
Scheduling Two-Point Stochastic Jobs
to Minimize the Makespan on Two Parallel Machines

Sem Borst
���

John Bruno
���

E. G. Coffman, Jr.
�

Steven Phillips
�

ABSTRACT

Simple optimal policies are known for the problem of scheduling jobs to minimize expected
makespan on two parallel machines when the job running-time distribution has a monotone haz-
ard rate. But no such policy appears to be known in general. We investigate the general problem
by adopting two-point running-time distributions, the simplest discrete distributions not having
monotone hazard rates. We derive a policy that gives an explicit, compact solution to this prob-
lem and prove its optimality. We also comment briefly on first-order extensions of the model, but
each of these seems to be markedly more difficult to analyze.

�
Bell Labs, Lucent Technologies, Murray Hill, NJ 07974�
Department of Computer Science, University of California, Santa Barbara, CA 93106	
AT&T Research, Murray Hill, NJ 07974

The author was supported in part by a fellowship from the Netherlands Organization for Scientific Research

(NWO)�

The author was supported in part by a University of California MICRO grant and the Xerox Corporation.

Scheduling Two-Point Stochastic Jobs
to Minimize the Makespan on Two Parallel Machines

Sem Borst
���

John Bruno
���

E. G. Coffman, Jr.
�

Steven Phillips
�

ABSTRACT

1. Introduction

Scheduling stochastic jobs on parallel machines to minimize expected makespan (latest fin-

ishing time) is a problem at the heart of stochastic scheduling theory. In the version of interest

here, scheduling is preemptive and job running times are � independent samples from a given

distribution
�

. Optimal policies have been known for some time when
�

has a monotone hazard-

rate function; according to these policies, at every time � , unfinished jobs are scheduled in non-

decreasing order of their hazard rates at time � [9]. However, nothing appears to be known about

general distributions
�

. In particular, there is no concrete measure of the difficulty of the general

problem, as is the case for example with the class of stochastic optimization problems studied

in [7].

To broaden the understanding of the general problem, this paper studies what is probably the

simplest non-trivial case where the running-time distribution does not have a monotone hazard-

rate function: There are two machines and
�

is a two-point distribution on the integers 1 and
�����

, with �
	���
�����	 ��� arbitrary, where � is a generic job running time. The expected-

makespan minimization problem is discrete in that scheduling decisions are limited to the integer

times ��� � ������� . All that a policy knows about an unfinished job is the time the job has already run.

Thus, if a job has already received at least
�

unit of running time, the job’s remaining running time

is also known.

After the preliminaries of the next section, we present in Section 3 the desired algorithm and

a proof of its optimality. Section 4 concludes the paper with a few comments on open problems.

The remainder of this section remarks briefly on related literature.
�
Bell Labs, Lucent Technologies, Murray Hill, NJ 07974�
Department of Computer Science, University of California, Santa Barbara, CA 93106	
AT&T Research, Murray Hill, NJ 07974

The author was supported in part by a fellowship from the Netherlands Organization for Scientific Research

(NWO)�

The author was supported in part by a University of California MICRO grant and the Xerox Corporation.

This paper is a sequel to the research in [4] where the same problem is studied except that the

makespan objective function is replaced by the sum of finishing times (flow time). The analysis

here is quite different and leads to stronger results. The approach to the somewhat more difficult

problem in [4] entails asymptotic methods. We also refer to [4] for a brief discussion of potential

applications.

A variant to the general problem studied here assumes machines of different speeds; see e.g. [3].

In a variant of the probability model, jobs are taken as independent samples of exponential distri-

butions with rate parameters that may vary from job to job [1, 5, 11]. For additional references,

see [10, 4].

