Scheduling Two-Point Stochastic Jobs
to Minimize the M akespan on Two Parallel Machines

SemBorst' 4 JohnBruno?® E.G. Coffman,Jr. ' Steven Phillips?®

ABSTRACT

Simple optimal policiesare known for the problem of scheduling jobs to minimize expected
makespan on two parallel machines when the job running-time distribution has a monotone haz-
ard rate. But no such policy appearsto be knownin general. We investigatethe general problem
by adopting two-point running-time distributions, the simplest discrete distributions not having
monotone hazard rates. We derive a policy that gives an explicit, compact solution to this prob-
lem and proveitsoptimality. We al so comment briefly on first-order extensions of the model, but
each of these seems to be markedly more difficult to analyze.

!Bell Labs, Lucent Technologies, Murray Hill, NJ07974

2Department of Computer Science, University of California, Santa Barbara, CA 93106

#AT&T Research, Murray Hill, NJ07974

*The author was supported in part by a fellowship from the Netherlands Organization for Scientific Research
(NWO)

®The author was supported in part by a University of California MICRO grant and the X erox Corporation.

Scheduling Two-Point Stochastic Jobs
to Minimize the M akespan on Two Parallel Machines

SemBorst' 4+ JohnBruno?® E.G. Coffman,Jr. ' Steven Phillips?®

ABSTRACT

1. Introduction

Scheduling stochastic jobs on parallel machines to minimize expected makespan (latest fin-
ishing time) is a problem at the heart of stochastic scheduling theory. In the version of interest
here, scheduling is preemptive and job running times are » independent samples from a given
distribution. Optimal policieshave been known for sometimewhen G has amonotone hazard-
rate function; according to these policies, at every time ¢, unfinished jobs are scheduled in non-
decreasing order of their hazard rates at time ¢ [9]. However, nothing appears to be known about
general distributions('. In particular, thereis no concrete measure of the difficulty of the general
problem, as is the case for example with the class of stochastic optimization problems studied
in[7].

To broaden the understanding of the general problem, this paper studieswhat is probably the
simplest non-trivia case where the running-time distribution does not have a monotone hazard-
rate function: There are two machines and (is a two-point distribution on the integers 1 and
k+ 1,withp = Pr{X = 1} arbitrary, where X isageneric job running time. The expected-
makespan minimization problemisdiscretein that scheduling decisionsare limited to theinteger
times0, 1,.... All that apolicy knowsabout an unfinished job isthetimethejob hasaready run.
Thus, if ajob hasalready received at least 1 unit of runningtime, thejob’sremaining runningtime
is aso known.

After the preliminaries of the next section, we present in Section 3 the desired a gorithm and
aproof of itsoptimality. Section 4 concludesthe paper with afew comments on open problems.

The remainder of this section remarks briefly on related literature.

!Bell Labs, Lucent Technologies, Murray Hill, NJ 07974

2Department of Computer Science, University of California, Santa Barbara, CA 93106

#AT&T Research, Murray Hill, NJ07974

*The author was supported in part by a fellowship from the Netherlands Organization for Scientific Research
(NWO)

®The author was supported in part by a University of California MICRO grant and the X erox Corporation.

Thispaper isasequel to theresearch in [4] where the same problem is studied except that the
makespan objective function is replaced by the sum of finishing times (flow time). The analysis
here is quitedifferent and leads to stronger results. The approach to the somewhat more difficult
problemin [4] entailsasymptotic methods. We also refer to [4] for abrief discussion of potential
applications.

A variant tothegeneral problem studied here assumes machinesof different speeds; seee.g. [3].
Inavariant of the probability model, jobsare taken as independent samples of exponential distri-
butions with rate parameters that may vary from job to job [1, 5, 11]. For additional references,
see[10, 4].

2. Preliminaries

A state of the systemisgivenby a(k + 1)-tupleof non-negativeintegersn = (nq, . .., nk)
where n; denotesthe number of unfinished jobsthat have accrued : unitsof running time. Given
astate n, the number of unfinished jobsis denoted by #n := Zf:o n;.

