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We study the stream merging problem for media-on-demand servers. Clients
requesting media from the server arrive by a Poisson process, and delivery
to the clients starts immediately. Clients are prepared to receive up to two
streams at any time, one or both being fed into a buffer cache. A multicast
mechanism exists that allows multiple clients to receive the same stream. We
present an on-line algorithm, the dyadic stream merging algorithm, whose sim-
ple recursive structure allows us to derive a tight asymptotic bound on stream
merging performance. In particular, let λ be the request arrival rate, and let
L be the fixed media length. Then the long-time ratio of the expected total
stream length under the dyadic algorithm to that under an algorithm with
no merging is asymptotically equal to 3 log λL

2λL
. This first rigorous, average-

case analysis of stream merging was accompanied by an unforeseen bonus: the
performance sacrifice introduced by the simplicity of the dyadic algorithm is
essentially negligible. We establish the near-optimality of the dyadic algorithm
by comparisons with experimental results obtained for an optimal algorithm
constructed as a dynamic program. The dyadic algorithm and the best on-line
algorithm of those recently proposed differ by less than a percent in their com-
parison with an off-line optimal algorithm. Finally, the worst-case performance
of our algorithm is shown to be no worse than that of earlier algorithms.
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1. INTRODUCTION

At a sequence of random times, clients request content streaming from
a given media server, e.g., videos from a video-on-demand server, with
delivery for each client to begin immediately. To reduce the potentially
heavy traffic burden created by these media streams, it is clearly desirable
to combine streams of the same content using multicast techniques. To
see how this can be done and still preserve immediate-start delivery, we
need the following assumptions: clients can receive two streams in parallel
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and each has a cache for buffering stream content. Although multimedia
streaming embraces video, audio, and data streaming, we will keep with
video terminology for simplicity.

As an example, consider a situation in which (i) client C1 arrives at t1
and requests a video of duration L, and (ii) client C0 is currently playing
the same video from a stream S0 that began at time t0 < t1. To minimize
duplicate streaming, the video server initiates at time t1 a stream S1 to C1

which it maintains for ∆ := t1 − t0 time units, and at the same time, it
delivers S0 to both C0 and C1; C0 continues to play from S0 whereas C1

caches S0 while playing the video from S1. At time t1 + ∆, C1 has played
the first ∆ time units of the video, and, if the video at C0 was more than
half over at time t1, C1 has the remainder of the video available in its buffer
cache. From this point on, C1 plays the video from its buffer. If the video
playing at C0 was less than half over at time t1, then at time t1 + ∆, the
second ∆ time units of the video are in C1’s cache and S0 begins to feed the
last L− 2∆ time units of the video into C1’s buffer. The video segment in
the buffer may be thought of as being played from one end and fed at the
other. This process is called stream merging; in the present case, S1 was
discontinued after being ”merged” at time t1 + ∆ with the earlier starting
S0.

Note that the total streaming time has been reduced from 2L, with no
merging, to a minimum achievable value of L + ∆. The total streaming
time is a simple and effective measure of bandwidth consumption that we
will retain throughout the paper.

Stream merging becomes much more involved as we increase the number
of streams that are candidates for merging, because then the number of
ways in which merging can be done also increases. For example, consider
the case of three clients C0, C1, C2 arriving at times t0 < t1 < t2 and
initiating streams S0, S1, S2 for a video of duration L. Let ∆i = ti − ti−1

be the interarrival times. Figure 1 illustrates an example in which the ti’s
are given by 0, 3, and 4, and L = 10. Consider just those ways in which
we can merge the streams for both C1 and C2. For the given parameters,
the two possible merging patterns are shown in Figs. 1(a) and 1(b). In
Fig. 1(a), S1 and S2 are merged independently with S0 as described earlier:
C1 caches S0 during [t1, t1 + ∆1] and C2 caches S0 during [t2, t2 + ∆2]; at
the end of the respective intervals S1 and S2 are merged with S0.