2. Preliminaries

A state of the system is given by a
� � � ���

-tuple of non-negative integers � 	 � ��� ������� � ��� �
where ��� denotes the number of unfinished jobs that have accrued 	 units of running time. Given

a state � , the number of unfinished jobs is denoted by
��
� 	�� ������ ��� .
A policy is a mapping � from states � into assignments of machines to unfinished jobs. Thus,

if
������ then � � � � 	 � 	 ��� � means that the machines are assigned to jobs which have received

	 and � units of running time without finishing, respectively. For an assignment to be feasible we

require: if 	 	�� then ��� ��� , otherwise ��� � �
and ��� � �

. If
�� 	 �
then � assigns one

machine to the lone unfinished job and the other machine remains idle.

A schedule for a collection of jobs with known running times is represented by a sequence

of job/duration pairs for each machine. The job sequences begin at time 0 on both machines and

satisfy the following constraints: The total running time of a job on the two machines is equal to

the job’s running-time requirement, and at no time is any job scheduled to run on both machines

at the same time. The makespan of a schedule is its latest job finishing time.

Let �
� � � � denote the (random) makespan of the schedule determined by policy � beginning

in state � . A policy �! is defined to be optimal if "#�$�&% � � � 	�')(�*��+"#�
� � � � for all � .

A greedy algorithm for our scheduling problem assigns machines to jobs in increasing order

of accrued running time. The expected makespan under this least-accrued-time (LAT) policy is

easily computed as follows. Let , denote the number of long jobs (i.e., jobs that require
� � �

units of processing time) in the schedule. If ,)-	 � , then LAT yields a makespan .0/�1 �32��4 . If , 	 � ,
LAT produces a makespan / � � � when � is even, but either /�1 �� � �

or /&5 �� � �
according as the

last job is or is not long, respectively, when � is odd. Thus, if � is the LAT policy and � is even,

2

we get the formula

"#�
� � � � 	 /�
2����

� �
�
��� � ,

�����	� � ,�
 � /&5 2 � �
� � � 2 � � ����� �
����� � � /&5 � � ��� � � �(2.1)

and if � is odd, then

"#�
� � � � 	 /�
2����

� � � �
�

� � � , �
�
� ��� � � ,
 ��/&5 2 � �
� � � 2

� � ��� � � � �
� ��� � � � ��� ��/&5 � � ��� � � � � ��� � ��� �

� ��� ��/&5 � � �
� � � �
Working out the sums and using the indicator function ����� , these combine into

"#�
� � � � 	 � �
��� � � � �
� � � ��

� � � �
�
� � � �
��� � � /
����� � � � /&5 � � ��� � �

� � � � � ����� � � ����	� � � /&5 � � �
� � � � �� � �
� � ��� � ��� / ��� �
Note that, whenever the sample does not contain exactly one long job, LAT yields a minimal

makespan, i.e., a makespan of length .! �"�� 4 , where is the sum of the job running times in the

schedule. Thus, LAT will be a near-optimal policy for a wide range of values of the parameters
�

and � and the initial number of jobs � . For example, fix
�

and � and consider large � . Then with

high probability (viz., with probability
��� � � /&5 � � ��� � �$#�� � �&%('), schedules will contain

either no long jobs or at least two long jobs. When there is exactly one long job, LAT produces

a schedule with that job running alone at the end of the schedule, so the makespan is clearly not

minimal.

Consistent with these remarks, Section 3 will show that LAT is an optimal turnpike policy in

the sense that, if enough unstarted jobs (in our case at least
��� �

such jobs) remain in state � , then

the LAT decision is optimal in state � . The difficulty in designing an optimal policy will center on

states where the work remaining consists of relatively few (in fact at most
�

) unstarted jobs and

the final
�

time units of exactly one long job that has already received its first time unit. Section 3

shows that, for � large enough, we will not want to schedule all remaining unstarted jobs (as does

LAT) before getting to the remainder of the long job; this strategy might be too likely to produce

a poor schedule that ends with a large part of the remainder of the one long job running on one

machine while the other machine is idle.