A policyisamapping = from states n into assignments of machinesto unfinished jobs. Thus,
if #n > 2 then7(n) = (4, 7) means that the machines are assigned to jobs which have received
¢+ and 5 units of running time without finishing, respectively. For an assignment to be feasible we
require: if 7 = j thenn; > 2, otherwisen; > 1 andn; > 1. If #n = 1 then 7 assignsone
meachine to the lone unfinished job and the other machineremainsidle.

A schedule for a collection of jobs with known running times is represented by a sequence
of job/duration pairs for each machine. The job sequences begin at time 0 on both machines and
satisfy the following constraints: Thetotal running time of ajob on the two machinesis equal to
the job’s running-time requirement, and at no timeis any job scheduled to run on both machines
at the same time. The makespan of a schedule isits|latest job finishing time.

Let M. (n) denotethe (random) makespan of the schedul e determined by policy = beginning
instaten. A policy 7 is defined to be optimal if EM -« (n) = min, EM (n) for al n.

A greedy algorithm for our scheduling problem assigns machinesto jobsin increasing order
of accrued running time. The expected makespan under this|east-accrued-time (LAT) policy is
easily computed as follows. Let ¢ denote the number of long jobs (i.e., jobs that require & + 1
unitsof processingtime) in the schedule. If ¢ # 1, then LAT yieldsamakespan [2£5£7. If ¢ = 1,
LAT produces amakespan % + k when n iseven, but either 41 + & or 251 + & according asthe

last jobisor isnot long, respectively, when n isodd. Thus, if 7 isthe LAT policy and » iseven,

we get the formula

(21) EMi(n)= Zn: ([-D (Z)p”—f(l —p) + (k — [S-D np" (1= p),

=

i(wrl [kﬁgll) (Z)p”_f(l—p)g

=0

(=[] et (k- [F5])

Working out the sums and using the indicator function I, these combineinto

and if » isodd, then

EM.(n) = [gw + M + (%n —(n =1, odd}) P (1 —p)
(oo = 5) [t =p 50 - o= 1)

Notethat, whenever the sample does not contain exactly onelong job, LAT yieldsaminimal
makespan, i.e., amakespan of length [0 /2], where o isthe sum of the job running timesin the
schedule. Thus, LAT will be anear-optimal policy for awide range of values of the parameters
and p and theinitial number of jobsn. For example, fix & and p and consider large n. Then with
high probability (viz., with probability 1 — np™~1(1 — p) ~ 1, n — o), scheduleswill contain
either no long jobsor at least two long jobs. When thereis exactly onelong job, LAT produces
a schedule with that job running alone at the end of the schedule, so the makespan is clearly not
minimal.

Consistent with these remarks, Section 3 will show that LAT isan optimal turnpike policy in
the sensethat, if enough unstarted jobs (in our caseat least & + 1 such jobs) remain in staten, then
theLAT decisionisoptimal in state n. Thedifficulty in designingan optimal policy will center on
states where the work remaining consists of relatively few (in fact at most k) unstarted jobs and
thefinal k& timeunitsof exactly onelongjob that hasaready received itsfirst timeunit. Section 3
showsthat, for p large enough, we will not want to schedule all remaining unstarted jobs (as does
LAT) before getting to the remainder of the long job; this strategy might betoo likely to produce
a poor schedule that ends with a large part of the remainder of the one long job running on one
machine while the other machineisidle.

In the purely combinatorial version of our scheduling problem, the running times are known
in advance, and the makespan is deterministic. If n isadeterministic state (i.e.,, no = 0), then
M (n) denotes the corresponding minimal makespan. Thelemma below evaluates M (n) by ap-
plying Theorem 2.1in[2] whichisdueto T. C. Hu. Itisaso an easy extension of theresultsin [6]

3

and [8]; we omit the details. Let ||n|| = S35, (k 4+ 1 — i)n; denotethe sum of the deterministic
joblengthsinn, andlet [n] = max{k+ 1 —i|1 <1i <k, n; > 0} denotealargest running time

over all deterministic jobsin n.