The second possibility is first to merge S2 with S1 and then S1 with S0.
In this scenario, which is illustrated in Fig. 1(b), C1 plays S1 and caches S0

during [t1, t1 + ∆1]. Thereafter, C1 plays from its buffer which is only fed
by S0 during the last L− 2∆1 time units of the video. Client C2 caches S1

and plays from S2 during [t2, t2 + ∆2], at which point S2 is discontinued,
and play proceeds from C2’s buffer. Client C2 continues to cache S1, but in
addition, it caches the remainder of S0 (in a suitably chosen region of the
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FIG. 1. Stream merging examples.

cache where the two buffering operations can not overlap). This continues
until t2 +∆1 +∆2 at which point S1 is shut down and S0 becomes the only
active stream while it is supplying the last L − 2(∆1 + ∆2) time units of
the video to the buffers of C1 and C2. In this process, C2 has played the
first ∆2 time units of the video directly from S2, the next ∆1 time units
from a cached segment of S1 and the last L −∆1 −∆2 time units from a
cached segment of S0.

Note that, although the streaming at C1 is the same as before, S1 does
not terminate at time t1 + ∆1 when no longer needed by C1; the media
server must still send S1 to C2 until C2 can switch to S0, which occurs
at t2 + ∆1 + ∆2. Note also that the cost (sum of stream durations) of
the second merging pattern is 16 as compared to the cost 17 of the first
pattern. In general, however, the best merge pattern for an arrival at time
t depends not only on arrival times before t, but also on the arrival times
after t.

The technique of stream merging originated with Eager, Vernon, and Za-
horjan [11, 12] as a model of the pyramid broadcasting scheme introduced
by Viswanathan and Imielinski [35,36]. This paradigm provides the multi-
cast basis for sharing streams and is built upon the assumption that clients
can receive more bandwidth than they need for play-out. The skyscraper
broadcasting scheme [15,22,30] is another example of these new techniques.
A number of related techniques go under the names of batching [1, 9, 10],
patching [6, 16, 21], tapping [7, 8], and piggy-backing [2, 18, 19, 28] and the
general problem has several parameters and useful performance metrics.
Other parameters include delay guarantees, receiving bandwidth, server
bandwidth, and buffer size [5, 13–15, 17, 20, 23–27, 29–34]. The maximum
number of streams is another metric that is of greater interest in certain
circumstances. In this setting, the algorithms of this paper have the prop-
erties:
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• They are on-line, i.e., the media server does not know arrival times in
advance.
• They give a zero-delay guarantee, i.e., all video requests are satisfied

immediately.
• They restrict to at most two the number of streams being received by

a client at any one time – the two-receive model.
• The buffer size can accommodate up to half of the video.

The last two assumptions are justified in the papers by Bar-Noy and Lad-
ner [3, 4], which supply the primary motivation for the work here. In
particular, most of the improvement of merging streams is already present
in the two-receive model. The L/2 buffer size limit comes about because
our algorithms do not attempt merging with an existing stream that is
already at least half over. As Bar-Noy and Ladner argue, this is not only a
convenience, it rules out potential merges that, if implemented, would lead
to increased average cost, even for only moderately large arrival rates. For
further discussion of the literature on stream merging, we refer the reader
to the mini-survey of [3].

Many excellent numerical/experimental studies have appeared in the
stream-merging literature, but the absence of mathematical foundations
has stood out, at least until the work in [3, 4], which focuses on compet-
itive, or worst-case, analysis. Here, we give what appears to be the first
rigorous average-case analysis of a near-optimal algorithm.

The paper is organized as follows. In Section 2 we present the Dyadic
Tree algorithm and state our main results. Section 3 contains numerical
experiments that verify the algorithm’s performance and conclusions. The
proof of the main results can be found in Section 4.

2. ALGORITHM & RESULTS

The problem of stream merging can be posed as a problem on trees
(see [3, 4]). A merge tree is a representation of a stream merging diagram,
such as those shown in Figure 1. Each stream of the merging diagram
corresponds to a node in the corresponding merge tree. Thus, the number
of nodes in the merge tree is equal to the number of requests placed with
the server, i.e., the number of clients. If stream Sj is merged directly to
an earlier starting stream Si, then the node associated with Sj is a child of
the node associated with Si. It is convenient to label the nodes with the
arrival times of the corresponding streams.

A root stream is merged with no other stream, i.e., it becomes the root
in a merge tree. The length of the root stream is always the full length
of the video, L. The start rule below provides a simple way to determine
which streams are roots. Let t0, t1, . . . be the stream starting times.
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Start rule: Node t0 is a root. If ti is a root, then tj = inf{tk : tk >
ti + L/2} is a root.