In the purely combinatorial version of our scheduling problem, the running times are known

in advance, and the makespan is deterministic. If � is a deterministic state (i.e., � � 	��), then

� � � � denotes the corresponding minimal makespan. The lemma below evaluates � � � � by ap-

plying Theorem 2.1 in [2] which is due to T. C. Hu. It is also an easy extension of the results in [6]

3

and [8]; we omit the details. Let
� � � 	 � ���� � � � � �
� 	 � ��� denote the sum of the deterministic

job lengths in � , and let � ��� 	�'���� � � � � � 		� ��
 	
 � � ���
� � � denote a largest running time

over all deterministic jobs in � .

Lemma 2.1. Let � be deterministic. Then � � � � 	�'���� � . � � � "�� 4 ��� ��� � , and this value is achieved
by a policy that assigns the machines to the jobs with the longest remaining running times first.

We conclude this section by stating the principle of optimality for our stochastic scheduling

problem. This formula brings out the recursive structure of an optimal policy and can serve as

the definition of such policies. Although the formula is not explicitly used in what follows, it was

used for computations that suggested the properties of optimal policies.

Let � � denote a
� � � ���

-tuple
� � �� ������� �	� � � � where � �� 	 �

and � �� 	 � , � -	 	 . Let � � 1 � de-

note the
� � �
���

-tuple of all zeros. The makespan of optimal schedules is denoted by �
� � � � 	

')(�*��+"#�
� � � � . Define � � to be the conditional probability that a job which has not finished after

receiving 	 units of running time, finishes after receiving 	 � � units of running time. Note that

� � 	 � , � � 	 � , � � 	 � for all 	+-	 ��� � . Then a straightforward analysis gives

1. �
� � � 1 �

� 	 � and �
� � � � 	 � .

2. For �
 	�� � , �
� � � � 	 � � � �
� � � � �

� � � 1 �
�
.

3. If
��
��� ,

�
� � � 	 � � ')(�*��� � ��� � � � �

� � � � � � � � � �
� �
� � � � � � �

� � � � � � � � � � � 1 �
� �

� � � �
� � � � �
� � � � � � � � � � � 1 �

� �
� �
� � � � � �
� � � � �

� � � � � � � � � � � 1 �
� � � 1 �

� �

where the range of the minimization is taken over all 	 ��� satisfying �
 	
 �
 �
and

either 	�	 � and ��� ��� or ��� � � and ��� � � .

3. Main result

This section presents the desired optimal algorithm along with a proof of its optimality. First

we describe a situation where clairvoyance does not help obtain smaller makespans. Assume

that � is a stochastic state (i.e., ����� �) and let � � ������� � � /�� denote the running-time random

variables associated with the ��� stochastic jobs. Define �$� � �
�	� � ������� �	� /��
�

as the conditional

4

makespan given that � � 	 � � ������� � � /�� 	 � /�� , where each � � is either
�

or
� � �

. Let � � �
�	� � ������� �	� /��
�

denote the minimum makespan over all schedules where the running times of the stochastic jobs

are known in advance and equal to � � ������� �	� /�� , respectively. If � is deterministic, then the � � are

omitted, and the notation reduces to � � � � as before. Clearly,

� � �
�	� � ������� �	� /��
�
 �
� � �
�	� � ������� �	� /��

� �

since � must make its scheduling decisions without knowledge of the � � ’s.

A state � is called predictable if there exists a policy � such that � � � �
�	� � ������� �	� /��
� 	

� � �
�	� � ������� �	� /��
�

for all � � ������� �	� /�� . We define the following policy for use in predictable

states.

Policy ��� : If in state � with

1. ����� � : Assign one machine to a deterministic job with the largest remaining running time

and the other machine to one of the stochastic jobs.

2. ��� 	 � : Assign the machines to jobs with the longest remaining running times.

�

Let ����� � � � 	 � � ���	�	��� ��� denote the number of deterministic jobs in � .

Lemma 3.1. Let � be a state satisfying ����� � � � � � and
� � � � � ����� � � ��� ��� � � ��� . Then � is

a predictable state and �$� �
� �
�	� � ������� �	� /��

� 	 � � �
�	� � ������� �	� /��
�

for all � � ������� �	� /�� .