Lemma2.1. Letn bedeterministic. Then M (n) = max{[||n||/2],[n]},andthisvalueisachieved
by a policy that assignsthe machinesto the jobs with the longest remaining running times first.

We conclude this section by stating the principle of optimality for our stochastic scheduling
problem. This formula brings out the recursive structure of an optimal policy and can serve as
thedefinition of such policies. Althoughtheformulaisnot explicitly used in what follows, it was
used for computationsthat suggested the properties of optimal policies.

Let ¢; denotea(k + 1)-tuple (e, ..., €;) wheree: = lande; = 0, j # i. Let 0p4q de
notethe (% + 1)-tupleof al zeros. The makespan of optimal schedulesis denoted by M. (n) :=
min, EM.(n). Define ¢; to be the conditional probability that ajob which has not finished after
receiving 7 units of running time, finishes after receiving « 4+ 1 units of running time. Note that

g =p,qr = 1,¢q; = 0fordl i # 0, k. Then astraightforward analysis gives

1. M.(0p11) = 0 and M.(e) = 1.
2. For0 < i<k, M.(e;) =1+ (1 — g;)Mu(er1).
3. If #n > 2,
M, (n) = 1+ r%i]n{Q¢q;M*(n — €6 —€)+
(1 =g)g;Mu(n — € —¢; + €i41) +
(1 — q)Mi(n — € — ¢ + €j41) +

(1=q)(1 = g))Mu(n — ¢ — € + €141 + €j11)}

where the range of the minimization is taken over dl 7, j satisfying0 < ¢ < j < k and

etherz:]andnz >20rn; > 1al’]dn]‘ > 1.
3. Mainresult

This section presents the desired optimal agorithm along with a proof of its optimality. First
we describe a situation where clairvoyance does not help obtain smaller makespans. Assume
that n is a stochastic state (i.e., no > 0) and let X4, ..., X,,, denote the running-time random

variables associated with the n, stochastic jobs. Define M (n; 21, ..., z,,) as the conditional

4

makespangiventhat Xy = z4,..., X,,, = 2,,, Whereeachz; iseither1ork+1. Let M (n; 24, ..
denote the minimum makespan over all schedules where the running times of the stochastic jobs
areknowninadvanceand equal to 2+, . . ., z,,,, respectively. If n isdeterministic, thenthez; are

omitted, and the notation reducesto M (n) as before. Clearly,
M(n;aq, ..., 200,) < Me(ny21,...,2,,),

since = must make its scheduling decisionswithout knowledge of the z;’s.

A state n is called predictable if there exists a policy = such that M, (n;2q,...,2,,) =
M(n;2q,...,2,,) fordl z,,...,2,,. We define the following policy for use in predictable
states.

Palicy mo: If in staten with

1. np > 0: Assignone machineto a deterministicjob with thelargest remaining runningtime

and the other machine to one of the stochasticjobs.

2. ng = 0: Assign the machines to jobs with the longest remaining running times.

Let det(n) = ny + - - - + ny denotethe number of deterministic jobsin n.

2 and ||n|| > (det(n) — 1)k + no. Thenn is

Lemma3.1. Let n be a state satisfying det(n) >
= M(n;aq,...,2,) foralz,,... 2,

apredictablestateand M, (n; z1, ..., Z,,)

0"

Proof: It follows from the conditions of the lemmathat no, < k. Accordingly, the lemmais
easily seentobetruewhenk = 1.

Assume k > 2, and let n’ denote a state that results after ny decision epochs of policy 7.
Since 7y schedulesdeterministicjobswith thelongest remaining runningtime, det(n’) > det(n).
It isalso easy to check that 7o maintainstheinvariant ||n|| > (det(n) — 1)k + ng for successive
states, and consequently ||n’|| > (det(n’) — 1)k.