In other words, the start rule says that a node will be in a given tree
only if the root stream of that tree started less the L/2 time units ago. As
noted earlier, this constraint simplifies the algorithmics; there is a sacrifice
in efficiency, but only when traffic is low. For example, suppose we have a
root stream starting at time t0 and an arrival at time t1 with t0 + L/2 <
t1 ≤ t0 + L. If t1 is made a descendant of t0, then no other node can be
merged with t1 without extending its length to L. Hence, some gain is
achieved only if there are no arrivals in the interval (t1, t1 + L].

When the arrivals are Poisson, the sequence of merge trees becomes a
renewal process. This fact allows us to focus our analysis on a single merge
tree rooted at t0 = 0. Let {tn}∞n=0 be a sample path of a Poisson process
with rate λ on the non-negative reals, and assume for convenience that
t0 = 0. The total length of all streams in a merge tree is defined as

T ≡ T (L, λ) :=
∞∑

n=0

ln1{tn ≤ L/2}, (1)

where ln denotes the length of the stream initiated by the arrival at time
tn. By definition l0 = L. The quantity T will measure the effectiveness of
stream merging algorithms.

Our new stream merging algorithm is implicit in the following algorithm
for constructing merge trees from a given root.

The Dyadic Tree Algorithm: The input is a sequence of n > 0 arrival
times t0, . . . , tn with t0 = 0, and the output is a tree of n nodes. The
arrival at time 0 determines the root. To find the children of the root,
first divide the interval [0, L/2] into dyadic subintervals Ii with lengths
2−iL/2, i = 1, 2, . . . , as shown in Figure 2. If Ii contains at least one
arrival time, then t(i) denotes the earliest such time; otherwise, t(i) = 0.
Each t(i) > 0 is made a child of the root. Then for each t(i) > 0, the
algorithm is applied recursively to the interval [t(i), 2−iL] to determine the
subtree rooted at t(i).

L/2L/4L/8
III 134

L/16
I2I5

0

FIG. 2. Dyadic partition of the interval.

It is not difficult to verify that this can be formulated as an on-line
algorithm, as we show at the end of this section. In particular, the decision
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as to whether or not a node ti should be attached to an existing tree is
unaffected by arrivals after time ti. The following theorem gives our first
result, a uniform bound on total stream length. We postpone the proof
until Section 4.

Theorem 2.1. The total cost of the dyadic tree algorithm satisfies

1
4
L log λL− 1

4
L ≤ ET (L, λ) ≤ 3

4
L| log λL|+ 23

8
L.

Furthermore, for large values of λL the preceding theorem can be strength-
ened by the following result, which is proved in Section 4.

Theorem 2.2. The total cost of the dyadic tree algorithm satisfies

lim
λL→∞

ET (L, λ)
L log λL

=
3
4
.

In order to consider the worst-case performance we examine a slightly
different model. Let time be slotted and let the video have a length of 2n
time slots, i.e., a merge tree is being built on n slots. In each of the slots
at most one stream can be initiated. In [4] it is proved that the worst-case
performance of the optimal algorithm is Θ(n log n). On the other hand,
the total cost for the Dyadic Tree algorithm satisfies 2T (n/2) + n/2 ≤
T (n) ≤ 2T (n/2) + 3n/2, with the solution T (n) = Θ(n log n). Thus, the
Dyadic algorithm is within a constant factor of optimal in worst-case. A
more detailed numeric comparison of the Dyadic algorithm and the optimal
algorithm is made in the next section.

We conclude this section with a straightforward on-line implementation
of the algorithm.

On-line Dyadic Stream Merging: Let S be a stack with push and pop
operations defined for pairs of numbers (ta, tr). Each pair corresponds to a
stream: ta is the time at which the stream was initiated and tr is the time
after which newly arrived streams will not be allowed to merge with it.

At time t = 0 push (0, L/2) onto S. At the time t of a new request, pop
the pairs (ta, tr) from the stack until tr > t. Add the new stream to the
stack by performing push (t, t′), where t′ = ta + (tr − ta)min{2−k+1 :
2−k(tr−ta) < t−ta}. The stream started at t is the child of the stream
started at ta.
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3. NUMERICAL RESULTS & CONCLUSIONS

This section provides a numerical validation of the asymptotic approxi-
mation

T ′ ≡ T ′(L, λ) := L log λL.