Proof: It follows from the conditions of the lemma that ���
 �
. Accordingly, the lemma is

easily seen to be true when
� 	 � .

Assume
� � � , and let ��
 denote a state that results after ��� decision epochs of policy � � .

Since � � schedules deterministic jobs with the longest remaining running time, ����� � �
 � ������� � � � .
It is also easy to check that � � maintains the invariant

� � � � � ����� � � ��� ��� � � ��� for successive

states, and consequently
� ��
 � � � ����� � ��
 ���
��� � .

Suppose ����� � �
 � � � . It follows from the invariant and Lemma 2.1 that � � �
 � 	�. � �
 � "�� 4 .
The resulting schedule under policy � � is minimal, and therefore

�
� �
� �
�	� � ������� �	� /��

� 	 � � �
�	� � ������� �	� /��
�

for all outcomes � � ������� �	� /�� such that ����� � ��
 � � � .

5

Suppose ����� � ��
 � 	 � . In this case, all the stochastic jobs must have finished after one unit of

running time. If the resulting schedule is minimal, then the lemma follows. If one of the machines

has more than one unit of idle time, then the other machine must be running a deterministic job

which was available in state � and assigned a machine at every decision epoch. Once again the

lemma follows.
�

We are now ready to prove that the policy below is optimal if started in a state
� � � ��������� � � � .

Each step of the policy is labeled with the lemmas to be used in proving its optimality.

Policy � � : If in state � with,

1. ��� � � � � : Assign both machines to stochastic jobs. (Lemmas 3.3 and 3.4)

2. � � ���
 � and

(a) ����� � � � ��� : Use policy � � from this point onward. (Lemma 3.2 and Lemma 3.1)

(b) ����� � � � 	 �
: Let

� 	 ��� � '���� � � ��. /��05 � 1 �������� 4 � . If � � �
� 1 � , then assign one

machine to the deterministic job and the other machine to a stochastic job. Otherwise,

assign both machines to the stochastic jobs. (Lemmas 3.5, 3.6, and 3.7)

(c) ����� � � � 	 � : Assign both machines to stochastic jobs. (There is no choice.)

3. ��� 	 � : Assign the machines to jobs with the longest remaining running times. (Lemma 2.1)

�

Theorem 3.1. Policy � is optimal beginning in state � where ��� 	 � for 	�	 � ������� � � .

Proof: We need only give the proofs of Lemmas 3.3–3.7 below (and referenced above); the

theorem will then follow at once from the definition of � .
Lemma 3.2. Assume that we use policy � beginning in a state that has no deterministic jobs.
Whenever step 2 of � applies to the current state � , we have

� � � � � ����� � � ���
��� � � ��� .
Proof: Straightforward induction on the number of times that step 2 in policy � has executed.
�

The next two lemmas apply to step 1 of policy � .
Lemma 3.3. If ��� � � , then there exists an optimal policy which assigns at least one of the
machines to a stochastic job in state � .

6

Proof: Let � be an optimal policy. Suppose � beginning in state � assigns both machines to

the deterministic jobs
� � and

� � . Let time � be the next time at which � assigns a machine to a

stochastic job, say � . Let � denote the other job that is assigned a machine at time � by policy � .

If � is a deterministic job, we can assume without loss of generality that � is not equal to
� � .

Define a policy ��
 starting in state � that initially assigns machines to the deterministic job
� � and

the stochastic job � ; �
 then makes exactly the same assignments as � until time � . At time � , �

assigns one machine to

� � and the other to � . At time � � � , the states reached by both policies

are identical, and from this point onward ��
 mimics � . Clearly, "#� ��� � � ��
 "#�
� � � � .
�

Lemma 3.4. If ��� � � ��� , then there exists an optimal policy that assigns both machines to
stochastic jobs in state � .