Supposedet(n’) > 2. It followsfrom theinvariantand Lemma 2.1 that M (n’) = [||n’||/2].

The resulting schedule under policy 7 isminimal, and therefore
Moy(nyaq,. . 20,) = M(nj2q, ..., 20,)

for al outcomes 21, . . ., z,,, suchthat det(n’) > 2.

cy Tig)

Supposedet(n’) = 2. Inthiscase, all the stochastic jobs must have finished after one unit of
runningtime. If theresulting scheduleisminimal, thenthelemmarfollows. If oneof themachines
has more than one unit of idle time, then the other machine must be running a deterministic job
which was availablein state n and assigned a machine at every decision epoch. Once again the
lemmafollows.
|

We are now ready to prove that the policy below isoptimd if started in a state(n, 0, ..., 0).
Each step of the policy islabeled with the lemmas to be used in proving its optimality.

Palicy . If in state n with,

1. ng > k + 1: Assign both machines to stochastic jobs. (Lemmas 3.3 and 3.4)
2. 0< ng<kand

(@ det(n) > 2: Usepolicy mo from this point onward. (Lemma 3.2 and Lemma 3.1)
(b) det(n) = 1: Let A = ng — max{1, [2=2HR07} 4f p > A then assign one
machineto the deterministicjob and the other machineto astochasticjob. Otherwise,

assign both machines to the stochastic jobs. (Lemmas 3.5, 3.6, and 3.7)

(€) det(n) = 0: Assign both machines to stochastic jobs. (Thereis no choice.)

3. ng = 0: Assignthemachinesto jobswiththelongest remaining runningtimes. (LemmaZ2.1)

Theorem 3.1. Policy . isoptimal beginningin staten wheren; = 0fori =1,..., k.

Proof: We need only give the proofs of Lemmas 3.3-3.7 below (and referenced above); the

theorem will then follow at once from the definition of ...

Lemma 3.2. Assume that we use policy 7, beginningin a state that has no deterministic jobs.
Whenever step 2 of 7, appliesto the current state n, we have ||n|| > (det(n) — 1)k + ng.

Proof: Straightforward induction on the number of timesthat step 2 in policy .. has executed.
[|

The next two lemmas apply to step 1 of policy ..

Lemma3.3. If ng > 0, then there exists an optimal policy which assigns at least one of the
machinesto a stochasticjob in state n.

Proof: Let 7 bean optimal policy. Suppose = beginning in state n assigns both machines to
the deterministic jobs.J; and .J;. Let timet be the next time at which = assigns amachine to a
stochasticjob, say U. Let X denotethe other job that isassigned amachineat time+ by policy 7.
If X isadeterministic job, we can assume without loss of generality that X is not equal to .J;.
Defineapolicy =’ startingin state n that initially assigns machinesto thedeterministicjob ./ and
the stochastic job I7; «’ then makes exactly the same assignmentsas « until time¢. Attimet, '
assignsone machineto .J; and the other to X'. Attimet + 1, the states reached by both policies
areidentical, and from this point onward 7/ mimics =. Clearly, EM,.(n) < EM(n).

[

Lemma34. If np > k + 1, then there exists an optimal policy that assigns both machines to
stochasticjobsin state n.

Proof: Let 7 bean optimal policy. We assume that the stochastic jobs are assigned in a partic-
ular order, namely, Uy, ..., U,,. Bearing in mind Lemma 3.3, we suppose that at time 0, pol-
icy m assigns one machine to deterministic job .J and the other machine to stochastic job U
(Lemma 3.3). Let timet (arandom variable) be the next time at which policy = assighs one ma-
chine to a stochastic job and the other machineis assigned to ajob X whichisnot .J. There has
to be such an epoch since ng > k + 1. Now introduce a policy 7’ that assigns the machines to
stochasticjobs U1 and U, at time 0. From time 1 until time? — 1, when policy 7 assigns one ma-
chineto a stochastic job, say U;, and the other machineto job .7, policy =’ assigns one machine
to job J and the other machine to stochastic job U, 1. Attimet, policy =’ assigns one machine
tojob .J and the other machineto job X. Attimet + 1, the states obtained by both policiesare
identical, and from this point onward 7’ mimics =. Clearly, EM/(n) < EM,(n).

