.16)
Jim lim P (ﬁ/ LV] > 0)87ds > A) = 0. (5.17)
00 =00 0
Proof. Let
o=V -V - B — K" (5.18)
By (5.3), (5.2) and the inequality 0 < 8" < 1, we have for 0 < s < t,
i i i
ot =l =i [ UV = 0dut Vi [ 10 <V < DB < Vi [ 1V < du,
so, since V" > ¢ + B! by (5.18),
i
—on <V [ 1060 <1- Bl
Therefore, by Lemma 1 in [2]
¢f <sup(l—B)V 0.
s<t
Since the sequence {B",n > 1} is C-tight by Lemma 5.1, we conclude that
Ahm lim P(p) > A)=0.
Since by (5.2) and (5.18)
) i i
or KM = ﬁ/ LV = 0)ds + ﬁ/ LV > 0)5" ds,
0 0
an application of Lemma 5.2 completes the proof. R
We are in need of two more technical lemmas. Introduce the processes
| AnH
Y N R N IR IS VA VS Vi) (5.19)

\/ﬁ =1 '

and recall that TZ@J’Z- =0,1,...denote the arrival times for A™*, (= 1,2.
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Lemma 5.4 Define the filtration T" = (F/',t > 0) by F/" = F"' vV F"* V o(VP)V N, where

Ftn’g = GZ’le, G?’g = U{n;’f,f;?’f, 1<j<i}, £=1,2, and N is the family P-null sets. Then
nt

F™ is well defined, the Tin’[/n,n =0,1,...,0=1,2 are F"-stopping times and M™ = (M],1 >

0) is an F"-locally square integrable martingale with the predictable quadratic variation process
M™, = 1 n 2An,1 n 2An,2
< >t - E[(Ul) nt T+ (02) nt ] .

Proof. The proof is almost the same as the proof of Lemma 2 in [2]. In particular, the
martingale property of M™ and the formula for its predictable quadratic variation process
is deduced from the fact that the processes ( le(n?’g — p}?f?’g), k> 0) , £ =1,2, are locally
square integrable martingales which have predictable quadratic variation processes ((o7)%k, k >
0) relative to the respective flows (Gzl, kE>0). ®

Note that the processes B, (57, > 0) and V™ are F"-adapted.

Introduce
An+1

n 1
et = LU et | - —pf (=12, &= 42, (5.20)
=1

n At
Let AM? denote the jump of M"™ at s.

Lemma 5.5 Under the hypotheses of Theorem 2.3, for t > 0,
(M"™), Ll ot, Z:(AMS)2 o , sup €7 A 0,
s<t s<t

as n — 0.

Proof. The first convergence follows by the expression for (M"); in Lemma 5.4, Lemma 5.1 and
(2.1). For the second, note that since M™ is a process of locally bounded variation by (5.19), it
is a purely discontinuous local martingale [6, 1.4.14], [10, 1.7], so its quadratic variation process
([M™, M"];,t > 0) is the sum of the squares of jumps: [M", M"], = ZSSt(AM§)2 [6, 1.4.52],
[10, I1.8]. By Lemma 5.5.5 in [10], (2.4), (2.5) and Lemma 5.1 imply that the convergences
[M™, M™]; L 524 and (M™), L 62 are equivalent, so the second convergence of the lemma is

a consequence of the first. The third convergence results from the inequalities

AT
.l .l
0< Z; 52 _ntngZ,tz_l_lv
1=

condition (2.4) and Lemmas 3.1, 5.1. W.
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Let
Vi=V—d. (5.21)

Since V" is F"-adapted and e7 is Fj*-measurable by (5.20), V"' = (V;,t > 0) is F"-adapted.
By (5.1), (5.2), (5.19) and (5.20), we get the representation
Vi =Vi4+vn(p" —1t—|—\/_/ ds—l—\/_/ (V] >0)prds+ M} . (5.22)

Now squaring in (5.22), we have by Ito’s formula (Theorem 2.3.1 [10]) that
t t
(V1P = (VP +2vp" 1) [ Vids+2v [ Vi = 0)ds
0 0

[— [—
0 0

+ Y (AMP)? (5.23)

where VZ_ denotes the left-hand limit of V' at s.
Lemma 5.6 The sequences {V'"',n > 1} and {V",n > 1} are C-tight.