Proof: Let � be an optimal policy. We assume that the stochastic jobs are assigned in a partic-

ular order, namely, � � ������� ��� /�� . Bearing in mind Lemma 3.3, we suppose that at time 0, pol-

icy � assigns one machine to deterministic job
�

and the other machine to stochastic job � �

(Lemma 3.3). Let time � (a random variable) be the next time at which policy � assigns one ma-

chine to a stochastic job and the other machine is assigned to a job � which is not
�

. There has

to be such an epoch since ��� � ��� � . Now introduce a policy ��
 that assigns the machines to

stochastic jobs � � and � � at time 0. From time 1 until time � � � , when policy � assigns one ma-

chine to a stochastic job, say � � , and the other machine to job
�

, policy �
 assigns one machine

to job
�

and the other machine to stochastic job � � 1 � . At time � , policy ��
 assigns one machine

to job
�

and the other machine to job � . At time � � � , the states obtained by both policies are

identical, and from this point onward �
 mimics � . Clearly, "#�$� � � � ��
 "#�
� � � � .
�

A state � is called critical if ����� � � � 	 � and
� � � � ��� � � . Let � and �
 be critical states.

We say that �
 is a successor of � if there exists an integer 	 � � such that
� � � 	 � �
 � � 	

and ��� 	 �
� � 	 . A policy � is said to panic in state � if � is critical and in state � � assigns a

machine to the deterministic job.

The next three lemmas justify the assignments made by policy � in step 2(b).

Lemma 3.5. Whenever step 2(b) in policy � applies, the corresponding state is critical.

Proof: By Lemma 3.2 and the definition of a critical state.
�

7

Lemma 3.6. Suppose policy � panics in critical state � and does not panic in �
 , a successor of
� . Then there exists a policy �
 that does not panic in state � and "#� ��� � � ��
 "#�
� � � � .

Proof: Assume
� � � 	 � �
 � � 	 where 	 � � . Accordingly, there are at least 	 � � stochastic jobs

in state � (since � does not panic in state ��
). Under the condition that the first 	 stochastic jobs

finish after receiving one unit of running time, policy � assigns one machine to the deterministic

job
�

and assigns the other machine to stochastic jobs � � ������� ��� � at times � through 	 � � . At

time 	 , policy � assigns the machines to � � 1 � and � � 1 � .
At time � , policy ��
 assigns the machines to stochastic jobs � � and � � . Under the condition

that the first 	 stochastic jobs finish after receiving one unit of running time, policy �
 assigns

one machine to the deterministic job
�

at times
�

through 	 . The other machine is assigned to

stochastic jobs � � ������� ��� � 1 � at times
�

through 	 , respectively. Clearly, under the condition that

the first 	 stochastic jobs finish after receiving one unit of running time, policies � and �
 achieve

the same state at time 	 � � . From time 	 � � onward, policy �
 mimics policy � .

Assume that at least one of the first 	 stochastic jobs requires
� � �

units of running time. The

analysis can be divided into two cases: 1) � � does not finish after receiving one unit of running

time and 2) � � , with
� �
�
 	 , is the first stochastic job not to finish after receiving one unit of

running time.

1) Suppose that � � requires
� � �

units of running time. Let � denote the time at which policy

� assigns a machine to the stochastic job � � , and let � denote the other job assigned a machine

at time � . As before, policy ��
 assigns the machines to stochastic jobs � � and � � at time � . ¿From

time 1 to time � , policy ��
 mimics policy � . At time � , policy ��
 assigns machines to jobs depend-

ing upon � .

If � 	 � � , then ��
 assigns machines to jobs � � and
�

at time � . It is not difficult to see that

under these assumptions both policies achieve the same state at time � ��� . ¿From time � ���

onward, policy �
 mimics policy � .

If � 	 � � , then ��
 assigns machines to jobs
�

and � � at time � . Again, it is not difficult to

see that under these assumptions both policies achieve the same state at time � � � . ¿From time

� � � onward, policy �
 mimics policy � .