[

A staten iscalled critical if det(n) = 1 and ||n|| > no > 0. Let n and n’ be critical states.
We say that n’ is a successor of n if there existsan integer 7 > 0 such that ||n|| = [|n’|| + ¢
and ng = ny, + i. A policy = issaid to panicin staten if n iscritical and in state n 7 assignsa
machine to the deterministic job.

The next three lemmas justify the assignments made by policy 7. in step 2(b).

Lemma 3.5. Whenever step 2(b) in policy 7, applies, the corresponding stateis critical.

Proof: By Lemma 3.2 and the definition of acritica state.
[

Lemma 3.6. Supposepolicy = panicsin critical state n and doesnot panicin n’, a successor of
n. Then there existsa policy 7’ that does not panicin staten and EM ./ (n) < EM,(n).

Proof: Assume||n|| = ||n’||+iwherei > 0. Accordingly, thereareat least i+ 2 stochasticjobs
in state n (since = does not panic in state n’). Under the condition that thefirst stochastic jobs
finish after receiving one unit of running time, policy 7 assigns one machine to the deterministic
job J and assigns the other machine to stochastic jobs Uy, . . ., U; at times 0 through: — 1. At
time, policy = assignsthe machinesto U;,1 and U; ;5.

At time0, policy ’ assigns the machines to stochastic jobs I7; and U;. Under the condition
that the first ¢ stochastic jobs finish after receiving one unit of running time, policy =’ assigns
one machine to the deterministic job .J at times 1 through . The other machine is assigned to
stochasticjobs Us, . . ., U; 1, a times 1 through ¢, respectively. Clearly, under the condition that
thefirst 7 stochasticjobsfinish after receiving one unit of runningtime, policiest and =’ achieve
the same state at time7 + 1. From time ¢ + 1 onward, policy =" mimics policy .

Assumethat at |east one of thefirst : stochasticjobsrequires & + 1 unitsof runningtime. The
analysis can be divided into two cases: 1) /1 does not finish after receiving one unit of running
timeand 2) U;, with1 < 5 < v, isthefirst stochasticjob not to finish after receiving one unit of
running time.

1) Supposethat U/, requires & + 1 unitsof runningtime. Let ¢ denotethetimeat which policy
7 assigns a machine to the stochastic job U, and let X denote the other job assigned a machine
attimet. Asbefore, policy 7’ assignsthe machinesto stochasticjobs U/; and U, at time0. ¢From
timeltotimet, policy 7’ mimicspolicy =. Attimet, policy =/ assigns machinesto jobs depend-
ing upon X.

If X = Uy, then 7’ assigns machinesto jobs Uy and .J at time . Itis not difficult to see that
under these assumptions both policies achieve the same state at timet + 1. ¢Fromtimet + 1
onward, policy =’ mimics policy .

If X = Us, then =’ assigns machinesto jobs.J and U5 at timet. Again, it isnot difficult to
see that under these assumptions both policies achieve the same state at timet + 1. ¢From time
t + 1 onward, policy =/ mimics policy «.

If X = J, then policy 7’ assignsthe machinesto jobs./ and Uy a timet. Let d; and dyy,
be the remaining running times of jobs./ and U, respectively, at time¢ + 1 under policy 7. The

remaining running times of .J and U/y under policy =’ attimet¢+ 1 ared; + 1 and dy7, — 1. Since

at each epoch between time 0 and ¢ policy 7 assigns the machines to ./ and /1, we have that
drr, > dj. ¢Fromtimet + 1 onward, policy 7’ mimics = with one exception. Since dr;, > dj,
there must be some time after time¢ at which policy = assigns one machine to I/; and the other
machinetoajob X not equal to J. Atthistime, policy =’ assignsone machineto ./ and the other
machineto X. Itisnot difficult to seethat both policies achieve the same state at the following
epoch, and make identical assignments thereafter.