Proof. By (5.16), (5.17), the C-tightness of { B",n > 1}, and the convergence V' 4 Vo, the

right-hand side of (5.2) is asymptotically bounded in probability, i.e.,

,allgnoo 7}1_{%0]3 (sup Ve > A) t>0. (5.24)
Then (5.21) and Lemma 5.5 yield
lgnoo nh_{%oP (512 V> A) t>0. (5.25)
We now check that, for any 7" > 0 and n > 0, we have that
fim fim, sup P (s;;g |(Vi)? = (V72| > n) =0, (5.26)

where S7(F") is the set of all F”-stopping times 7 not greater than 7.

Since the processes (fVZ_dMg,t > 0) and (Z(AM”) (M™), t > 0) are F"-local
martingales [10, Ch. 1, §§, Ch. 2, §2], the Lenglart Rebolledo inequality [10, Theorem 1.9.3]
yields, in view of (5.23), for € > 0,

—n —n €
P (Sup ‘(Vt—l—ﬂ')z - (V7)2 > 77) S -

<6

=

T+6 T+6
+P(2valpn =1l [ Vildut2va [ VI = 0)du
T+6 o
+ zﬁ/ VAV > 0)80du+ (M) ps — (M7), > ). (5.27)
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By (5.25) and the assumed limit \/n(p™ — 1) — ¢, we have
%m% lim P [ 2y/n]p" — 1] sup / v |du> -1 =0. (5.28)

By (5.21), we see that |V [1(V! = 0) = |e?|1(V* = 0), so (5.16) and Lemma 5.5 yield
t
zﬁ/ TV =0)ds 20 (n— o), 150, (5.29)
0
Next, for € > 0, 0 < s < ¢, we again use (5.21) and obtain

t i
2\/5/ VO L(VE > 0)37du < Qﬁsup|gn|/ (VI > 0)87du

u<t

+ aymsup V7] [ 1V > )
u<t s

N /H(vg > 0)37du . (5.30)

The first term on the right tends to 0 in probability as n — oo by Lemma 5.5 and (5.17). The
third term tends in probability to zero as n — oo and then ¢ — 0 by (5.17). Finally, by (5.3),
Lemma 5.2 and (5.24), we have for v > 0,

- t
lim lim P | 2y/nsup|V]}| sup / V> HYgldu>~|=0.

§—0 n—co u<T ls—tl<s
s<T
Thus, by (5.30),
lim Tim P | 2y/n sup / Vil 1V > 0)8du > l=0. (5.31)
§—0n—00 ls—t|<6 Js 4
s<T
Lemma 5.5 easily implies that
lim Tm P | sup [(M™)— (M™),|> | =0. (5.32)
§—0 n—00 le—t]<s 4
s<T

Applying (5.28), (5.29), (5.31) and (5.32) to (5.27) shows that (5.26) holds.

Now, by Aldous’ condition (see, e.g. [10, Theorem 6.3]), (5.25) and (5.26) show that the
sequence {(V")2,n > 1} and hence {V",n > 1} is tight for the Skorohod topology . By [6,
Proposition VI.3.26], it remains to prove that

sup |AV} | LA 0, T>0.
+<T
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1
sup |AV} | = sup |AM}| < max | — max o P max. et
t<T t<T (=12 [V ggica™i VI i<ica™i

which tends to 0 in probability as n — oo by Lemmas 3.1, 5.1 and (2.4), (2.5). This proves
that {V",n > 1} is C-tight. The sequence {V",n > 1} is then C-tight by Lemma 5.5 and
(5.21). m

By Prohorov’s theorem, there exists a subsequence {V”/, n’ > 1} and a continuous process

V such that V™ % V. The next two lemmas deal with implications of this fact.

Lemma 5.7 We have, for n > 0,

e—0 n—oo

. ¢
lim lim P(/ (V] <e€)ds>n)=0.
0

In particular, if the law of a process V = (f/t,t > 0) is an accumulation point of the laws of
{V",n > 1}, then
t ~
/ 1(V,=0)ds =0 P- a.s.
0