The first example investigates the dependency of the total cost on the
length of the stream for fixed values of the arrival rate λ. The parameter
values are set within the regions that are plausible for real-life systems. In
particular, we set L = 20i minutes, i = 1, . . . , 9 and plot the ratio ET/T ′

in Figure 3, where ET is obtained by simulating 10,000 trees for each set of
values. Points marked with ”o”, ”+” and ”x” correspond to λ−1 equal to
5, 20 and 60 seconds, respectively. Note that for (λ−1, L) = (60s, 20min)
the merge tree consists of only 11 nodes on average.
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FIG. 3. ET/T ′ as a function of the stream length for three values of the arrival
rate. Expected interarrival times are 5s (”o”), 20s (”+”) and 60s (”x”).

In the second example we fix L and look at ET (λ,L) as a function of the
first argument. The simulation results of ET/T ′ are plotted in Figure 4.
As in the previous case we simulated 10,000 trees for each point. Values
of L are set to 120, 60 and 30 minutes and denoted respectively by the
symbols ”o”, ”+” and ”x”. Using approximation T ′ with the appropriate
multiplicative factor yields excellent engineering estimates for all reasonable
values of L and λ.

Finally, we compare the performance of the Dyadic Tree algorithm to the
performance of the optimal off-line algorithm. The cost of the latter can be
determined by a dynamic program (see [2]). Let Topt(i, j) be the optimal
cost of the merge tree for streams initiated at 0 ≤ ti < · · · < tj < L/2. The
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FIG. 4. ET/T ′ as a function of the arrival rate for three values of the stream

length. The stream length is set to 120 (”o”), 60 (”+”) and 30 (”x”) minutes.

optimal merge tree satisfies the preorder traversal property [4] and, hence,

Topt(0, n) = min
1≤k≤n

{Topt(0, k−1) + Topt(k, n)− (L− 2tn + tk + t0)}

with Topt(i, i) = L. The last term represents the gain from a merge of
optimal trees rooted at t0 and tk. We used the fact the length of the
stream t is equal to 2tl − t − tp, where tp is its parent and tl is the last
stream that merges to it (see [3]).

For numerical comparison, let the length of the video be 2 hours and let
the value of the expected interarrival time vary from 5s to 60s in steps of 5s.
For every pair (λ,L) we simulated 1,000 trees and based on that computed
the average cost for two algorithms. The increase in expected cost when
using the Dyadic Tree algorithm instead of the optimal off-line algorithm
is remarkably small as shown in Figure 5. For all parameter values the
increase did not exceed 8%.

In summary, we have been able to prove the tight average-case asymp-
totic behavior 3

4L log λL for the dyadic stream merging algorithm, and to
show in addition that its average-case and worst-case performance are com-
parable to those of the best on-line algorithms known to date. Average-case
analysis of the stream merging algorithms that arise in other settings is an
obvious avenue of further research.
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FIG. 5. Performance of the algorithm in comparison with the optimal off-line

algorithm. The length of the stream is equal to 2 hours.

4. PROOFS

We start by introducing a recursive procedure for labeling the arrival
times in (0,L/2). For the purposes of the proof these labels replace the ti
labels. The procedure can be thought of as a function EL : T 7→ ω that
maps a set T of arrival times to the space of indices ω. Each index ω
consists of a number of digits equal to the depth of the node in the merge
tree that corresponds to the given arrival. In general, ω = ω1ω2 . . . ωn,
where ωi ∈ N for i = 1, 2..., and the parent of the node labeled ω is a
node labeled with the prefix ω′ = ω1 . . . ωn−1. The algorithm labels the
arrivals as follows. The interval (0, L/2) is divided into dyadic intervals in
increasing order from the root as shown in Figure 2. If a point t is the first
point in the subinterval Ii then its label is i. Label the rest of the points
in (t, 2−iL) recursively by using the parent’s label as a prefix for childrens’
labels. An example of how the points are labeled is shown in Figure 6.