2) Assume U;, with 1 < j < 4, isthefirst stochastic job not to finish after receiving one unit
of running time. Until time j — 1, policy 7’ makes the assignments prescribed above under the
condition that the stochastic jobs finish after receiving one unit of runningtime. Attimej — 1,
policy =" assigns one machineto job .J and the other tojob U; (at thistime U; isadeterministic
job under policy 7’). Let d; and dyy, = k denote the remaining running times of jobs.J and U,
respectively, at time ; under policy =. The remaining runningtimes of .J and U; at time 5 under
policy 7" ared; + 1 anddy;, — 1 = k — 1, respectively. Policy 7’ mimics 7 from time j onward
with one exception. Sinced; < k, theremust be sometime after j — 1 at which policy = assigns
onemachineto U; and the other machineto ajob X not equal to 7. Atthistime, policy =’ assigns
one machineto .J and the other machineto X. It is not difficult to see that both policies achieve
the same state at the next epoch.

[

Lemma3.7. Let n beacritical state, nop > 0, and A = ng — max{1, [%Jr”“”)}}. Then an
optimal policy must panicif p > ﬁf must not panicif p < ﬁf and may or may not panic if
p=xiT
Proof: The proof is by induction on no. When ng = 1, we have A = 0, and the lemma ob-
viously holds. Consider some ny > 1, and assume that the lemma holds for all critical states
with fewer stochastic jobs. Since n is a critical state, we have ||n|| > no. We compare two
policies 7 and 7/, where = panics whenever it encounters a critical state (including state n), and
where ' does not panic in state n, but panics whenever it encounters any other critical state. By
Lemmas 3.5 and 3.1, whenever either policy encounters a stochastic job that does not finish the
resulting stateis predictable. Both policies behave optimally when a predictable state is encoun-
tered.

To begin with, we calculate EM . (n) — EM../(n). Itiseasy to see that for sample pathsin
which at least two of the stochastic jobsrequire k£ + 1 running time, the makespans under both

policies are identical (the schedules are minimal). If &l the stochastic jobs finish after one unit

9

of running time, then the contribution to the expected makespan under policy 7 isp™||n]|. The
corresponding contribution under policy 7’ is p™ (||n|| + 1).

The situation is more complex when exactly one of the stochastic jobs requires & + 1 units
of runningtime. Let U4, ..., U,, denotethe stochastic jobs and ./ denote the deterministic job.
Suppose that U;, i > 2, isthe stochastic job requiring & + 1 units of running time. At time ¢,
under policy 7 the remaining running time of job .J is ||n|| — ¢, the number of stochastic jobs
isng — 7, and the remaining running time of job U; isk. Attime: — 1, under policy =’ the
remaining running time of job .J is||n|| — (7 — 2), the number of stochasticjobsisng — ¢, and
theremaining running time of job U; is k. These states are predictable, and thus we can compare
the expected contribution to the makespan from these sample paths. If enough stochastic jobs
remain, the resulting makespan under policies = and =’ will be minimal, and the contributions
under both policiesare equal. It is not too difficult to seethat if ||n|| — ¢ plusng — ¢ islessthan

or equal to k£ — 2, then the makespan under policy = isnot minimal, i.e.,
(3.1) |In|| + no — 2t < k — 2.

Since policy 7’ detectsthelong job (U;) at time i — 1, the makespan of the schedule under 7’ is
one less than the makespan of the schedule under policy 7. If U; werethelong job, both policies
detect this at the same time, and the resulting makespans are equal.