Proof. Since V" L V for a subsequence (n'), we have, for ¢ > 0 and 1 > 0,

t , oo
h_mP(/1(V5”<€)d5>77)2P</1(V5<€)d5>77),
0 0

n!—o0
and the second assertion of the lemma is a consequence of the first. To prove that, introduce

the processes Z" = (Z]',t > 0) by
t
Zr = Vo4 B 4 ﬁ/ LV > 0)37 ds, t > 0.
0
so that (5.2) is equivalent to
t
Ve = 70+ \/ﬁ/ (VP = 0)ds,
0

which implies, since V;" is nonnegative, that V" = R(Z"), where R : D[0,00) — D[0,00) is

Skorohod’s reflection map defined by

R(X) =X — uéf; XsA0,12>0. (5.33)
Now, if we define
Zr=VJ+ B t>0, 2" = (Z8,t>0), (5.34)
and introduce
V"= R(ZM), (5.35)



then the process Z" — Z" is increasing and (5.33) implies that V;* > V;*,t > 0. Hence, for
€ >0,
t t
P(/ 1(V5”<€)d5>77) §P</ 1(V5”<€)d8>77). (5.36)
0 0
Now, by (5.34) and Lemma 5.1, {Z",n > 1} converges in distribution to the process 7 =

(Vo + oWy + ¢t,t > 0), where Vy and (Wy,t > 0) are independent. By the continuity of the

reflection at continuous functions, we then deduce that V" LA R(7),i.e., by (5.36),

—_— t —_— t ~
lim lim P (/ (V" <e)ds > 77) <lim lim P (/ 1V < €)ds > 77)
0 0

e—0 n—oo e—0 n—oo

<TmP (/;1(R(Z)S§€)d52n) :P(/Otl(R(Z)S:O)dszn).

e—0

Since R(Z) is a reflected Brownian motion, the latter probability is 0. W

Lemma 5.8 Under the conditions of Theorem 2.1, for T > 0,

T
lim \/ﬁ/ Brvidt = dT .
n—00 0

Proof. We rely heavily on the argument in the proof of Theorem 4.1. The notation in that
proof is used here. Again let a continuous process V = (f/t,t > 0) be an accumulation point of
{V",n > 1}. By Lemma 5.7, the conditions of Theorem 4.1 hold, so the results developed in
the proof of Theorem 4.1 apply.

As in the proof of Theorem 4.1, it is enough to prove

T T _
ﬁ/ VIR 16 < V< K)ds & d/ 1(6 < T) < K)dt (5.37)
0 0
for any 6 and K, 0 < § < K, which satisfy (4.2). To check this, note first that, for n > 0,
- T
lim Tim P (\/ﬁ/ VI (V< 8)dt > 77) ~0, (5.38)
0 n—00 0
L T
Jim T P \/ﬁ/ VRsE (V) > K)dt > ) = 0. (5.39)
I —00 N—00 0

Limit (5.38) follows from (5.17). For (5.39), write
T
VA [ Vs 07 2 Kyde> ) < Peup V2 K)
0 +<T
and observe that the latter goes to 0 as n — 0o and K — oo by the tightness of {V",n > 1}.
Theorem 4.2 in [1] then implies the desired result by (5.38), (5.39) and the fact that, by

Lemma 5.7 and the continuity of V,
T B T B T B
fim [ 1(V, < 8)dt = / W(Vi=0)dt =0, lim [ 1(V;> K)dt=0, P a.s. .

§—0.J0 0 K—oo Jo
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So, we prove (5.37) next assuming (4.2).

Let w™! (which is 95" in the notation of Lemma 5.2) and w™? (which is ¥7:* in Lemma
5.2) denote the number of respective switchovers from queue 1 to queue 2 and from queue 2
to queue 1 started in [0, nT]. By the definitions above (recall in particular that af = 0 if the
server is switching over at ¢), for k > 1, 0 <i < N,

9y U

PR N IES SE ()
7=0 7=0

(P (e,d)AT)
</ (1— af)di

19711_'_ 19712_'_

max —|— max 57?’2) (7 (€, 1) Z nl (i, k)

n2
< ( s;” ; (i, k)
1<5<w™! 1<5<w™?

||[Vj

so, since V" € [a;(€) — €, a;(€) + €] on [7](€,1),(F(€,1)), we get

) oy 9y
—(ai(€) - 6) an’l(i,k)—l- Z‘Sna(ivk)
\/ﬁ = J s J

Ck e ))AT

<¢j’ AR
< (ai(€) + €) - 1(P (e, i) < Tj\}_ ( max Ty max 5n2)

(ai(€) + ©) jg: S0 k) + :g: S0k | (5.40)