4.1. Proof of Theorem 2.1
Lower bound: By applying the above labeling procedure, it is not hard to
verify that (1) becomes

T (L, λ) = L +
∞∑

n=1

l(n)1{tn ≤ L/2} = L +
∞∑

n=1

∑
ω=ω1...ωn

lω1...ωn , (2)
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FIG. 6. An illustration of the labeling algorithm. In this example there are seven
points that need to be labeled. On the first call of the procedure three points are assigned
labels (1,2 and 4). The recursive algorithm is applied until all points are labeled.

where lω1...ωn
is the length of the stream starting at the point labeled

ω1 . . . ωn. If for a particular realization of the Poisson process there is no
point with label ω1 . . . ωn, then lω1...ωn = 0.

Next, we estimate the expected values of lω1...ωn
. Let η, {ηn}∞n=1 be a set

of i.i.d. exponential random variables with mean λ−1, and consider first
the streams that are children of the root, i.e., the streams whose indices
consist of a single digit. Given that, for a particular realization of the
Poisson process, there exists a stream with label ω1, its length must be at
least 2−ω1L/2, since it is at least that much later than the root. Therefore,

lω1 ≥
L/2
2ω1

1
{
∃n :

L/2
2ω1

≤ tn <
L/2

2ω1+1

}

≥
(

L/2
2ω1

− inf
{

tn − L/2
2ω1

: tn >
L/2
2ω1

})+

so after taking into account the memoryless property of the Poisson process,
we conclude that

Elω1 ≥ E
(

L/2
2ω1

− η1

)+

.

A node with label of form ω1ω2 is a child of the node with label ω1. Con-
sidering the preceding inequality, the recursive nature of the merging algo-
rithm and the size of the problem in which node ω1 is the root one obtains

Elω1ω2 ≥ E




(
L/2
2ω1 − η1

)+

2ω2
− η2




+

= E
(

L/2
2ω1+ω2

− η2 − η1

2ω2

)+

.
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The recursive structure of the merging algorithm shows that for a stream
with an arbitrary index ω1ω2 . . . ωn,

Elω1...ωn ≥ E
(

L/2
2ω1+···+ωn

− ηn −
n−1∑

i=1

ηi

2ωi+1+···+ωn

)+

with the understanding that the sum in the above expression is equal to
zero if n = 1. If W :=

∑∞
i=0 ηi2−i then the expected value of an individual

stream length is further lower bounded by

Elω1...ωn
≥ E

(
L/2

2ω1+···+ωn
−W

)+

. (3)

Now observe that the number of indices with a digit sum equal to k is 2k−1,
i.e.,

∞∑
n=1

∑
ω=ω1...ωn

1

{
n∑

i=1

ωi = k

}
= 2k−1, (4)

since the above sum is equal to the number of ways one can partition a set
of cardinality k. Rearrange the sum in (2), use the bound (3) and apply (4)
to find

ET (L, λ) = L +
∞∑

k=1

∑P
ωi=k

Elω1...ωn

≥ L +
∞∑

k=1

2k−1E
(

L/2
2k

−W

)+

≥ L +
∞∑

k=1

2k−1

(
L/2
2k

− 2
λ

)+

,

where the last step follows from Jensen’s inequality. Finally, simple ma-
nipulations yield

ET (L, λ) ≥ L +
L

4

∞∑

k=1

(
1− 2k+2

λL

)+

= L +
L

4

blog λL
4 c∑

k=1

(
1− 2k+2

λL

)
≥ L

4
log λL− L

4
,

from which we conclude that the lower bound holds.
Upper bound: Consider the streams that are children of the root. For such
streams we have

lω1 ≤ 3
L/2
2ω1

, (5)
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since stream ω1 has to be extended to accommodate the requirements of
the streams in its subtree. The inequality is tight when there is an arrival
right after time 2−ω1L/2 and an arrival just before time 2−ω1L. Next we
examine the streams that can be reached from the root in exactly two steps.
An upper bound on their length is

lω1ω2 ≤ 3

(
L/2
2ω1 − inf{tn − L/2

2ω1 : tn > L/2
2ω1 }

2ω2

)+

, (6)

whereupon the memoryless property of the Poisson process gives

Elω1ω2 ≤ 3E
(

L/2
2ω1+ω2

− η2

2ω2

)+

.