If ��	 �
, then policy �
 assigns the machines to jobs

�
and � � at time � . Let � � and ��� �

be the remaining running times of jobs
�

and � � , respectively, at time � � � under policy � . The

remaining running times of
�

and � � under policy �
 at time � � � are � � � � and ��� � � � . Since

8

at each epoch between time 0 and � policy � assigns the machines to
�

and � � , we have that

��� � � � � . ¿From time � � � onward, policy ��
 mimics � with one exception. Since � � � � � � ,

there must be some time after time � at which policy � assigns one machine to � � and the other

machine to a job � not equal to
�

. At this time, policy �
 assigns one machine to
�

and the other

machine to � . It is not difficult to see that both policies achieve the same state at the following

epoch, and make identical assignments thereafter.

2) Assume � � , with
� �
�
 	 , is the first stochastic job not to finish after receiving one unit

of running time. Until time � � � , policy ��
 makes the assignments prescribed above under the

condition that the stochastic jobs finish after receiving one unit of running time. At time � � � ,
policy �
 assigns one machine to job

�
and the other to job � � (at this time � � is a deterministic

job under policy ��
). Let � � and ��� � 	 � denote the remaining running times of jobs
�

and � � ,
respectively, at time � under policy � . The remaining running times of

�
and � � at time � under

policy �
 are � � �
� and ��� �
� � 	 ��� � , respectively. Policy �
 mimics � from time � onward

with one exception. Since � � � � , there must be some time after � � � at which policy � assigns

one machine to � � and the other machine to a job � not equal to
�

. At this time, policy �
 assigns

one machine to
�

and the other machine to � . It is not difficult to see that both policies achieve

the same state at the next epoch.
�

Lemma 3.7. Let � be a critical state, ��� � � , and
� 	 ��� � '���� � � ��. /��05 � 1 �������� 4 � . Then an

optimal policy must panic if � � �
� 1 � , must not panic if � � �

� 1 � , and may or may not panic if

� 	 �
� 1 � .

Proof: The proof is by induction on ��� . When ��� 	 �
, we have

� 	�� , and the lemma ob-

viously holds. Consider some ��� � �
, and assume that the lemma holds for all critical states

with fewer stochastic jobs. Since � is a critical state, we have
� � � � ��� . We compare two

policies � and ��
 , where � panics whenever it encounters a critical state (including state �), and

where �
 does not panic in state � , but panics whenever it encounters any other critical state. By

Lemmas 3.5 and 3.1, whenever either policy encounters a stochastic job that does not finish the

resulting state is predictable. Both policies behave optimally when a predictable state is encoun-

tered.

To begin with, we calculate "#�$� � � �$� "#� � � � � � . It is easy to see that for sample paths in

which at least two of the stochastic jobs require
��� �

running time, the makespans under both

policies are identical (the schedules are minimal). If all the stochastic jobs finish after one unit

9

of running time, then the contribution to the expected makespan under policy � is � /�� � � � . The

corresponding contribution under policy ��
 is � /�� � � � � � ��� .
The situation is more complex when exactly one of the stochastic jobs requires

��� �
units

of running time. Let � � ������� ��� /�� denote the stochastic jobs and
�

denote the deterministic job.

Suppose that � � ,)��� , is the stochastic job requiring
� � �

units of running time. At time 	 ,
under policy � the remaining running time of job

�
is
� � � � 	 , the number of stochastic jobs

is ��� � 	 , and the remaining running time of job � � is
�

. At time 	 � � , under policy �
 the

remaining running time of job
�

is
� � � � � 	 � � � , the number of stochastic jobs is ��� � 	 , and

the remaining running time of job � � is
�

. These states are predictable, and thus we can compare

the expected contribution to the makespan from these sample paths. If enough stochastic jobs

remain, the resulting makespan under policies � and �
 will be minimal, and the contributions

under both policies are equal. It is not too difficult to see that if
� � � � 	 plus � � � 	 is less than

or equal to
��� � , then the makespan under policy � is not minimal, i.e.,

� � � � ��� � �&	
 ��� ���(3.1)

Since policy ��
 detects the long job (� �) at time 	 � � , the makespan of the schedule under ��
 is

one less than the makespan of the schedule under policy � . If � � were the long job, both policies

detect this at the same time, and the resulting makespans are equal.