Introduce
) 192;3 5272
Amwzjﬁ@@%)2§wM+Z§%@, (5.41)
7=0 7=0
) I 41 I™2 41
Ap(ei) = \/—(az(€) +€) s k)+ D sPALk)
7=0 7=0
+(ai(e) +€) - 1) (e, i) < T)o", (5.42)
where
o" = 1 ( max Y4 max sV 2)
N \/_ 1<5<w™! ] 1<5<w™? 7 '

It was shown in the proof of Lemma 5.2 (see (5.7)) that P (sz > Td—‘;l) — 0,0 =1,2, as

n — oo. Then, using (2.6) and Lemma 3.1, we get
5" 20 (n— o0). (5.43)
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Also, inequalities (5.40) and (4.14) (the latter holds obviously for the second queue too) yield
o P (e)AT N
Af(e,i) < v/n BEVidt < Aj(e, 1) . (5.44)
TR (e )AT
Next, (4.10), (4.12), and (4.13), and their analogues for the second queue imply, in view of

(4.4) and Lemma 2.2 in [3], that

1 =, JONT — (e i) AT (1 1\t
(—\/ﬁﬂi,}f) o<icn < (Ck(G ) a:(c) i’k£€ ) <— + - ) ) (5.45)
<i<N, i pPe pe 0<i<N,
k>1,0=1,2 k>1,2

=1,2
1 ., JO)ANT — JO)AT (1 1\t
(%ﬂi’}f) 0<i<N i} (Ck(€ Z) a'(G) -|7:k£€ Z) <_ * 1- ) ) : (5'46)
<i<N, i pe pe 0<i<N,
k>1,6=1,2 k>1,6=1,2

(Af(eiogign, = (Ar(e,D)agigy, (5.47)
and
(A;g(g,i))o%v, it (Ak(g,i))o%zglm : (5.48)
where
Anei) = %(@(g, DAT = m(e,i) A T)prpa(ds + do) | (5.49)
Ane,i) = %(@(g, DAT = ma(e,i) A T)prpa(ds + do) . (5.50)
Introduce
~ oo N—-1 ~ ) oo N )
A(e) = Z Al(e,i), A"(e) = Z ZAZ(G,i) , (5.51)
k=1 =1 =11:=0
~ oo N—-1 ~ ) oo N )
Ale) = Z Ap(e, 1), Ae) = ZZAk(G,i) . (5.52)
k=1 i=1 k=11:=0

Note that the sums are P—a.s. finite (use (4.3) for the second line), so that the variables above
are well defined.

Relations (5.47) and (5.48) imply, by the continuous mapping theorem, that for every

M=1,2,...
M N-1 ) M N-1 )
Z A% (e, 1) it Z Ar(e, 1) ,
k=1 =1 k=1 =1
M N ~ q M N ~
Z ZAZ(G,Z) = Z ZAk(G,Z)
k=11:=0 k=1:=0
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as n — 0.

On the other hand, in a manner similar to (4.23) and (4.24),

L M N-1
lim limP( 7 AR(ei) - (€)>0):0,
M—comn=e0 k=1 i=1
M N-1 )
A}linoop(z Apx(e A)>0):0,
k=1 =1
and Theorem 4.2 in [1] yields
Ay L A(e) (n— ). (5.53)
Similarly,
Ay L A(e) (n— ). (5.54)

Next, in analogy with the proof of (4.27), we get in view of (4.2) that, as ¢ — 0,

Ay B pipaldy + do) /T 1(6 < V(1) < K)dt (5.55)

Al B pipaldy + do) /OT 1(6 < V(1) < K)dt . (5.56)

Also, it is not difficult to see, using the definitions of 7 i §x7/ W0/ 8o/ B I B ! $ha! Whio! |