Let A denotethe number of sample paths for which the schedule under = is onelonger than
the schedule under 7’. The number A isegual to the number of valuesof ¢ satisfying?2 < ¢ < ng
and (3.1). We get

A = ng+1—max{2,[||n||+ no — k +2)/2]}

(3.2 = ng — max{l, [[|n|| + no — k)/2]}.

The probability of each of these sample pathsis p™~!(1 — p), and thus the difference in the
contribution to the makespan between 7 and 7’ is p"o~'(1 — p)A. Since for al other sample

paths the two policies achieve identical makespans, we get
(3.3 EM.(n) — EM(n) = p™~ (1 - p)A — p™.

Policy = isnoworsethan policy 7’ whenp > A/(A+1). Since A/(A+1)isnon-increasing
as ng decreases, it follows from the induction hypothesisthat 7o is an optimal policy whenever

p > A/(A + 1) (some care hasto be taken when ny = 2).

10

Policy 7’ is better than policy = whenp < A/(A + 1). It follows from Lemma 3.6 that
panicing in state n could not have been optimal.
[|

The proof of Theorem 3.1 is complete.
4. Concludingremarks

We conclude with some comments on open problems. As mentioned earlier, the problem
considered hereisprobably the simplest non-trivial case where the running-timedistribution does
not have a monotone hazard-rate function. One obvious generalization would be the case where
the number of machinesism > 2. We strongly conjecture that the optimal policy will then
continueto have aturnpike property, namely, that if at least k(m — 1) 4 1 unstarted jobsremain,
thentheLAT decisionisoptimal. Determining what to doin stateswith at most k(m—1) unstarted
jobswill get more complicated, since the state will not be predictable until m — 1 long jobs have
been detected. Another natural generalization would be the case where the running times have a
two-pointdistributionontheintegersa, bwith1 < a < b. Weconjecturethat even thenaturnpike
policy will continue to be optimal, but so far a proof has eluded us. A final extension whichis

worth mentioning, is the case where the running-timesfollow a p-point distribution, p > 2.
References

[1] J.L.Bruno, P.J. Downey, and G. N. Frederickson. Sequencing tasks with exponential ser-
vicetimesto minimizethe expected flow time or makespan. Assoc. Comput. Mach., 28:100—
113, 1981.

[2] E. G. Coffman, Jr., editor. Computer and Job-Shop Scheduling Theory. John Wiley and
Sons, 1976.

[3] E. G. Coffman, Jr., L. Flatto, M. R. Garey, and R. R. Weber. Minimizing expected
makespans on uniform processor systems. Adv. Appl. Prob., 19:177-201, 1987.

[4] E. G. Coffman, J., M. Hofri, and G. Weiss. Scheduling stochastic jobs with a two-point
distribution on two parallel machines. Probability in the Engineering and Informational
Sciences, 3:89-116, 1989.

11

[5] K. D. Glazebrook. Scheduling taskswith exponential service times on parallel processors.

J. Appl. Prob., 16:658-689, 1979.
[6] R.McNaughton. Schedulingwith deadlinesand | ossfunctions. Management Science, 1959.

[7] C. Papadimitriou. Games against nature. Journal of Computer and System Sciences,
31:288-301, 1985.

[8] M. H. Rothkopf. Scheduling independent tasks on parallel processors. Management Sci-
ence, 1966.

[9] R.R. Weber. Scheduling jobs with stochastic processing requirements on parallel machines
to minimize makespan or flow time. J. Appl. Prob., 19:167-182, 1982.

[10] R. R. Weber, P. Varaiya, and J. Walrand. Scheduling jobs with stochastically ordered pro-
cessing timeson parallel machines to minimize expected flow time. J. Appl. Prob., 23:841—
847, 1986.

[11] G. Weissand M. Pinedo. Scheduling tasks with exponential service times on non-identical

processors to minimize various cost functions. J. Appl. Prob., 17:187-202, 1980.

12