Let
�

denote the number of sample paths for which the schedule under � is one longer than

the schedule under �
 . The number
�

is equal to the number of values of 	 satisfying �
 	
 ���
and (3.1). We get

� 	 ��� � �
� '���� ������. � � � � ��� � � � � � "�� 4 �
	 ��� � '���� � � ��. � � � � ��� � ��� "�� 4 � �(3.2)

The probability of each of these sample paths is � /�� 5 � � ��� � � , and thus the difference in the

contribution to the makespan between � and ��
 is � /�� 5 � � ��� � ��� . Since for all other sample

paths the two policies achieve identical makespans, we get

"#�
� � � ��� "#�
� � � � � 	 � /�� 5 � � ��� � ��� � � /�� �(3.3)

Policy � is no worse than policy ��
 when � � � " � � � ��� . Since
� " � � � ��� is non-increasing

as ��� decreases, it follows from the induction hypothesis that � � is an optimal policy whenever

� � � " � ��� ��� (some care has to be taken when ��� 	 �).

10

Policy ��
 is better than policy � when � � � " � ��� ��� . It follows from Lemma 3.6 that

panicing in state � could not have been optimal.
�

The proof of Theorem 3.1 is complete.

4. Concluding remarks

We conclude with some comments on open problems. As mentioned earlier, the problem

considered here is probably the simplest non-trivial case where the running-time distributiondoes

not have a monotone hazard-rate function. One obvious generalization would be the case where

the number of machines is � � � . We strongly conjecture that the optimal policy will then

continue to have a turnpike property, namely, that if at least
� � � � ����� � unstarted jobs remain,

then the LAT decision is optimal. Determining what to do in states with at most
� � � � ��� unstarted

jobs will get more complicated, since the state will not be predictable until �
� �

long jobs have

been detected. Another natural generalization would be the case where the running times have a

two-pointdistributionon the integers � � � with
� ����� � . We conjecture that even then a turnpike

policy will continue to be optimal, but so far a proof has eluded us. A final extension which is

worth mentioning, is the case where the running-times follow a � -point distribution, � � � .

References

[1] J. L. Bruno, P. J. Downey, and G. N. Frederickson. Sequencing tasks with exponential ser-

vice times to minimize the expected flow time or makespan. Assoc. Comput. Mach., 28:100–

113, 1981.

[2] E. G. Coffman, Jr., editor. Computer and Job-Shop Scheduling Theory. John Wiley and

Sons, 1976.

[3] E. G. Coffman, Jr., L. Flatto, M. R. Garey, and R. R. Weber. Minimizing expected

makespans on uniform processor systems. Adv. Appl. Prob., 19:177–201, 1987.

[4] E. G. Coffman, Jr., M. Hofri, and G. Weiss. Scheduling stochastic jobs with a two-point

distribution on two parallel machines. Probability in the Engineering and Informational

Sciences, 3:89–116, 1989.

11

[5] K. D. Glazebrook. Scheduling tasks with exponential service times on parallel processors.

J. Appl. Prob., 16:658–689, 1979.

[6] R. McNaughton. Scheduling with deadlines and loss functions. Management Science, 1959.

[7] C. Papadimitriou. Games against nature. Journal of Computer and System Sciences,

31:288–301, 1985.

[8] M. H. Rothkopf. Scheduling independent tasks on parallel processors. Management Sci-

ence, 1966.

[9] R. R. Weber. Scheduling jobs with stochastic processing requirements on parallel machines

to minimize makespan or flow time. J. Appl. Prob., 19:167–182, 1982.

[10] R. R. Weber, P. Varaiya, and J. Walrand. Scheduling jobs with stochastically ordered pro-

cessing times on parallel machines to minimize expected flow time. J. Appl. Prob., 23:841–

847, 1986.

[11] G. Weiss and M. Pinedo. Scheduling tasks with exponential service times on non-identical

processors to minimize various cost functions. J. Appl. Prob., 17:187–202, 1980.

12