By (5.16), (5.17), Lemma 5.5 and Lemma 5.8,
sup |67 20 (n— o0), t>0. (6.2)
s<t

We denote the left-hand side of (6.1) by X[*. Let X™ = (X]',t > 0). We next prove that X"
converges in distribution to X as n — oo. The process X™ is an F"-locally square integrable
semimartingale [6, Ch. II, §2b)]. The process X as defined by (2.7) is a locally square integrable
semimartingale as well with respect to the filtration generated by it [6, 111.2.12]. We prove
the convergence by applying Theorem 1X.3.48 in [6] which gives conditions for convergence in
distribution of a sequence of semimartingales to a semimartingale in terms of their predictable
triplets [6, Ch. TI, §2]. Therefore our first step is to identify the characteristics. Let B =
(B",t > 0) denote the first characteristic without truncation of X, let C'* = (C}",t > 0)
denote its modified second characteristic without truncation and let v™ = (v"(ds,dz)) denote

its predictable measure of jumps [6, 11.2.29, IX.3.25]. Then by (6.1)
B = 2vn(p" - 1) /OtVst +(2d + o)t (6.3)
fm = 4/()t(77;)2d<Mn>5 . (6.4)
This specifies the triplet of X ™.
Define, next, for @ = (a;,t > 0), an element of the Skorohod space D[0, ),
Bi(a) = QC/Ot(as V0)/2ds 4 (2d + o2)t, 1> 0, (6.5)

t
Cila) = 402/ (asV0)ds, t>0, (6.6)
0
v([0,7],T) (@) = 0,t>0, T is a Borel subset of R ,
and let B(a) = (By(a),t > 0),C(a) = (Cy(a),t > 0) and v(a) = (v(dt,dz)(a)). According
to the definition of X in (2.7), its triplet of predictable characteristics is (B(X),C'(X),v(X)).
Since X is continuous, this triplet does not depend on a truncation function; in particular the

triplet without truncation is the same.

Stated in another way, the distribution of X is the unique solution to the martingale
problem associated with (H, X)) and (£(Xo); B,C,v), in the sense of definition I11.2.4 of [6],
where H denotes the o-field generated by Xg and £(X() denotes the distribution of Xj.

Define next, as in 1X.3.38 [6], for a > 0,

Sa(a) =inf(t: |ag| > a or |ay—| > a), (6.7)
Sa

=inf(t: | X[ > aor | X[ | > a), (6.8)
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where a;_ denotes the left-hand limit at ¢. Let also (Var B);(a) denote the variation of B(«)
on [0,t] and C; (R) denote the set of continuous bounded functions ¢ : R — R which are equal
to 0 in a neighborhood of 0.

By Theorem IX.3.48 [6], in order to prove that the X™ converge in distribution to X, we

may check the following conditions (note that since X has no jumps, in the notation of the

theorem, B’ = B and ' = C):

(i) The local strong majorization hypothesis: for all a > 0, there is an increasing continu-

ous and deterministic function F(a) = (Fi(a),t > 0) such that the stopped processes

((Vaf B)insa(ay(@),t > 0)7 (Ct/\sa(a)(a)vt > 0) and ( INSa() [ 2u(ds, dz)(a), t > 0)
are strongly majorized by F(a) for all @ € D[0, o).

(ii) The local condition on big jumps: for all @ > 0,t > 0,

tASq (o
lim  sup / / |2|*1(|2z| > b)v(ds,dz)(a) =

b—oo a€D[0,00)
(iii) Local uniqueness for the martingale problem associated with (H,X ) and (L(Xo); B,C,v)
(see [6, 111.2]).

(iv) The continuity condition: the maps a — By(a), @ — Cy(a) and a — [} [5g(2)v(ds,dz)

are continuous for the Skorohod topology on D[0, o) for all ¢ > 0 and ¢ € C;(R).
v) X7 2 X,
tAST tAST P
(vi) [10c — R / / "(ds,dx) / / v(ds,dz)(X") — 0 for all t > 0,
a>0andg€©1(R

[sup —fB..] sup|Birsn — Bsasn(X") L 0forall t > 0, a>0;
s<t “
oo = R] Clign — Consp(X™) 2 0 for all t > 0, a > 0;

b—00 N—00

o tAST
(6.8a) lim lim P (/ / lz|*1(|2| > b)v"(ds, dz) > 6) =0forall t>0,a>0and
0 R

€ > 0.