Note that (5) and (6) are of the same form. In the first inequality the size
of the problem is L/2 while in the second the size is 2−ω1L/2 − inf{tn −
2−ω1L/2 : tn > 2−ω1L/2}. Since the merging algorithm is recursive, for
streams that have depth n ≥ 2 in the merge tree one can conclude that

Elω1...ωn ≤ 3E

(
L/2

2ω1+···+ωn
−

n∑

i=2

ηi

2ωi+···+ωn

)+

≤ 3E
(

L/2
2ω1+···+ωn

− η

2ωn

)+

. (7)

It is easy to verify that the number of indices with the digit sum k and last
digit i is equal to 2k−i−1, i.e., for 1 ≤ i ≤ k − 1

∞∑
n=2

∑
ω=ω1...ωn

1





n∑

j=1

ωj = k, ωn = i



 = 2k−i−1. (8)

The length of the root stream is always L so (5), (7) and (8) yield

ET (L, λ) = L +
∞∑

ω1=1

Elω1 +
∞∑

k=2

k−1∑
ωn=1

Elω1...ωn1





n∑

j=1

ωj = k





≤ L + 3
∞∑

k=1

L/2
2k

+ 3
∞∑

k=2

k−1∑

i=1

2k−i−1E
(

L/2
2k

− η

2i

)+

≤ 5
2
L +

3
4
L

∞∑

k=2

k−1∑

i=1

2−iE
(

1− η
2k+1−i

L

)+

.
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A simple computation shows that E (1− η)+ = 1−λ−1 (1− exp (−λ)) and,
therefore, by changing the order of summation one obtains

ET (L, λ) ≤ 5
2
L +

3
4
L

∞∑

k=2

k−1∑

i=1

2−i

(
1− 2k+1−i

λL

[
1− e−λL2−k−1+i

])

=
5
2
L +

3
4
L

∞∑

i=1

∞∑
m=2

2−i

(
1− 2m

λL

[
1− e−λL2−m

])

=
5
2
L +

3
4
L

∞∑
m=2

(
1− 2m−log λL

[
1− e−2−m+log λL

])
.

Finally, straightforward but tedious calculations show that

∞∑

j=1

(
1− 2j

[
1− e−2−j

])
≤ 1/2

which in conjunction with the preceding inequality and the monotonicity
of the function 1− 2x(1− e−2−x

) yields

ET (L, λ) ≤ 5
2
L +

3
4
L

∞∑

j=2−d| log λL|e

(
1− 2j

[
1− e−2−j

])

≤ 3
4
L| log λL|+ 23

8
L.

This concludes the proof.

4.2. Proof of Theorem 2.2
The upper bound is a direct consequence of Theorem 2.1. Below we

provide the proof of the lower bound. Let Pε ≡ P (λ, ε) := 1 − e−λε de-
note the probability of having at least one Poisson arrival in an interval
of length ε. By conditioning on an arrival in both (2−ω1−1L, 2−ω1−1L + ε)
and (2−ω1L− ε, 2−ω1L) one obtains

Elω1 ≥ P 2
ε

(
3L/2
2ω1

− 3ε

)+

.

Extending the above reasoning to the streams with two-digit labels yields
a lower bound on their expected lengths

Elω1ω2 ≥ P 3
ε

(
3L/2

2ω1+ω2
− 3ε

2ω2
− 3ε

)+

.
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In the above inequality we conditioned on the position of the stream ω1ω2,
its parent and the last stream that will merge to it. Due to the recursive
structure of the algorithm, for a stream with an arbitrary label ω1 . . . ωn

the lower bound has the following form

Elω1...ωn ≥ Pn+1
ε

(
3L/2

2ω1+···+ωn
−

n∑

i=2

3ε

2ω2+···+ωn
− 3ε

)+

≥ Pn+1
ε

(
3L/2

2ω1+···+ωn
− 6ε

)+

Next, the preceding inequality, (1) and (4) result in

ET ≥
∞∑

k=1

2k−1P k+1
ε

(
3L/2
2k

− 6ε

)+

≥
blog λLc∑

k=1

P k+1
ε

(
3L

4
− 3ε2k

)
≥ 3

4
P log λL+1

ε Lblog λLc − 6ελL

Finally, setting ε = 2λ−1 log log λL yields

lim
λL→∞

P log λL
ε = lim

λL→∞
(
1− e−2 log log λL

)log λL
= 1

and, therefore,

T

L log λL
≥ 3

4
P log λL+1

ε

blog λLc
log λL

− 12
log log λL

log λL
−→ 3

4
as λL →∞.

This concludes our proof.
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