This last condition is Equation (3.49) in [6].
We now check these 9 conditions in order. We have, by (6.5)-(6.7), (6.7), for s < t,

(Var Bonsa(on(@) — (Var Bans,oy(a) < 2ela (1 — ) + (2 4 0?1 — 5)
Ct/\Sa(a)(a) - Cs/\Sa(oz)(a) < 402a(t - 8)7

tASq () 5ASa(a)
/ /|x|21/(du,dx)(a)—/ /|x|21/(du,dx)(a):0.
0 R 0 R
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This verifies condition (i) with Fi(a) = K(a)t, where K(a) is large enough.
Condition (ii) holds since v = 0. Condition (iii) (local uniqueness) holds by Theo-

rem II1.2.40 [6] since the equation
t t
Y, = 20/ (Y, Vv 0)"/2ds + (2d + o)t + 20/ (Y, v 0)/2dW, + 2 |
0 0

where W = (Wy,t > 0) is a Wiener process, has a unique (weak) solution [5, Chapter IV,
Theorems 1.1, 2.4, and 3.2, Example 8.2] for any 2 € R, and since one can set, in the conditions
of Theorem 111.2.40 [6], p:B = B, p;C = C, pywv = v = 0.

Condition (iv) is immediate from (6.5)—(6.7) since Skorohod convergence implies conver-
gence at continuity points of the limit (e.g., use the argument of the proof of Theorem 6.2.2 in
[10]). Condition (v) holds by the assumption V{’ < v, (5.21), and Lemma 5.5.

Consider condition [6;,. — R4] under (vi). Since v = 0, it is enough to prove that

/Ot/ng(w)lv”(ds,dx) P

Since, by the definition of Cy(R), for some ¢ > 0, g(z) = 0 if |z| < ¢, and g(x) is bounded,
the latter integral converges in probability to zero as n — oo if v"([0,¢], {|z| > €}) . By
Lemma 1, p. 424 in [10], this is implied by

sup |AX ]| Ly (n—o0), t>0. (6.9)
s<t

By the definition of X™, JAX?| < A|V,[24+]Aé7|, and (6.9) holds by (6.2) and the C-tightness
of V".
Next, we check condition [Sup-#; | under (vi). By definition of X", (6.3) and (6.5),
sup [BiAsy = Bansp (X < 2Vn(p" = 1) ] | V3 lds
s<t
t

+20e] [ VY= (Vi) +87) v 0)/2|ds
0

< 2W/alp" = 1) = eltsup V]| + 2left sup |87 ]'/?,
s<t s<t

and the latter converges in probability to 0 as n — oo, since \/n(p” — 1) — ¢, {V",n > 1} is
tight and sup |67 Ly by (6.2).

s<t
Now consider condition [v] . — R4] under (vi). By (6.4), (6.6) and the definition of X"

+ 40%tsup |67 . (6.10)

‘éﬁsg - Ct/\sg(X”)‘ < 4sup !
s<t

s<t

(T = ot [V
h /

0
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The last term converges in probability to 0 by (6.2). Since {(V'")2,n > 1} is C-tight, we have,

for n > 0,
lim lim P sup ‘(VZ)Z — (VZ)Q‘ >n| =0,
§—07n—00 [u—v|<8u,w<t

which, in view of the second assertion of Lemma 5.5, is seen to yield (for a proof use [1, Problem

8,§21]).

sup LA 0.

s<t

(VIR - o [ (V)R
/ /

In view of (6.10), this concludes the verification of [v],. — D].

Finally, consider condition (6.8a) under (vi). Define

. 1
i :/ / 22 - 1(|z| > b)w"(ds, dz), t > 0.
0 JR

Since v"(ds,dz) is the predictable measure of jumps of X", by (6.1) the process = (E?,t >
0) is the F"-compensator of the process L™ = (L},t > 0) defined by
Ly =4 (VoO)XAMD)? - 1(2[V,_[|AM]| > b) . (6.11)
s<t

We have for ¢ > 0, A > 0,
~ J— t ~
P(L} >e)< P (sup V> A) + P (/ WV, < A)ydL? > 6) . (6.12)
s<t 0

The first term on the right goes in probability to 0 as n — oo and A — oo by the tightness of
V"
Next, letting
n, _Tn,l n,2 17—”72
t T ()] T = 0 [nQat+1)]
we have for the second term on the right of (6.12), since v/ < t implies A™ > |n(At + 1)],

(=12,
¢ TN ¥n 1 n,1 1
P(/ (V,_ < A)dL] >€) gP(—An; >/\1t—|-1——)
0 n n
1 t/\'yt /\’yt’2 —n ~
+P< A2 >/\2t+1——)+P / WV, <ALy > € .
0

Again the first two terms on the right tend to 0 as n — oo by Lemma 5.1. Tt is thus left to
prove that the last term on the right tends in probability to 0 as n — oc.

The process (4 1(Va_ < A)dL?,t > 0) is the F"-compensator of the process (fi 1(V,_ <
A)dL?,t > 0). Therefore, by (6.11) and, since, by Lemma 5.4, the l7'7“, L=1,2,1>1, are

n
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F"-stopping times, the Lenglart-Rebolledo inequality (see, e.g., Theorem 1.9.3 [10]) implies
that, for n > 0,

tAy Ay — .
P / T < A)dET > e
0

1 b
<-|n+FE sup 4A?|AMT? 1 <|AM”| > )
€ S<t/\’ytnl/\ n,2 214

Vi

b
+ P [ 442 AMM? 1 [[AMP ] > — | > 1
s 24

sgt/\'ytn’1 /\’ytn’2

(6.13)

By the definitions of M” (see (5.19)) and /"', /"%,

E sup |AM!"*1 <|AM”| > b )

sgt/\'ytn’l/\'ytn’2 24

6 n n ¢=n n, ., T, b
<—FE sup (772"1—/0152"1)2‘10@ - ot 1|>4A\/_)
i< n(Mt41))

6 n nen m, T, b
+ —F sup (7 — ppel)? 1 <|§ C =i > \/_)
i< n(ha(t41)] “
7, n P b
< 6(Mt+ 1)E(n; ! - p1&; 1)2 1 <|f — P, 1| 4A\/ﬁ)
n n " " it b
+ 6Nt + D E("? = p5el?)? -1 <|51 = oyl > 4A\/_)

which tends to 0 as n — oo by (2.4) and (2.5). The third term on the right of (6.13) is not
greater than

P (4A2

which again tends to 0 by (2.4) and (

¢ )] : ) Wb
- ; (&0 = pin ) 1(Im — prE" |>4Af)

g ln0ate)]

b

n,2 nETy2\2 n,2 n, 17,2

+— g e o -1 .

n b (772 p2£2 ) <|£2 = P2 | > 4 4\/_)

277)7

2.5). Therefore, by (6.13),

_ Ayttt -
lim P / WV, <AL > e <
n—oo 0

which completes the check of (6.8a) since 7 is arbitrary.

mld

Thus, all the conditions of Theorem 1X.3.48 [6] hold and, by the theorem, {X", n > 1} con-

verges in distribution to X, which by Lemma 2.1 is distributed as V2. Since (5.21), Lemma 5.5
and (6.2) imply

P(sup|(V5”)2—X§| >6) —0(n—o00), t>0, 6>0,
s<t
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we have that (V)2 9 V2, and hence that V" LV since all the processes are nonnegative. [ |
Proof of Theorem 2.2. The theorem follows by Theorem 2.1, Theorem 4.1 and Lemma
5.7.1
Proof of Theorem 2.3 A basic equation for V™ differs from (5.2) in that we have to substitute
7 — (V) for 57, ie.,

. t . t . .

VP =V + Bl + \/ﬁ/ L(V] = 0)ds + \/ﬁ/ LV] > 0)(7" — r"(v/nV]))ds .

0 0

After that the proof goes exactly the way it does for {V",n > 1}. We first prove the C-

tightness of {V”,n > 1} by following the same steps as in Section 4. The only difference is
that the K™¢ are defined this time by

t i i
KP =i [ W07 > o = (avy) d.
0
and Lemma 5.2 is trivial because of (72).

As can be seen from the proof of Theorem 2.1 in Section 6, after the C-tightness has been

proved, the only additional fact that is needed is the convergence
f p
ﬁ/ VI3 ds — dt.
0
In the case of V”, this amounts to proving that
t ¥ ¥
Vi [V ey ds B
0
This turns out to be a simple consequence of (r1), (r2) and an analogue of Lemma 5.7 for V"

which is proved in the same way. According to the latter result, for n > 0,

t i
lim lim P (/ L(V) <e)ds > 77) = 0. (6.14)
0

e—0 n—oo

Then

< P ([ v e i < i )
e ([ WA = - 1 = s> 3)
< P ((supﬂC(Fn —r"(x)) + d) /Ot LV < e)ds > g)

z,n

+1 (t sup |a(7" —r"(x)) —d| > Q) .
z>+\/ne 2

The probability on the right-hand side tends to 0 as n — oo by (r2) and (6.14), and the

indicator goes to 0 as n — oo by (r1). n
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